Свойства растворов высокомолекулярных соединений

Система ренин-ангиотензин-альдостерон и аденозинтрифосфорной кислоты. Образование АТФ в клетке и его биологическое значение. Окисление высших жирных кислот и ВЖК, имеющих нечетное количество углеродных звеньев в цепи. Биосинтез заменимых аминокислот.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 21.04.2015
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Свойства растворов высокомолекулярных соединений

Истинные растворы ВМС по своим свойствам резко отличаются от растворов низкомолекулярных соединений:

1) Осмотическое давление растворов ВМС не подчиняется закону Вант-Гоффа.

Обычно экспериментально определенное значение осмотического давления растворов ВМС значительно выше значения, рассчитанного по уравнению Вант-Гоффа. Объясняется это тем, что макромолекула благодаря своей гибкости ведет себя в растворе как несколько более коротких молекул. При повышении концентрации возрастает число сегментов макромолекулы, которые ведут себя независимо друг от друга. Для вычисления осмотического давления растворов ВМС предложено следующее уравнение:

кислота аденозинтрифосфорный биологический углеродный

где b - константа, зависящая от природы растворителя.

2) Скорость диффузии макромолекул полимера невелика, она сопоставима со скоростью диффузии типичных коллоидных частиц. Для расчета коэффициента диффузии ВМС применимо уравнение Эйнштейна.

где В - коэффициент трения диффундирующих частиц данной формы.

Для сферических частиц В=6рзr. Однако макромолекулы ВМС редко имеют форму, близкую к сферической.

3) Растворы ВМС способны рассеивать свет, хотя и в меньшей степени, чем типичные коллоидные системы. Однако цепные молекулы полимеров обычно не могут быть обнаружены в ультрамикроскоп. Это связано с тем, что макромолекулы соизмеримы с коллоидными частицами только по длине, а в других направлениях соответствуют размерам обычных молекул.

4) Растворы ВМС обладают высокой вязкостью. Только очень разбавленные растворы подчиняются законам Ньютона и Пуазейля. Штаудингер установил эмпирическую зависимость между удельной вязкостью раствора (зуд.) , молярной массой растворенного полимера (М) и концентрацией полимера в растворе (с):

зуд = К М с, где К - постоянная. (уравнение Штаудингера)

Удельная вязкость - приращение вязкости при добавлении полимера в растворитель, отнесенное к вязкости чистого растворителя.

Кроме понятия «удельная вязкость» часто пользуются понятием «приведенная вязкость» - зуд/с. Удельная вязкость прямо пропорциональна молярной массе полимера.

Уравнение Штаудингера оказалось неточным. Позднее были предложены другие зависимости. Широкое распространение получило эмпирическое уравнение Марка-Куна-Хаувинка:

где К, а - постоянные, характеризующий систему полимер - растворитель, а [з] -характеристическая вязкость раствора. Значение характеристической вязкости получают экстраполяцией зависимости зуд/с от концентрации к нулевой концентрации.

5) Растворы ВМС являются истинными растворами, агрегативно устойчивыми системами. Однако при добавлении электролитов наблюдается выделение высокомолекулярных соединений из раствора. Это явление не следует отождествлять с коагуляцией, т.к. 1) оно наблюдается при добавлении больших количеств электролита, 2) не подчиняется правилу Шульце-Гарди. 3) является полностью обратимым процессом (после удаления электролита полимер вновь растворяется). Описанный процесс называется высаливанием.

Механизм процессов коагуляции и высаливания разный. Коагуляция происходит за счет сжатия двойного электрического слоя на поверхности коллоидной частицы и исчезновения ее заряда; высаливание - результат уменьшения растворимости ВМС в концентрированном растворе электролита.

6) Для растворов ВМС характерно явление коарцевации. Коарцевация - это разделение системы на две фазы, из которых одна представляет собой раствор ВМС в растворителе, а другая - раствор растворителя в ВМС, при изменении температуры или рН или при введении низкомолекулярных веществ.

7) Для растворов ВМС характерно явление спонтанного, самопроизвольного изменения вязкости при длительном хранении растворов. Это явление носит название старение раствора. Старение происходит либо в результате деструкции макромолекул полимера, либо в результате связывания макромолекул. Старение происходит под влиянием кислорода и некоторых других примесей.

8) При увеличении концентрации растворов ВМС, изменения температуры или при добавлении электролита возможно образование пространственной сетки, приводящей к образования студня.

Наиболее интересными особенностями студней являются их механические свойства, в частности, эластичность. Студень способен противостоять течению вплоть до какого-то определенного значения напряжения сдвига, т.е. ведет себя при сдвиговых усилиях ниже этого критического значения, как эластичное твердое тело. Величина критического напряжения сдвига зависит от химической природы полимера и его концентрации. Застудневший раствор может претерпевать синерезис и проявлять тиксотропные свойства. К своеобразным свойствам студней можно отнести их «память» к тому, как они были получены.

Сравнение свойств растворов ВМС со свойствами растворов низкомолекулярных соединений и свойствами коллоидных систем показывает, что растворы ВМС ближе к коллоидным растворам. Однако ВМС образуют гомогенные истинные растворы, обладающие агрегативной устойчивостью. Образование растворов ВМС не требует затрат энергии, оно протекает самопроизвольно и часто с выделением тепла. Образование растворов ВМС не требует наличия стабилизатора. При определенных условиях растворы ВМС могут существовать сколь угодно долго, они находятся в термодинамическом равновесии и являются обратимыми системами.

Гормоны. Общий механизм действия.

Гормоны - это продукты внутренней секреции, которые вырабатываются специальными железами или отдельными клетками, выделяются в кровь и разносятся по всему организму в норме вызывая определенный биологический эффект.

Сами гормоны непосредственно не влияют на какие-либо реакции клетки. Только связавшись с определенным, свойственным только ему рецептором вызывается определенная реакция.

Гормоны имеют различную химическую структуру. Это приводит к тому, что они имеют разные физические свойства. Гормоны разделяют на водо- и жирорастворимые. Принадлежность к какому-то из этих классов обуславливает их механизм действия. Это объясняется тем, что жирорастворимые гормоны могут спокойно проникать через клеточную мембрану, которая состоит преимущественно из бислоя липидов, а водорастворимые этого не могут. В связи с этим рецепторы(Р) для водо- и жирорастворимых гормонов имеют различное место локализации (мембрана и цитоплазма). Связавшись с мембранным рецептором гормон вызывает каскад реакций в самой клетке, но никак не влияет на генетический материал. Комплекс цитоплазматического Р и гормона может воздействовать на ядерные рецепторы и вызывать изменения в генетическом аппарате, что ведет к синтезу новых белков. Рассмотрим это поподробнее.

Механизм действия стероидных (жирорастворимых) гормонов

· Проникновение стероида (С) в клетку

· Образование комплекса СР. Все Р стероидных гормонов представляют собой глобулярные белки примерно одинакового размера, с очень высоким сродством связывающие гормоны

· Трансформация СР в форму, способную связываться ядерными акцепторами [СР] Любая клетка содержит всю генетическую информацию. Однако при специализации клетки большая часть ДНК лишается возможности быть матрицей для синтеза иРНК. Это достигается путем сворачивания вокруг белков гистонов, что ведет к препятствию транскрипции. В связи с этим генетический материал клетки можно разделить на ДНК 3-х видов:

· 1.транскрипционно неактивная

· 2.постоянно экспрессируемая

· 3.индуцируемая гормонами или другими сигнальными молекулами.

· Связывание [СР] с хроматиновым акцептором.

· Следует отметить, что этот этап действия С полностью не изучен и имеет ряд спорных моментов. Считается что [СР] взаимодействует со специфическими участками ДНК так, что это дает возможность РНК-полимеразе вступить в контакт к определенным доменам ДНК.

Интересным является опыт, который показал, что период полужизни иРНК при стимуляции гормоном увеличивается. Это приводит к многим противоречиям: становится непонятно ѕ увеличение количества иРНК свидетельствует, о том что [СР] повышает скорость транскрипции или увеличивает период полужизни иРНК; в то же время увеличение полужизни иРНК объясняется наличием большого числа рибосом в гормон-стимулированной клетке, которые стабилизируют иРНК или другим действием [СР] неизвестным для нас на сегодняшний момент.

· Избирательная инициация транскрипции специфических иРНК; координированный синтез тРНК и рРНК

· Можно полагать, что основной эффект [СР] состоит в разрыхлении конденсированного хроматина, что ведет к открыванию доступа к нему молекул РНК-полимеразы. Повышение количества иРНК приводит к увеличению синтеза тРНК и рРНК.

· Процессинг первичных РНК

· Транспорт мРНК в цитоплазму

· Синтез белка

· Посттрансляционная модификация белка

Однако, как показывают исследования, это основной, но не единственно возможный механизм действия гормонов. Например, андрогены и эстрогены вызывают увеличение в некоторых клетках цАМФ что дает возможность предположить, что для стероидных гормонов имеются также мембранные рецепторы. Это показывают что стероидные гормоны действуют на некоторые чувствительные клетки как водорастворимые гормоны.

Вторичные посредники Пептидные гормоны, амины и нейромедиаторы в отличие от стероидов ѕ гидрофильные соединения и не способны легко проникать через плазматическую мембрану клетки. Поэтому они взаимодействуют с расположенными на поверхности клетки мембранными рецепторами. Гормон-рецепторное взаимодействие иницирует высококоординированную биологическую реакцию, в которой могут участвовать многие клеточные компоненты, причем некоторые из них расположены на значительном расстоянии от плазматической мембраны.

цАМФ ѕ первое соединение, которое открывший его Сазерленд назвал «вторым посредником», потому что «первым посредником» он считал сам гормон, вызывающий внутриклеточный синтез «второго посредника», который опосредует биологический эффект первого.

На сегодняшний день можно назвать не менее 3 типов вторичных посредников: 1)циклические нуклеотиды (цАМФ и цГМФ); 2)ионы Ca и 3)метаболиты фосфатидилинозитола.

С помощью таких систем небольшое число молекул гормона, связываясь с рецепторами, вызывает продукцию гораздо большего числа молекул второго посредника, а последние в свою очередь влияют на активность еще большего числа белковых молекул. Таким образом, происходит прогрессивная амплификация сигнала, исхдно возникающего при связывании гормона с рецептором.

Упрощенно действие гормона через цАМФ можно представить так:

1. гормон + стереоспецифический рецептор

2. активация аденилатциклазы

3. образование цАМФ

4. обеспечение цАМФ координированной реакции

1.Следует отметить, что рецепторы тоже являются динамическими структурами. Это означает, что их количество может или снижаться или повышаться. Например у людей с увеличенной массой тела уменьшается количество рецепторов инсулина. Опыты показали, что при нормализации их массы замечается увеличение количества рецепторов до нормального уровня. Иными словами, при повышении или снижении концентрации инсулина имеют место реципрокные изменения концентрации рецепторов. Считается, что это явление может защитить клетку от слишком интенсивной стимуляции при неадекватно высоком уровне гормона.

2.Активация аденилатциклазы (А) тоже является регулируемым процессом. Ранее считалось, что гормон (Г), связываясь с рецептором (Р), изменяет его конформацию, что приводит к активированию А. Однако оказалось, что А, является аллостерическим ферментом, который активируется под действием ГТФ. ГТФ переносит специальный белок (трансдуктор) G. В связи с этим была принята модель , описывающая не только активацию А, но и терминацию этого процесса

а) Г + Р + G·ГДФ ® Г·Р·G + ГДФ

б) Г·Р·G + ГТФ ® Г + Р + G·ГТФ

в) G·ГТФ + А ® цАМФ + G·ГДФ

Таким образом, «выключающим» систему сигналом служит гидролиз ГТФ. Для возобновления цикла ГДФ должен отсоединиться от G, что происходит при связывании гормона с Р.

Некоторые факторы оказывают ингибирующее действие на А и вызывают снижение концентрации цАМФ. Примерами агонистов стимулирующих циклазу, могут служить глюкагон, АДГ, ЛГ, ФСГ, ТТГ и АКТГ. К факторам ингибирующим циклазу, относятся опиоиды, соматостатин, ангиотензин II и ацетилхолин. Адреналин может как стимулировать (через b-рецепторы), так и ингибировать (через a-рецепторы) данный фермент. Возникает вопрос каким же образом осуществляется двунаправленная регуляция А. Оказалось, что ингибирующая система включает в себя трехмерный белок, чрезвычайно похожий на приведенный выше G-белок. Эффект Gи может быть описан следующим образом:

а) Г + Р + Gи·ГДФ ® Г·Р· Gи + ГДФ

б) Г·Р·Gи + ГТФ ® Г + Р + Gи·ГТФ

в) Gи·ГТФ + А ® ЇцАМФ + Gи·ГДФ

После фосфорилирования белков-ферментов в ходе выше описанных реакций (см. рис 1) изменяется их конформация. Следовательно изменяется и конформация их активного центра, что ведет к их активированию или ингибированию. Получается, что благодаря вторичному посреднику цАМФ в клетке активируются или ингибируется действие специфичных для нее ферментов, что вызывает определенный биологический эффект свойственный для этой клетки. В связи с этим несмотря на большое количество ферментов, которые действуют через вторичный посредник цАМФ, в клетке возникает определенный, специфический ответ.

Кальмодулин

Эффект кальмодулина очень похож на эффект цАМФ. В клетке по мере дифференцировки образуется набор Са2+-кальмодулин-чувствительных белков. Кальмодулин активирует ферменты связываясь с ними и изменяя их конформацию. В то же время кальмодулин сам является аллостерическим белком, который проявляет свои биологические свойства только в связанном с ионами Са виде.

Комплекс кальмодулина с Са может изменять активность белков одним из двух способов:

1) путем прямого воздействия на фермент-мишень

2) через активируемую этим комплексом протеинкиназу

Взаимодействие вторых посредников

Как было показано на рис.2 Фосфатидилинозитол также запускает кальмодулин. В то же время кальмодулин как и цАМФ активируют белки-ферменты благодаря чему вызывается биологический эффект. Даже среди 3 известных на сегодняшний день типов вторичных посредников мы видим тесное взаимодействие.

Рассмотрим взаимодействие кальмодулина и цАМФ. Большое разнообразие набора кальмодулиновых белков в клетке ведет к различному действию на цАМФ в разных клетках организма. В одном случае кальмодулин активирует фосфодиэстеразу (см. рис.1) что приводит к ингибированию эффекта цАМФ. В другом случае он активирует аденилатциклазу, в третьем ингибирует. В связи с таким разнообразием эффектов Расмуссен предположил 5 различных ситуаций, в которых конечная интегральная реакция зависит от одновременного присутствия цАМФ и Са2+, действующих вместе или последовательно:

· равноправное партнерство, когда оба посредника необходимы для полного проявления биологического эффекта

· тот или другой посредник играет главную роль, а другой лишь облегчает его роль

· посредники действуют последовательно, т.е. высвобождение Са повышает продукцию цАМФ (активирует аденилатциклазу) и дальше они действуют вместе

· двойной контроль является излишним

· посредники являются антагонистами, т.е выступают в роли «сигнала выключения друг друга»

Гормон роста (соматотропин)

Как и каждый гормон аденогипофиза соматотропин синтезируется под действием рилизинг фактора (ГР-РФ). Стимуляторами выработки ГР-РФ являются тиреоидный гормоны и глюкокортикоиды. Главным ингибитором реактивности питуицитов по отношению к ГР-РФ является соматостатин. Он стимулируется соматомединами. То есть можно сказать что соматостатин действует по методу обратной связи.

ГР-РГ стимулирует как секрецию так и синтез СТГ. Этот эффект опосредуется связыванием ГР-РФ с рецепторами плазматической мембраны соматотрофов и активацией трех систем вторичных посредников. С их помощью происходит усиленный синтез мРНК СТГ. Этот эффект действия водорастворимого гормона на ядерный аппарат клетки объясняют фосфорилированием и дефосфорилированием определенной группы протеинкиназ, которые действуют на генетический аппарат клетки. На данный момент ни одна из этих протеинкиназ не идентифицирована.

СТГ не действует прямо на клетку. Он переносится кровью в печень где превращается в соматомедины. То что СТГ не действует прямо на гормон было доказано на опыте, когда изолированную хрящевую ткань перфузировали раствором, который содержал большое количество СТГ и не наблюдали никакого ее роста. При помещении ее в нормальную сыворотку крови ее клетки росли. Потом были найдены соматомедины, которые непосредственно вызывают эффект роста.

Клеточный механизм действия СТГ на хрящевую ткань связан с эффектами соматомедина. Хотя стимуляция роста и других тканей, таких как печень и мышцы, может опосредоваться аналогичным механизмом, in vitro показано и прямое действие СТГ на мышцу. Так, подобно инсулину СТГ вызывает независимое от синтеза белка усиление транспорта глюкозы. Спустя некоторое время после добавления СТГ мышца приобретает резистентность к действию инсулина, и в этот период усиливается транспорт аминокислот, зависящий от синтеза нового белка.

Действие СТГ на печень до сих пор недостаточно изучено. Гормон стимулирует синтез белка, РНК. Это в свою очередь ведет к увеличению количества полисом. Также в конце концов он стимулирует синтез ДНК. На данный момент неизвестно, как СТГ, имеющий рецепторы на мембране может вызывать эффекты похожие на действие стероидных гормонов. Можно предположить, что он вызывает такие эффекты вызывая синтез ферментов, отвечающих за синтез нуклеиновых кислот. Это также доказывает то, что жирорастворимые гормоны включают только определенные гены, а СТГ ведет к генерализованой реакции увеличения синтеза белка на включенных генах, что ведет к росту клетки, а не к ее дифференциации.

До сих пор не вполне ясно, какие эффекты вызывает непосредственно СТГ, а какие соматомедины. Известно точно, что соматомедины действуют непосредственно на хрящевую ткань, вызывая в хондробластах:

· стимуляцию включения SO4 в протеогликаны

· стимуляцию включения тимидина в ДНК

· стимуляцию синтеза РНК

· стимуляцию синтеза белка

Тиреоидные гормоны (Т3 - Т4)

Пептидергические нейроны в преоптической области гипоталамуса синтезируют и выделяют в воротную систему гипофиза тиреотропин-рилизинг гормон (ТРГ). ТРГ стимулирует выработку в клетках гипофиза тиреотропного гормона (ТТГ). ТТГ представляет собой гликопротеид с молекулярной массой 29000.

ТТГ может влиять на развитие тиреоидных фолликулярных клеток, предшествующих образованию самих фолликулов в щитовидной железе. Так, было показано, что тиреоидные клетки in vitro, диспергированные с помощью протеолитических ферментов, при добавлении в среду ТТГ вновь собираются в молекулы. Это показывает, что ТТГ способствует синтезу каких-то компонентов клеточной мембраны, необходимых для распознавания друг друга.

ТТГ-рецепторный комплекс, образующийся в результате связывания ТТГ, вызывает ответные биологические реакции с помощью не менее четырех внутриклеточных посредников: цАМФ, инозитолтрифосфата, диацилглицерола и комплекса Са2+-кальмодулин. Интересно, что активация аденилатциклазы в мембранах тиреоидных клеток под действием ТТГ в основном обуславливается ингибированием Gи-белка.

Под влиянием ТТГ в клетках тиреоидных фолликулов возникают глубокие морфологические изменения. Тиреоидная клетка в высокой степени полярна: на ее апикальной поверхности имеются многочисленные микроворсинки (увеличение площади), к которым прилегают запасы коллоида в фолликуле. Базальная поверхность клетки контактирует с кровью.

Коллоид представляет собой белковый раствор богатый на остаток аминокислоты тирозина. В ходе биохимических реакций фенольный гидроксид тирозина соединяется с фенолом другого тирозина и присоединяя к себе йод образуется тетрайодтиронин, связанный пептидными связями с остатками других аминокислот. Такие белки называются тиреоглобулинами.

Под действием ТТГ в клетку поступают ионы Са, которые связываясь с кальмодулином вызывают движение лизосом из базальной части клетки к апикальной. Здесь происходит слияние лизосомы с каплей коллоидного раствора и образующаяся в результате фаголизосома движется в обратном направлении. При этом имеющийся в ней набор гидролаз разщепляет пептидные связи и образуются тироксин и трийодтиронин, которые и попадают в кровь.

Второй стадией действия ТТГ-рецепторного комплекса является выработка тиреоглобулина. В данном случае эффект ТТГ на фолликулярную клетку похож на действие СТГ. В ходе усиления синтеза РНК, повышения проникновения глюкозы в клетку синтезируется I-содержащий белок тиреоглобулин.

Тиреоидные гормоны в крови

После того как протеаза тиреоглобулина высвобождает занесенные в фолликулярном коллоиде T4 и Т3 они выходят из клетки и попадают в кровоток, где избирательно связываются с одним из нескольких белков-переносчиков. Считается, что при попадении в клетку тиреоидные гормоны диссоциируют с белком переносчиком.

Биологическое действие тиреоидных гормонов

Недостаточность и избыток тиреоидных гормонов сказывается практически на любом процессе жизнедеятельности.

В целом, чем раньше возникает дефицит гормона, тем сильнее это сказывается на ЦНС. Если такой дефицит долгое время остается без изменений, то могут наступить необратимые нарушения ЦНС. Даже возникновение гормональной недостаточности у ранее здорового взрослого человека ведет к появлению тех же симптомов психической иннертности, апатии и сонливости, которые характерны для ребенка с кретинизмом. Больной тиреотоксикозом ѕ возбужденный, беспокойный, эмоционально лабильный. Больной гипотиреозом предпочитает теплую погоду и сильно страдает от холода; при гипертиреозе ситуация обратная. Он «чрезмерно» приспособлен к холоду и плохо переносит тепло. По существу в тепле у него не выключается механизм адаптации к холоду.

Нет такой системы органов, на которую не влиял бы дефицит или избыток тиреоидных гормонов. Поведенческие сдвиги, вызванные патологией щитовидной железы, отражают действие гормонов на ЦНС и нейромышечный аппарат. При гипертиреозе наблюдается мышечная слабость, усиленная всасываемость глюкозы, повышение ХОК, увеличение основного объема. При гипотиреозе наоборот.

Клеточные механизмы действия тиреоидных гормонов

Механизм действия тиреоидных гормонов не укладывается в обычные схемы, разработанные для стероидных гормонов, аминов и пептидных гормонов. От аминов и пептидов тиреоидные гормоны отличаются своей растворимостью в липидах, чем напоминают стероидные гормоны.

Также необходимо проводить различие между ролью тиреоидных гормонов в процессе дифференцировки и их ролью в поддержании функций полностью дифференцированных клеток.

1. Периферическое дейодирование Т4

Биологическим эффектом обладает Т3, поэтому существуют механизмы дейодирования тироксина. Тироксин попадает в клетки гипофиза, где под действием дейодиназы происходит синтез Т3. В то же время в тканям существует два вида дейодиназ: дейодиназа наружного кольца с образованием Т3 и дейодиназа внутреннего кольца с образованием рТ3 который не соединяется с рецепторами и поэтому не вызывает иологического эффекта. Таким образом ткани сами немного регулируют действие на них тиреоидных гормонов.

2. Действие на плазматическую мембрану

Хотя при изучении тиреоидных гормонов основное влияние уделяется процессам, происходящим в клеточном ядре, все же на плазматической мембране клеток, чувствительных к тиреоидным гормонам ,обнаружены высокоаффинные участки связывания последних. Их эффектом служит стимуляция транспорта аминокислот.

3. Действие на митохондрии

В митохондриях найдены рецепторы к Т3. Установлено, что при гипотиреозе транспорт АДФ в митохондрию понижается, а при гипертиреозе увеличивается. Это ведет к изменению синтеза АТФ, что и сказывается на обмене веществ.

4. Ядро

На ядерной мембране обнаружены рецепторы тиреоидных гормонов. Доказано, что связываясь с рецепторами тиреоидные гормоны усиливают транскрипцию не всех, а определенных для данных клеток иРНК.

С учетом того, что тиреоидные гормоны действуют на увеличение транспорта аминокислот, увеличение количества АТФ, то синтез новых белков происходит достаточно быстро. Избирательная стимуляция синтеза определенных иРНК ведет к дифференциации клетки в детстве, а в зрелом возрасте в поддержании ее нормального функционирования. Этот эффект очень сильно заметен по отношению к ЦНС, потому что нарушение образования тиреоидных гормонов в первую очередь стает заметным по изменениям поведения, психики и эмоциональности.

Вазопресин (АДГ)

Антидиуретический гормон (АДГ) ѕ это только один из компонентов сложного комплекса нейрональных, эндокринных и поведенческих механизмов, совместное действие которых обеспечивает гомеостаз жидкости и электролитов в организме. Однако на первой линии обороны гомеостаза располагаются АДГ, ренин-ангиотензин-альдостерон.

Между тремя механизмами поддержания постоянства жидкости, электролитов и объема (АДГ, ренин-ангиотензин-альдостероновая система, жажда и питьевое поведение) тесная связь.

Клеточные механизмы действия АДГ

АДГ влияет в основном на клетки трех типов: 1)клетки почечных канальцев 2)гладкомышечные клетки сосудов и 3)клетки печени. Влияние гормона на почки заключается в сохранении воды путем стимуляции ее реабсорбции из гипотонической мочи в дистальной части извитых канальцев и собирательных протоков. Действуя на гладкомышечные клетки кровеносных сосудов, АДГ участвует в гомеостатическом поддержании артериального давления. В печени эффект АДГ сходен с таковым глюкагона, т.е. он стимулирует гликогенолиз и глюконеогенез.

Рецепторы АДГ в почках известны как V2-рецепторы, а в кровеносных сосудах и печени как V1-рецепторы. АДГ активирует разные эффекторные системы и тем самым опосредуют разные биологические эффекты.

V2-рецепторы чувствительных к АДГ клеток почечных канальцев расположены на контрлюминальной (обращенной к крови и лимфе) поверхности канальца. В клеточной мембране они взаимодействуют с комплексом G-белок-аденилатциклаза и стимулируют образование цАМФ. Наиболее отчетливый биологический эффект повышенного уровня цАМФ регистрируется на люминальной мембране с противоположной стороны клетки. В отсутствии АДГ люминальные мембраны чувствительных клеток практически не проницаемы для воды. В результате образуется гипотоническая моча, т.е. утрачивается ион-концентрирующая способность почек. При взаимодействии АДГ с рецепторами увеличивается концентрация цАМФ, фосфорилируются какие-то невыявленные на данный момент белки, и отдельные белковые частицы перемещаются из глубины клетки к ее люминальной мембране, где собираются в агрегаты. Эти примечательные частицы придают ранее водонепроницаемой мембране способность транспортировать в клетку воду, свободную от ионов. Вода идет по градиенту концентраций в кровеносное русло. Биологический эффект в клетках почечных канальцев полноценно проходит в присутствии кальмодулина, так как для него надо перенос определенных белковых комплексов, который происходит при наличии кальмодулина, который обеспечивает транспорт частиц микротрубочками.

Реакция сосудов заключается в сокращении их гладкомышечного слоя и должна поэтому опосредоваться увеличением концентрации Са2+ в цитозоле. В реакции участвует и кальмодулин.

Система ренин-ангиотензин-альдостерон

Эта система тесно связана с юкстагломерулярным аппаратом почки. Главная функция юкстагломерулярного аппарата ѕ регуляция артериального давления и объема крови. Кроме того в этот аппарат поступает информация о концентрации Na+ в канальцевой моче; нервная регуляция осуществляется симпатическими нервами через b-рецепторы. В ответ на снижение давления, объема крови и концентрации натрия выделяется ренин. Он воздействует на a2-глобулины и расщепляет их с образованием ангиотензина-1. Затем превращающий фермент, который находится в легких, отщепляет от ангиотензина 1 две терминальные аминокислоты с образованием ангиотензина 2. Этот октапептид вызывает главным образом сужение артериол. Одновременно он выступает тропным гормоном для клеток клубочковой зоны, синтезирующих и секретирующих альдостерон. Секретирующие альдостерон клетки надпочечников находятся под контролем целого комплекса факторов, в том числе концентрации электролитов в среде и уровня АКТГ. Альдостерон способствует реабсорбции натрия из клубочкового фильтрата в почечных канальцах и увеличению экскреции калия с мочой.

Задержка натрия имеет по меньшей мере два следствия: во-первых, увеличивается задержка воды и потому восстанавливается объем жидкости; во-вторых, повышенная концентрация натрия придает мышечным клеткам стенок артериол большую чувствительность к вазоактивным веществам. Эти эффекты дополняют друг друга и в конечном счете восстанавливают артериальное давление до стабильного уровня.

Стимуляторы синтеза альдостерона

Синтез и секрецию альдостерона клетками клубочковой зоны стимулируют не только ангиотензины 2 и 3, но и АКТГ, простагландин Е, высокая концентрация К+ и низкая Na+. Активация синтеза альдостерона под влиянием ангиотензинов опосредуется повышением внутриклеточной концентрации [Ca2+] и включением кругооборота полифосфатидилинозитола (см. сх. №3). Клетки клубочковой зоны реагируют и на АКТГ повышенной секрецией как альдостерона, так и кортизола. В этом случае медиаторами реакции служат цАМФ и Ca2+, но повышение [Ca2+] достигается за счет стимуляции его притока в клетку, а не мобилизации внутриклеточных запасов.

Повышение концентрации К+ тоже стимулирует синтез и секрецию альдостерона; в основе лежит деполяризация мембраны клеток клубочковой зоны и соответственно открытие зависимых от вольтажа кальциевых каналов. Деполяризация активирует и аденилатциклазную систему, что приводит к умеренному повышению уровня цАМФ.

Механизм действия альдостерона

Альдостерон оказывает 3 основных эффекта: 1)повышает реабсорбцию Na+ в почечных канальцах 2)увеличивает секрецию К+ и 3)увеличивает секрецию Н+. Альдостерон задерживает Na+ и приводит к потере К+ не только в почках, но и в слюнных железах, дистальных отделах толстого кишечника и потовых железах. Опыты показали, что клетки мочевого пузыря и нефрона проявляют 2 типа реакций на альдостерон. Преобладают клетки запрограмированные в основном на реабсорбцию Na+ и выведение К+. Клетки второго типа содержат фермент карбоангидразу, катализирующий реакцию

CO2 + H2O ® H+ + HCO3`

и в ответ на действие альдостерона секретируют Н+. Клетки обоих типов способны отвечать на альдостерон при условии непрерывного поступления АТФ, так как под влиянием альдостерона происходит перестройка клеточной мембраны.

Глюкокортикоиды

Глюкокортикоиды крови транспортируются с помощью кортикостероид-связывающего глобулина.

Кортизол - основной представитель так называемых глюкокортикоидов, т.е. стероидов надпочечников, действующих преимущественно на метаболизм органических соединений.

Глюкокортикоиды прямо или опосредованно регулируют практически все физиологические и биохимические процессы. Кортизол способен изменять реактивность клеток по отношению к другим гормонам и нейромедиаторам. Для того чтоб понять биологическое действие глюкокортикоидов можно привести в пример восстановленные нарушения при введении заместительных доз глюкокортикоидов при дефиците кортизола:

· гиперчувствительность к инсулину

· снижение запасов гликогена в тканях

· гипогликемия при голодании

· недостаточную мобилизацию белков периферических тканей

· сниженный глюконеогенез

· ослабление реакции жировых клеток на обычные липолитические стимулы

· отсутствие торможения секреции АКТГ по механизму обратной связи

· гипотензию

· снижение способности к выведению воды при водной нагрузке

· мышечную слабость и быструю утомляемость

· психологические и эмоциональные сдвиги

Механизм антивоспалительного эффекта глюкокортикоидов

В больших дозах глюкокортикоиды ингибируют почти все фазы воспалительного процесса. Они блокируют расширение капилляров, адгезию и миграцию лейкоцитов, секрецию гистамина и серотонина, образования кининов и т.д.

Они относятся к группе фенилалкиламинов и являются катехоламинами (пирокатехоламинами). Известны три вещества этой группы: адреналин (80%), норадреналин (20%), дофамин (менее1%). Они образуются при последовательных реакциях из аминокислоты тирозина.

Собственно гормоном можно назвать только адреналин, поскольку два других катехоламина играют в основном медиаторную роль: норадреналин - в симпатической нервной системе, дофамин - в центральной. Адреналин относят к медиаторам симпатической и центральной нервной системы, а также к стресс-гормонам.

Исследование катехоламинов в крови и моче выявляет функциональное состояние мозгового вещества надпочечников (особую ценность это имеет при диагностике новообразований хромаффинной ткани). Катехоламины находятся в крови в очень низкой концентрации и быстро вымываются из кровотока. При нормальной функции почек изучение экскреции катехоламинов и ДОФА с мочой является адекватным методом оценки состояния системы катехоламинов - симпатоадреналовой системы.

Поэтомуспособы определения катехоламинов достаточно широко применяют в клинико-диагностических лабораториях. Известны биологические, колориметрические, полярографические, хроматографические, флюориметрические и радиоизотопные методы, более доступны и, вместе с тем, совершенны флюориметрические способы определения этихгормонов-медиаторов, в основе которых - образование триоксииндолов (адренолютина, норадренолютина). Специфичность метода заключается в том, что им исследуют только те диоксифенолы, которые имеют боковую цепь строго определенной конфигурации.

Триоксииндоловый метод, как наиболее специфичный и чувствительный и является унифицированным.

Вторая группа методов, основанная на изменении флюоресценции продуктов конденсации катехоламинов с этилендиамином, является гораздо менее специфичной, посколькумногие вещества катехоловой структуры могут образовывать светящиеся конденсаты. Это обстоятельство позволило некоторым авторам по разнице между величинами, полученными при работе с этилендиаминовыми и триоксииндоловыми методами, определять дофамин.

Дифференциация катехоламинов может осуществляться либо за счет ихспособности максимально окисляться при разныхзначениях рН среды, либо за счет различия в спектральныххарактеристиках лютинов. Обычно применяют сочетание обоих принципов.

Для выделения катехоламинов из мочи и очистки их от примесей используют принцип адсорбционной или ионообменной хроматографии. Гидролиз связанных форм катехоламинов можно осуществлять обработкой мочи в?глюкуронидазой и фенолсульфатазой. Для экстракции и очистки катехоламинов из физиологических жидкостей также успешно применяют хроматографию на ионообменныхсмолах. Наиболее известны следующие методы: определение адреналина и норадреналина в моче флюориметрическим методом после дифференциального окисления катехоламинов йодом при различных значениях рН; определение адреналина, норадреналина, дофамина и диоксифенилаланина в одной порции мочи.

Часто в клинике определяют конечные продукты биохимической инактивации адреналина, норадреналина и дофамина. Главными конечными продуктами являются ванилил-миндальная (ВМК) и гомованилиновая (ГВК) кислоты, образующиеся при оксиметилировании и окислительном дезаминировании катехоламинов. Их экстрагируют из проб чаще всего этилацетатом, далее подвергают электрофоретическому или хроматографическому исследованию. Для количественного выявления этих веществ на хромато- и фореграммах используют ихспособность к качественным цветным реакциям с последующей элюцией окрашенных пятен и спектрофотометрированием.

Наиболее быстрым и удобным для клинико-диагностических лабораторий является электрофорез. Достаточно широко используются следующие методы определения метилированных продуктов обмена катехоламинов в моче: ванилил-миндальной кислоты с использованием электрофореза на бумаге; ванилил-миндальной, 5-оксииндолуксусной кислот и тирамина.

Нормальные величины

Клинико-диагностическое значение

Повышение экскреции с мочой катехоламинов и ванилин-миндальной и гомогентизиновой кислот отмечается при феохромоцитоме, гипертонической болезни в период кризов, в острый период инфаркта миокарда, приступахстенокардии, гепатитахз и циррозе печени, обострении язвенной болезни желудка и двенадцатиперстной кишки.

Снижение экскреции уменьшается при аддисоновой болезни, коллагенозах, остром лейкозе, острых инфекциях.

Энергия освобождается в митохондриях клеток при окислении различных органических веществ, но используется не сразу, а накапливается в легкоутилизируемой форме в виде макроэргических (высокоэнергетических) соединений. При их расщеплении без промежуточного образования тепла химическая энергия их внутримолекулярных связей преобразуется в другие формы энергии: механическую, электрическую, световую и т. п.

Основным и главнейшим макроэргом является АТФ, состоящая из азотистого (пуринового) основания -- аденина, пятиуглеродного сахара -- рибозы и трех, последовательно присоединенных к ней молекул фосфорной кислоты. Отщепление от АТФ концевой и второй фосфатных групп приводит к освобождению по 30 кДж энергии на каждый моль: АТФ+Н2О->АДФ+Ф+30 кДж; АДФ+ Н2О->АМФ+Ф+30 кДж, где Ц -- неорганический фосфат.

АТФ -- источник энергии всех биологических процессов: движения, теплообразования, биоэлектрических явлений, различных биологических синтезов и даже нервной деятельности (схема 1). Расщепление АТФ необратимо: энергия макроэргической связи используется на внешнюю работу и уходит из сферы реакции. А так как потребность организма в АТФ исключительно велика, необходимо постоянное регенерирование этого вещества, образование новых молекул АТФ. Происходит это в процессе аэробного (с участием кислорода) или анаэробного (без него) окисления, сопряженного с фосфорилированием АДФ, а также путем креатинкиназной реакции.

В ходе аэробного и анаэробного (гликолитического) окисления образуются промежуточные макроэргические фосфорные соединения, фосфатная группа которых соответствующими ферментами «пересаживается» со всем запасом энергии на АДФ. Эти так называемые фосфо-трансферазные реакции происходят таким образом, что фермент сближает образовавшийся макроэрг и АДФ настолько, что между ними становятся возможными обмен электронами и возникновение связи фосфата с АДФ при одновременном отщеплении первого от исходного макроэрга (рис. 1).

В принципе так же протекает и креатинкиназная реакция. КФ содержится в клетках как источник макро-эргических фосфатов для регенерации АТФ в экстренных случаях. Реакция эта происходит очень быстро: она не требует ни кислорода, ни расщепления каких-либо органических веществ, так как макроэргическая связь фосфата КФ обладает таким же запасом энергии, как и макроэргические связи в молекуле АТФ: КФ +АДФ креатин + АТФ.

Реакция эта обратима в зависимости от концентраций КФ и АТФ: когда концентрация КФ высока, а АТФ низка, она идет вправо, а при обратных соотношениях -- влево. Таким образом, в ходе этой реакции избыток АТФ создает предпосылки для собственной ее экстренной регенерации. Естественно, что вследствие большого и непрерывного расходования АТФ она чрезвычайно быстро обменивается: полупериод жизни ее менее 1 мин, и за 1 сут каждая молекула ее обновляется (расщепляется и вновь регенерируется) 2400 раз!

Расходование и генерирование АТФ: І -- освобождение энергии, ІІ -- преобразование энергии и совершаемая работа

Реакция перефосфорилирования (фосфотрансферазная)

1. Строение аденозинтрифосфорной кислоты

Кроме белков, нуклеиновых кислот, жиров и углеводов в живом веществе синтезируется большое количество других органических соединений. Среди них важнуую роль в биоэнергетике клетки играетаденозинтрифосфорная кислота (АТФ). АТФ содержится во всех клетках растений и животных. В клетках чаще всего аденозинтрифосфорная кислота присутствует в виде солей, называемыхаденозинтрифосфатами. Количество АТФ колеблется и в среднем составляет 0,04% (в клетке в среднем находится около 1 млрд молекул АТФ). Наибольшее количество АТФ содержится в скелетных мышцах (0,2-0,5%).

Молекула АТФ состоит из азотистого основания - аденина, пентозы - рибозы и трех остатков фосфорной кислоты, т.е. АТФ - особый адениловый нуклеотид. В отличие от других нуклеотидов АТФ содержит не один, а три остатка фосфорной кислоты. АТФ относится к макроэргическим веществам - веществам, содержащим в своих связях большое количество энергии.

Пространственная модель (А) и структурная формула (Б) молекулы АТФ

Из состава АТФ под действием ферментов АТФаз отщепляется остаток фосфорной кислоты. АТФ имеет устойчивую тенденцию к отделению своей концевой фосфатной группы:

АТФ4- + Н2О --> АДФ3- + 30,5 кДж + Фн,

т.к. это приводит к исчезновению энергетически невыгодного электростатического отталкивания между соседними отрицательными зарядами. Образовавшийся фосфат стабилизируется за счет образования энергетически выгодных водородных связей с водой. Распределение заряда в системе АДФ + Фн становится более устойчивым, чем в АТФ. В результате этой реакции высвобождается 30,5 кДж (при разрыве обычной ковалентной связи высвобождается 12 кДж).

Для того, чтобы подчеркнуть высокую энергетическую «стоимость» фосфорно-кислородной связи в АТФ, ее принято обозначать знаком ~ и называть макроэнергетической связью. При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорная кислота), а если отщепляются две молекулы фосфорной кислоты, то АТФ переходит в АМФ (аденозинмонофосфорная кислота). Отщепление третьего фосфата сопровождается выделением всего 13,8 кДж, так что собственно макроэргических связей в молекуле АТФ только две.

2. Образование АТФ в клетке

Запас АТФ в клетке невелик. Например, в мышце запасов АТФ хватает на 20-30 сокращений. Но ведь мышца способна работать часами и производить тысячи сокращений. Поэтому наряду с распадом АТФ до АДФ в клетке должен непрерывно идти обратный синтез. Существует несколько путей синтеза АТФ в клетках. Познакомимся с ними.

1. Анаэробное фосфорилирование. Фосфорилированием называют процесс синтеза АТФ из АДФ и низкомолекулярного фосфата (Фн). В данном случае речь идет о бескислородных процессах окисления органических веществ (например, гликолиз - процесс бескислородного окисления глюкозы до пировиноградной кислоты). Примерно 40% выделяемой в ходе этих процессов энергии (около 200 кДж/моль глюкозы), расходуется на синтез АТФ, а остальная часть рассеивается в виде тепла:

С6Н12О6+ 2АДФ + 2Фн --> 2С3Н4O3 + 2АТФ + 4Н.

2. Окислительное фосфорилирование - это процесс синтеза АТФ за счет энергии окисления органических веществ кислородом. Этот процесс был открыт в начале 1930-х гг. XX в. В.А. Энгельгардтом. Кислородные процессы окисления органических веществ протекают в митохондриях. Примерно 55% выделяющейся при этом энергии (около 2600 кДж/моль глюкозы) превращается в энергию химических связей АТФ, а 45% рассеивается в виде тепла.

Окислительное фосфорилирование значительно эффективнее анаэробных синтезов: если в процессе гликолиза при распаде молекулы глюкозы синтезируется всего 2 молекулы АТФ, то в ходе окислительного фосфорилирования образуется 36 молекул АТФ.

3. Фотофосфорилирование - процесс синтеза АТФ за счет энергии солнечного света. Этот путь синтеза АТФ характерен только для клеток, способных к фотосинтезу (зеленые растения, цианобактерии). Энергия квантов солнечного света используется фотосинтетиками в световую фазу фотосинтеза для синтеза АТФ.

3. Биологическое значение АТФ

АТФ находится в центре обменных процессов в клетке, являясь связующим звеном между реакциями биологического синтеза и распада. Роль АТФ в клетке можно сравнить с ролью аккумулятора, так как в ходе гидролиза АТФ выделяется энергия, необходимая для различных процессов жизнедеятельности («разрядка»), а в процессе фосфорилирования («зарядка») АТФ вновь аккумулирует в себе энергию.

Схема гидролиза АТФ

За счет выделяющейся при гидролизе АТФ энергии происходят почти все процессы жизнедеятельности в клетке и организме: передача нервных импульсов, биосинтез веществ, мышечные сокращения, транспорт веществ и др.

Анаэробный распад глюкозы происходит при недостаточном содержании кислорода, в клетках мышечной ткани животного организма. Данный путь распада называется дихотомическим, т.к. в процессе происходит образование двух молекул триоз, содержащих по 3 С-атома из одной молекулы гексозы (6 С-атомов). Конечный продукт анаэробного превращения глюкозы - молочная кислота. Гликолиз протекает в гиалоплазме (цитозоле) клетки. Гликолиз условно можно разбить на два этапа. В первом этапе происходит затрата энергии, второй этап, наоборот, характеризуется накоплением энергии в форме молекул АТФ.

Следует отметить, что в организме любой метаболический путь начинается с активации исходного соединения.

Первой ферментативной реакцией гликолиза является фосфорилирование глюкозы, т.е. перенос остатка фосфорной кислоты на глюкозу за счет энергии АТФ с образованием глюкозо-6-фосфата. Реакция катализируется ферментом гексокиназой. Киназами называются ферменты, катализирующие перенос остатка фосфорной кислоты от АТФ к акцептору.

Образование глюкозо-6-фосфата в гексокиназной реакции сопровождается освобождением значительного количества свободной энергии и может считаться практически необратимым процессом.

Наиболее важным свойством гексокиназы являетвся ее ингибирование глюкозо-6-фосфатом, т.е. последний служит одновременно и продуктом реакции, и аллостерическим ингибитором.

Второй реакцией гликолиза является превращение глюкозо-6-фосфата под действием фермента глюкозо-6-фосфат-изомеразы во фруктозо-6-фосфат (изомеризация альдозы в кетозу):

Эта реакция протекает легко в обоих направлениях.

Третья реакция катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилируется за счет второй молекулы АТФ:

Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом.

Фосфофруктокиназа относится к числу аллостерических ферментов. Она ингибируется АТФ и стимулируется АМФ. Так, в неработающей мышце активность фосфофруктокиназы низкая, а концентрация АТФ относительно высокая. Во время работы мышцы происходит интенсивное потребление АТФ и активность фосфофруктокиназы повышается, что приводит к усилению процесса гликолиза.

Четвертую реакцию гликолиза катализирует фермент альдолаза. Под влиянием этого фермента фруктозо-1,6-бифосфат расщепляется на две фосфотриозы:

Эта реакция обратима. В зависимости от температуры равновесие устанавливается на различном уровне. При повышении температуры peакция сдвигается в сторону большего образования триозофосфатов (дигидроксиацетонфосфата и глицеральдегид-3-фосфата (фосфоглицериновый альдегид)).

Пятая реакция - это реакция изомеризации триозофосфатов. Kaтализируется ферментом триозофосфатизомеразой:

Дальнейшим превращениям будет подвергаться только глицеральдегид-3-фосфат.

В результате шестой реакции глицеральдегид-3-фосфат в присутствии фермента глицеральдегидфосфатдегидрогеназы, кофермента НАД и неорганического фосфата подвергается окислению с образованием 1,3- бифосфоглицериновой кислоты и восстановленной формы НАДН. С данной реакции начинается второй этап гликолиза.

1,3-Бисфосфоглицерат представляет собой высокоэнергетическое соединение (макроэргическая связь условно обозначена знаком «тильда» ~).

Седьмая реакция катализируется фосфоглицераткиназой, при этом происходит передача богатого энергией фосфатного остатка (фосфатной группы в положении 1) на АДФ с образованием АТФ и 3-фосфоглицериноой кислоты (3-фосфоглицерат):

Это первая реакция гликолиза, в которой происходит образование АТФ (пример субстратного фосфорилирования).

Восьмая реакция сопровождается внутримолекулярным переносом оставшейся фосфатной группы, и 3-фосфоглицериновая кислота превращается в 2-фосфоглицериновую кислоту (2-фосфоглицерат):

Девятая реакция катализируется ферментом енолазой, при этом фосфоглицериновая кислота в результате отщепления молекулы переходит в фосфоенолпировиноградную кислоту (фосфоенолпируват), а фосфатная связь в положении 2 становится высокоэргической:

Десятая реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстатное фосфолирование). Катализируется ферментом пируваткиназой:

В результате одиннадцатой реакции происходит восстановление пировиноградной кислоты и образуется молочная кислота. Реакция протекает при участии фермента лактатдегидрогеназы и кофермента НАДН, образовавшегося в шестой реакции:

Конечным акцептором электронов в ходе гликолиза является ПВК, которая восстанавливается в молочную кислоту (лактат). Поэтому для нормального протекания этого метаболического пути требуется только глюкоза, которая может быть запасена клеткой в виде резервных полисахаридов в избыточном количестве.

Образование лактата является завершающей стадией анаэробного гликолиза. Энергетический баланс - 2 молекулы АТФ (4 молекулы образуется, 2 - потребляется).

Аналогичный процесс у бактерий называют молочнокислым брожением: он лежит в основе приготовления многих кисломолочных продуктов. У дрожжей в анаэробных условиях имеет место сходный процесс -- спиртовое брожение: в этом случае пируват сначала декарбоксилируется образованием уксусного альдегида, который затем восстанавливается в этиловый спирт.

Гликолиз у животных и человека может происходить во многих типах клеток, но его значение для разных органов различно.

Анаэробный гликолиз, несмотря на небольшой энергетический эффект, является основным источником энергии для скелетных мышц в начальный период интенсивной работы, т.е. в условиях, когда снабжение кислородом мышечной ткани ограничено (мощность механизма транспорта кислорода к митохондриям и мощность митохондриального аппарата синтеза АТФ оказываются недостаточными для обеспечения всей энергетической потребности). Ocoбенно большое значение анаэробный гликолиз имеет при кратковременной интенсивной работе. Так, бег в течение примерно 30 с (дистанция около 200 м) полностью обеспечивается анаэробным гликолизом. Через 4--5 мин бега (дистанция около 1,5 км) энергия поставляется поровну аэробным и анаэробным процессами, а через 30 мин (около 10 км) -- почти целиком аэробным процессом.

...

Подобные документы

  • Разделение растений и микроорганизмов на гетеротрофные и автотрофные. Количество синтезированных молей аденозинтрифосфорной кислоты на моль окисленного субстрата. Биологическое окисление питательных веществ. Строение и функции дыхательной системы.

    реферат [19,6 K], добавлен 14.01.2014

  • Биологическое значение нуклеиновых кислот. Строение ДНК, взгляд на нее с химической точки зрения. Обмен веществ и энергии в клетке. Совокупность реакций расщепления, пластический и энергетический обмены (реакции ассимиляции и диссимиляции) в клетке.

    реферат [31,6 K], добавлен 07.10.2009

  • Свойства генетического материала и уровни организации генетического аппарата. Химическая организация и свойства гена. Структура и функции дезоксирибонуклеиновой и рибонуклеиновая кислот. Уровни упаковки генетического материала. Биосинтез белка в клетке.

    курсовая работа [41,7 K], добавлен 07.02.2015

  • Строение и свойства аминокислот - органических амфотерных соединений, в состав которых входят карбоксильные группы – СООН и аминогруппы - NH2. Последовательность чередования аминокислотных остатков в полипептидной цепи. Характеристика простых белков.

    реферат [340,5 K], добавлен 28.11.2014

  • Нуклеиновые кислоты, их структура, функциональные группы. Осмотическое давление различных клеток и тканей растения. Роль пигментов в жизни растений. Биосинтез углеводов, ферменты углеводного обмена. Роль аденозинтрифосфорной кислоты в обмене веществ.

    контрольная работа [843,8 K], добавлен 12.07.2010

  • Молекулярная организация генетического материала. Транскрипция и трансляция мРНК прокариот. Роль рибонуклеиновых кислот в белковом синтезе. Расположение функциональных центров на субчастицах рибосомы. Свойства генетического кода. Активация аминокислот.

    курсовая работа [2,0 M], добавлен 19.11.2013

  • Нуклеотиды как мономеры нуклеиновых кислот, их функции в клетке и методы исследования. Азотистые основания, не входящие в состав нуклеиновых кислот. Строение и формы дезоксирибонуклеиновых кислот (ДНК). Виды и функции рибонуклеиновых кислот (РНК).

    презентация [2,4 M], добавлен 14.04.2014

  • Основные виды нуклеиновых кислот. Строение и особенности их строения. Значение нуклеиновых кислот для всех живых организмов. Синтез белков в клетке. Хранение, перенос и передача по наследству информации о структуре белковых молекул. Строение ДНК.

    презентация [628,3 K], добавлен 19.12.2014

  • Характеристика жирных кислот — алифатических одноосновных карбоновых кислот с открытой цепью, содержащихся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Их расщепление, виды существования в организме.

    презентация [305,5 K], добавлен 04.03.2014

  • Понятие белков как высокомолекулярных природных соединений (биополимеров), состоящих из остатков аминокислот, которые соединены пептидной связью. Функции и значение белков в организме человека, их превращение и структура: первичная, вторичная, третичная.

    презентация [564,0 K], добавлен 07.04.2014

  • Биологическая роль липидов. Структура Триацилглицеролов (нейтральных жиров) – сложных эфиров глицерола и жирных кислот. Структурные компоненты мембран клеток нервной ткани и мозга. Переваривание и всасывание липидов. Кетогенез (обмен жирных кислот).

    презентация [411,8 K], добавлен 06.12.2016

  • Изучение функций белков - высокомолекулярных органических веществ, построенных из остатков аминокислот, которые составляют основу жизнедеятельности всех органов. Значение аминокислот - органических веществ, которые содержат амин- и карбоксильную группы.

    презентация [847,2 K], добавлен 25.01.2011

  • Определение, функции основных аминокислот, их физико-химические свойства и критерии классификации. Оптическая активность, конфигурация и конформация аминокислот. Растворимость и кислотно-основные свойства аминокислот. Заменимые и незаменимые аминокислоты.

    реферат [2,3 M], добавлен 05.12.2013

  • Образование первичной атмосферы. Этапы биохимической эволюции. Синтез простых и сложных органических соединений. Матричный синтез. Эксперимент Миллера. Воссоздание аминокислот. Появление протобионтов. Возникновение организмов, имеющих клеточное строение.

    презентация [1,9 M], добавлен 12.01.2014

  • Биосинтез как направление телесно-ориентированной (соматической) психотерапии. Происхождение жизни в ее современной клеточной форме, возникновение механизма наследуемого биосинтеза белков. Рибонуклеиновые кислоты, эволюция и специализация молекул РНК.

    реферат [588,5 K], добавлен 07.06.2010

  • Понятие и особенности строения нуклеиновых кислот, их составные элементы и их внутреннее взаимодействие. Значение данных соединений в организме, история их открытия и основные этапы исследований. Длина молекул ДНК. Сущность принципа комплементарности.

    презентация [1,5 M], добавлен 27.12.2010

  • История изучения нуклеиновых кислот. Состав, структура и свойства дезоксирибонуклеиновой кислоты. Представление о гене и генетическом коде. Изучение мутаций и их последствий в отношении организма. Обнаружение нуклеиновых кислот в растительных клетках.

    контрольная работа [23,2 K], добавлен 18.03.2012

  • Адсорбция жирных кислот на угле из водных растворов. Ионные и неионные поверхностно-активные вещества (ПАВ). Адсорбция ПАВ на гидрофобных и гидрофильных поверхностях. Конкурентная адсорбция: смеси анионных ПАВ с катионными, неионными и полимерами.

    контрольная работа [779,5 K], добавлен 17.09.2009

  • Характеристика оксикоричневых кислот и этиленовых связей. Основные виды ароматических органических кислот: бензойная, салициловая, галловая. Общее описание Родиолы розовой. Применение препарата "Экстракт родиолы жидкий". Анализ цикориевой кислоты.

    курсовая работа [755,2 K], добавлен 06.04.2012

  • История открытия и практического применения бактериофагов. Научные подходы к проблеме природы фагов. Морфологические типы фагов, их химический состав, строение и антигенные свойства. Адсорбция фага на клетке. Лизогения и её биологическое значение.

    реферат [2,1 M], добавлен 02.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.