Клеточная теория, описание растительной клетки
История развития и основные положения клеточной теории. Методы цитологии и микроскопирования. Структурная организация и химический состав клетки. Цитоплазма как сложно структурированная система. Функции плазматической мембраны клетки, транспорт молекул.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 14.09.2015 |
Размер файла | 440,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Клетка
Клетка -- это ограниченная активной мембраной, упорядоченная структурированная система биополимеров (белков, нуклеиновых кислот) и их макромолекулярных комплексов, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом. Клетка -- самоподдерживающаяся и самовоспроизводящаяся система биополимеров. Это определение дает описание основных свойств «живого» -- воспроизведение подобного себе из неподобного себе.
2. История микроскопической техники
Невозможно точно определить, кто изобрёл микроскоп. По одной версии, изобретатели микроскопа - голландский мастер очков Ханс Янсен и его сын Захарий Янсен в 1590, но это было заявление самого Захария Янсена в середине XVII века. Дата не точна, так как оказалось, что Захария родился около 1590 г. По другой версии, первый микроскоп изобрел Галилео Галилей в 1608-1609. Он разработал «оккиолино» - или составной микроскоп с выпуклой и вогнутой линзами.
1608 - 1609 Галилео Гилилей изобрел телескоп с выпуклым объективом.
1625 -Фабиан ввел термин «микроскоп».
1632 - Антон Ван Левенгук считается первым, кто сумел привлечь к микроскопу внимание биологов, изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения.
3. Первые микроскописты
Роберт Гук. Результаты своих микроскопических исследования он опубликовал в 1665 г в монографии"Микрография или физиологическое описание мельчайших тел, исследованных при помощи микроскопа". Гук изучал в числе многих других обьектов и тонкие срезы растений. Изучая срезы пробки Гук обнаружил замкнутые пузырьки - ячейки и назвал их "клетками".
Антон-Ван-Левенгук. Он открыл мир микроскопических животных - инфузорий, впервые описал эритроциты и сперматозоиды.
Каспар Фридрих Вольф - в 1759 г в диссертации "Теория происхождения" впервые попытался обьяснить возникновение новых растительных клеток при росте. Считал, что из уже имеющихся клеток-мешочков выдавливается жидкое вещество в виде капельки, поверхность капли затвердевает и капля превращается в новую клетку-мешочек.
Ксавье Биша - еще в 1801 г дал классификацию тканей на макроскопическом уровне - выделял 21 тканей; органы образуются путем комбинации различных тканей.
Ян Пуркинье и его школа в 1830-45 г использовали окраску, просветление срезов бальзамом, создали микротом; все это позволило изучать клетки животных тканей под микроскопом.
Нем. ученые Лейдиг и Келликер в 1835-37 г попытались создать первую микроскопическую классификацию тканей.
Матиас Шлейден в 1838 г создал теорию цитогенеза.
Теодор Шванн в 1839 г основываясь на теории цитогенеза Шлейдена создал клеточную теорию.
Рудольф Вирхов - оказал большое влияние на дальнейшее развитие клеточной теории и вообще на учение о клетке.
Э.Страсбургер (1884) выдвинул гипотезу о значении ядра как носителя наследственных свойств. Предложил термины профаза, метафаза,анафаза, гаплоидное и диплоидное число хромосом - т.е. изучал процесс митоза.
Ковалевский - один из основоположников сравнительной эмбриологии, экспериментальной и эволюционной гистологии; установил единый план развития многоклеточных; обосновал теорию зародышевых листков, как образований лежащих в основе единства развития всех млекопитающих.
Заварзин - предложил теорию "параллельных рядов в тканевой эволюции" - эволюция тканей у разных типов и классов животных происходит сходно, параллельными рядами, поэтому у разных животных ткани с родственными функциями имеют сходное строение.
Хлопин - создал теорию "дивергентной эволюции тканей" - ткани развиваются в эволюции и онтогенезе дивергентно, путем расхождения признаков. Поэтому в каждой из 4-х основных группах тканей предлагается выделить подгруппы или типы тканей по их происхождению, источнику развития.
4. Описание растительной клетки и ткани Р.Гуком (1665), М.Мальпиги (1671) и Н.Грю (1671)
В 1665 году англичанин Роберт Гук сконструировал собственный микроскоп и, пытаясь понять, почему пробковое дерево так хорошо плавает, стал рассматривать тонкие срезы пробки. Он обнаружил, что пробка разделена на множество крошечных ячеек, напомнивших ему монастырские кельи, и он назвал эти ячейки клетками. Таким образом, он установил клеточное строение тканей. В 1671 году Мальпиги и Грю одновременно и независимо друг от друга подтвердили открытие Гука, показав, что растения состоят из тесно расположенных «пузырьков» или «мешочков». Свой труд Мальпиги назвал «Обзором анатомии растений», а Грю -- «Началом анатомии растений». Величайшая заслуга этих ученых в том, что они основали учение об анатомии растений, хотя Роберт Гук еще в 1667 г. указывал на клетчатое строение некоторых частей растений. О клетке стали говорить как о «пузырьке, наполненном питательным соком». Мальпиги и Грю сформулировали первую пенисто-ячеистую клеточную теорию: как пена состоит из пузырьков, так и ткань состоит из пузырьков-клеток. Клетка рассматривалась как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма. После исследований Гука, Мальпиги и Грю факт существования клеток-ячеек в растительных клетках не вызывал сомнений, однако должного значения этому факту не придавалось. Т. е. роль клетки как основной структурной единицы всех живых организмов еще не была осознана. Первые ученые-цитологи придавали большое значение строению клеточной оболочки, недооценивая значение содержимого клетки -- протопласта. Эти ошибочные представления господствовали в биологии на протяжении почти полутораста лет. Между тем развитие учения о клетке прогрессировало по мере совершенствования строения микроскопа, у которого вначале появился штатив с подвижным тубусом, затем осветительное зеркало и ахроматическая линза - сложная линза, состоящая из рассеивающей и собирающей линз.
5. Микроскопические наблюдения А.Левенгука (1679)
Левенгук считается первым, кто сумел привлечь к микроскопу внимание биологов. Он изобрел более 250 микроскопиумов с увеличением в 270 раз. Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа. Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Хотя Антуан Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению. В 1679 г. Левенгука избрали членом Лондонского королевского общества. В те годы оно объединяло естествоиспытателей и врачей и считалось самым авторитетным научным обществом. В 1674 году Антуан Ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» -- движущиеся живые организмы (инфузории, амёбы, бактерии), которые позднее были названы микроорганизмами. Также Левенгук впервые наблюдал животные клетки -- эритроциты и сперматозоиды.
6. Работы школ Я.Пуркинье (1837) и И.Мюллера (1838)
Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу. Пуркинье и его ученики выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих, сравнивая отдельные клетки растений и тканевых структур животных, которые Пуркинье чаще всего называл «зернышками» (для некоторых животных структур в его школе применялся термин «клетка»). В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. Ввел термин протоплазма. Установить гомологию клеток растений и клеток животных Пуркинье не смог:
-во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
-во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».
Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур. Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Мюллера. Мюллер изучал микроскопическое строение хорды; его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения. В 1830-е Пуркинье, Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей, а Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.
7. Подготовка клеточной теории
Клеточная теория -- одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов. Представление о том, что все живые организмы состоят из клеток, возникло не сразу, а сложилось в результате многочисленных исследований. В 1802--1808 г Мирбель установил, что все растения состоят из тканей, образованных клетками. Ламарк в 1809 году распространил идею Мирбеля о клеточном строении и на животные организмы. В 1825 г Пуркинье открыл ядро яйцеклетки птиц, а в 1839 ввёл термин «протоплазма». В 1831 г Броун впервые описал ядро растительной клетки, а в 1833 г установил, что ядро является обязательным органоидом клетки растения. С тех пор главным в организации клеток считается не мембрана, а протопласт. В 1830-е Пуркинье, Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей. В 1838 г. Шлейден сформулировал теорию цитогенеза, согласно которой новые клетки образуются в старых. Опираясь на работы Шлейдена, Шванн провел сравнительное изучение тканей животных и растений. Он нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных. Теория цитобластемы Шлейдена и Шванна была ошибочной. Так Шлейден и Шванн называли жидкость растительных клеток. Стараясь решить вопрос, каким образом происходят клетки, они предполагали, что клетки, подобно кристаллам, возникают из цитобластемы, которую уподобляли маточному раствору. По их мнению, в этой жидкости сначала появляется плотное зернышко -- ядрышко будущего ядра, вокруг которого цитобластема уплотняется и образует род оболочки. Жидкость из цитобластемы проникает через указанную оболочку, собирается между нею и ядрышком, вследствие чего получается пузырек -- ядро, или цитобласт. Затем тот же процесс происходит и с образовавшимся ядром, около которого цитобластема образуют более плотный слой. Жидкость цитобластемы, проникнув через этот слой, отделяет его от ядра, причем самый слой становится оболочкой новой клетки, а жидкость, расположенная между ним и ядром, -- клеточным соком.
8. Обоснование клеточной теории Т. Шванном (1839)
В 1839 г. Шванн сформулировал клеточную теорию, но, поскольку он опирался на работу Шлейдена, Шлейдена считают соавтором. В 1859 г. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток. В противоположность взглядам Шлейдена и Шванна, Вирхов утверждал, что клетки возникают только путем размножения (деления). Именно ему принадлежит знаменитая формулировка "всякая клетка от клетки". Таким образом, Вирхова можно считать одним из соавторов клеточной теории. Однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Согласно этой теории, все организмы имеют клеточное строение, а клетки животных и растений имеют принципиальное сходство строения и формирования.
9. Основные положения клеточной теории
Клеточная теория -- одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов. Сначала клеточная теория включала в себя три положения, четвертое внес Вирхов. В 1859 г. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток.
В настоящее время основные положения клеточной теории можно сформулировать в четырех тезисах:
1.Все живые организмы, исключая вирусы, состоят из клеток и продуктов их жизнедеятельности. Этот тезис отражает единство клеточного происхождения всех организмов и подчеркивает значение неклеточных компонентов. Клетка -- единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет.
2.Клетки всех живых организмов имеют принципиальное сходство своего строения и основного обмена веществ, т.е. все клетки гомологичны. Каждая клетка образуется только путем деления материнской клетки. Это положение постулирует невозможность самозарождения клеток в условиях, сложившихся после их возникновения и эволюции.
4.Активность многоклеточного организма слагается из активности его клеток и результатов их взаимодействия. Этот тезис подчеркивает, что многоклеточный организм - это не сумма клеток, а совокупность взаимодействующих клеток, т.е. система. В ней активность каждой клетки зависит от функционирования не только соседних, но и отдаленных от неё клеток. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.
10. Развитие клеточной теории
С 40-х г века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки -- цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками. В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы и ядра клеток, что нашло своё выражение в определении клетки, данном Шульце: «Клетка -- это комочек протоплазмы с содержащимся внутри ядром». В 1861 г Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Желе. Деление тканевых клеток у животных было открыто в 1841 г. Ремаком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Вирховом в виде формулировки: «Каждая клетка из клетки». В развитии клеточной теории остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки. Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма. Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.
Клеточная теория со второй половины XIX века приобретала всё более механистический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении развития клеточной теории появилась механистическая теория «клеточного государства» (Геккель), согласно которой организм сравнивается с государством, а его клетки -- с гражданами. Подобная теория противоречила принципу целостности организма.
Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 г с критикой представления Вирхова о клетке выступил Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. В 1950-е Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В ее основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных Лепешинской в основу этой теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».
11. Вклад Р.Вирхова (1859) в учение о клетке
Клеточная теория получила дальнейшее развитие в работах немецкого ученого Вирхова (1859). Сначала клеточная теория включала в себя три положения, четвертое внес Вирхов. Вирхов внес в клеточную теорию существенное изменение, касающееся образования новых клеток, опровергнув теорию цитобластемы Шлейдена и Шванна. Вирхов утверждал, что клетки возникают только путем размножения (деления). Именно ему принадлежит знаменитая формулировка "всякая клетка от клетки". В 1874 г. Чистяковым, а в 1875 г.Страсбургером было открыто деление клетки -- митоз, и, таким образом, подтвердилось предположение Вирхова. Таким образом, Вирхова можно считать одним из соавторов клеточной теории. Однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
12. Современное положение клеточной теории
Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки.
Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.
Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала.
Существует два типа клеток -- прокариотические, не имеющие отграниченного мембранами ядра, и эукариотические, имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды -- потомки бактериальных клеток. Эукариотическая клетка -- система высокого уровня организации, не может считаться целиком гомологичной клетке бактерии. Гомология всех клеток, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов, рибосом и хромосом -- наследственного материала в виде молекул ДНК.
Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Считая клетку всеобщим структурным элементом, клеточная теория рассматривала гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра,но эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений -- это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями. Практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур -- элементы цитоскелета, рибосомы эукариотического типа и др.
Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных -- продукт слияния исходных клеток, а внеклеточное вещество -- продукт их секреции, то есть образуется оно в результате метаболизма клеток.
Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма -- клетки или «элементарные организмы».
Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно. К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды. Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.
Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.
15.Методы цитологии. Микроскопирование
Микроскопия в клеточных исследованиях представлена двумя основными методами: исследования в светлом поле с использованием классических гистологических красителей и анализ флуоресцентно-меченных клеток с возможностью рассмотрения и получения изображений микроэлементов вещества в зависимости от разрешающей способности приборов (микроскопов).
16. Разрешающая способность микроскопа
Микроскоп-оптический прибор для получения увеличенных изображений, а также измерения объектов или деталей структуры невидимых или плохо видимых невооруженным взглядом.
Разрешающая способность-минимальное расстояние между 2мя точками на плоскости, которое можно различить с помощью микроскопа или любого другого оптического прибора. (чем меньше расстояние, тем больше разрешающая способность). На разрешающую способность влияет: свет, условия, оптическая система.РС=0,61*? / NA. Где NA = числовая апертура характеризующая светособирательную способность. ?-длина волны света (550нм)
Числовая апертура: NA=n*sin Ѕ ?. n=показатель преломления среды между фронтальной линзой, объективом и покровным стеклом.?-апертурный угол.
Апертурный угол-угол между крайними лучами конического светового потока, проходящего через оптическую систему микроскопа.
Разрешающая способность :PC=0,61*? / n*sin1/2 ?. числовое значение апертуры объективов всегда выгравировано на их оправах и указывается в справочиках.
17. Световая микроскопия
В световой микроскопии лучи света от микрообъекта, проходя через систему собирательных линз -- объектив и окуляр,- дают в соответствии с законами оптики увеличенное изображение изучаемого образца. Благодаря многообразию оптических эффектов комплекс микроскопических методов позволяет наглядно выявить наличие различных компонентов в микропробе и их пространственное распределение, а также измерить оптические константы отдельных составляющих, по которым их можно идентифицировать.
18. Фракционирование клеток и клеточного содержимого
Подобно тому как ткань можно разделить на составляющие клетки различных типов, клетки можно разделить на ее функциональные органеллы и макромолекулы. При осторожном применении методов разрушения некоторые органеллы сохраняются в интактном состоянии (ядра, минтохондрии, апарат Гольджи, лизосомы и тд). Суспензия клеток превращается в растворимый экстракт, содержащий довольно грубую суспензию связанных с мембраною частиц, обладающих характерными размерами, зарядом и плотностью.
После начала использования центрифуги, разделение различных компонентов стало реальным. Такая обработка делит клеточные компоненты по их размеру: более крупные частицы при центрифугировании движутся быстрее. Крупные компоненты экстракта, в том числе ядра или неразрушенные клетки, быстро оседают при относительно низких скоростях и образуют осадок на дне центрифужной пробирки.
Ультрацентрифуга разделяет клеточные компоненты не только по массе, но и по плавучей плотности. Компоненты клеток опускаются до тех пор, пока не достигнут участка, плотность раствора в котором равна собственной плотности компонентов. Дальше они "застревают" на этом уровне. В центрифужной пробирке возникает набор различных полос. Фракционированные клеточные экстракты, называемые также бесклеточными системами, широко используются для изучения внутриклеточных процессов. Только работая с бесклеточными экстрактами можно установить молекулярный механизм биологических процессов. Использование бесклеточных систем внесло первый успех при изучении механизмов биосинтеза белка.
19.Метод дифференциального центрифигурирования
Для того чтобы изучить состав и функции тех или иных клеток, применяют метод дифференциального центрифугирования. Он основан на том, что различные клеточные органеллы и включения имеют различную плотность. При очень быстром вращении в специальном приборе - ультрацентрифуге - органеллы тонко измельченных клеток выпадают в осадок из раствора, располагаясь слоями в соответствии со своей плотностью: более плотные компоненты осаждаются при более низких скоростях центрифугирования, а менее плотные - при более высоких скоростях. Эти слои разделяют и изучают отдельно.
20. Константа седиментации
Константа седиментации - скорость осаждения при ультрацентрифугировании. Частное от скорости частиц (V) в гравитационном поле на центробежное ускорение. Обычно
выражают в единицах Сведберга (S). Одна S равна скорости седиментации частиц в воде при 20°С под воздействием единицы центробежной силы.
Рибосомы прокариот - 70S.
Рибосомы эукариот - 80S.
21.Структурная организация клетки
Содержимое прокариотической клетки одето плазматической мембраной, играющей роль активного барьера между цитоплазмой клетки и внешней средой. Обычно снаружи от плазматической мембраны расположена клеточная стенка, или оболочка, - продукт клеточной активности. У прокариотических клеток нет морфологически выраженного ядра, но присутствует в виде так называемого нуклеоида зона, заполненная ДНК. В основном веществе цитоплазмы прокариотических клеток располагаются многочисленные рибосомы, цитоплазматические же мембраны обычно выражены не так сильно, как у эукариотических клеток, хотя некоторые виды бактерий богаты внутриклеточными мембранными системами. Обычно все внутриклеточные мембранные системы прокариот развиваются за счет плазматической мембраны.Но не только присутствие морфологически выраженного ядра является отличительным признаком эукариотических клеток. У эукариотических клеток кроме ядра в цитоплазме существует целый набор специальных структур -- органелл, выполняющих отдельные специфические функции. К ним относят мембранные структуры: систему эндоплазматической сети, аппарат Гольджи, лизосомы, митохондрии, пластиды. Для эукариотических клеток характерно наличие немембранных структур, таких, как микротрубочки, микрофиламенты, центриоли и др. Эукариотические клетки обычно намного крупнее прокариотических. Несмотря на четкие морфологические отличия, и прокариотические и эукариотические клетки имеют много общего, что и позволяет отнести их к одной клеточной системе организации живого. И те и другие одеты плазматической мембраной, обладающей сходной функцией активного переноса веществ из клетки и внутрь ее; синтез белка у них происходит на рибосомах; сходны и другие процессы.
22. Цитоплазма
Цитопламзма -- внутренняя среда живой или умершей клетки, кроме ядра, ограниченная плазматической мембраной. Включает в себя гиалоплазму -- основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты -- органеллы, а также различные непостоянные структуры -- включения.
В состав цитоплазмы входят все виды органических и неорганических веществ. В ней присутствуют также нерастворимые отходы обменных процессов и запасные питательные вещества. Основное вещество цитоплазмы -- вода.
Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом. В ней протекают все процессы обмена веществ.
Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако нормально функционирует цитоплазма только в присутствии ядра. Без него долго существовать цитоплазма не может, так же как и ядро без цитоплазмы.Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур и обеспечении их химического взаимодействия.
23.Общий химический состав цитоплазмы
Химический состав цитоплазмы: основу составляет вода (60-90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию.
24. Цитоплазма как сложно структурированная система
Цитозоль или внутриклеточная жидкость, матрикс цитоплазмы, гиалоплазма -- жидкость, находящаяся внутри клеток. У эукариот матрикс цитоплазмы отделен клеточными мембранами от содержимого органоидов, например, матрикса митохондрий. Содержимое клетки за исключением плазматической мембраны и ядра называют цитоплазмой.
У прокариот большинство реакций метаболизма протекают в цитозоле, и лишь малое количество -- в периплазматическом пространстве. У эукариот часть метаболических путей протекают в цитозоле, а часть -- внутри органоидов.
Цитозоль представляет собой смесь веществ, растворенных в воде. Концентрации ионов натрия и калия в цитозоле отличаются от таковых во внеклеточном пространстве, эти различия в концентрациях ионов играют важную роль в осморегуляции и передаче сигнала.
МАТРИКС ЦИТОПЛАЗМЫ
В цитоплазме различают основное вещество (матрикс), органеллы и включения. Основное вещество цитоплазмы заполняет пространство между клеточной оболочкой, ядерной оболочкой и другими внутриклеточными структурами. Оно образует внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает их взаимодействие.
25. Плазматические мембраны
Плазматическая мембрана - наиболее постоянная, основная, универсальная для всех клеток система поверхностного аппарата. Главными химическими соединениями, образующими плазматическую мембрану, являются липиды и белки. В настоящее время принята за основу жидкостно-мозаичная модель мембраны, предложенная Сингером и Никольсоном.
26. История открытия и изучения
В 1925 г. Е. Гортер и Ф. Грендел (Голландия) предположили, что основу мембраны составляет двойной слой липидов - билипидный слой. В 1935 г..Даниэли и Даусон предложили первую пространственную модель организации мембран, получившую название "сэндвич", или "бутербродная " модель. По их мнению, основой мембраны является билипидный слой, а обе поверхности слоя покрыты сплошными слоями белков.
Дальнейшее изучение клеточных мембран, включая плазмалемму, показало, что почти во всех случаях они имеют сходное строение. В 1972 г. Зингер и Николсон сформулировали представление о жидкостно-мозаичном строении клеточных мембран. Согласно этой модели, основу мембран составляет билипидный слой, но белки в нем расположены отдельными молекулами и комплексами, т.е. мозаично. В частности, молекулы интегральных белков могут пересекать билипидный слой, полуинткгральных - частично погружаться в него, а периферических - располагаться на его поверхности.
Современная молекулярная биология подтвердила справедливость жидкостно-мозаичной модели, хотя были обнаружены и другие варианты клеточных мембран. В частности, у архебактерий основу мембраны составляет монослой сложного по строению липида, а некоторые бактерии содержат в цитоплазме мембранные пузырьки, стенки которых представлены белковым монослоем.
27. Модели организации клеточных мембран
В 1935г Дэниэли и Даусон пердложили первую, так называемую «бутербродную моедль» организации мембраны. Суть в том, что основу мембраны составляет двойной слой липидных молекул, обращенных друг к другу гидрофобными участками, а внешняя и внутренняя поверхности билипидного слоя, образованные гидрофильными участками молекул, покрыты сплошными слоями белка.
В 60х начали выделяться те мембраны, в которых постулировалось наличие гидрофобно-гидрофильных взаимодействий не только между липидными молекулами, но и между липидами и белками. Одной из таких моделей является модель липопротеинового коврика, согласно которой мембраны образованы переплетением липидных и белковых мицелл, объединяющихся между собой на основе гидрофильно-гидрофобных взаимодействий.
Более универсальной оказалась жидкостно-мозаичная модель организации мембран. В этом случае, как и в «бутербродной» модели, постулирется о наличии жидкостной билипидной фазы, образованной строго ориентированными липидными молекулами. Но здесь, белки входящие в мембрану, не составляют сплошного слоя на внутренней и внешней поверхностях билипидного слоя. Мембранные белки представлены 3 разновидностями: интегральными, полуинтегральными и периферическими.
28. Современное представление
Гликокаликс представляет собой внешний по отношению к липо-протеидной мембране слой, содержащий полисахаридные цепочки мембранных интегральных белков -- гликопротеидов. Эти цепочки содержат такие углеводы, как манноза, глюкоза, М-ацетилглкжозамин, сиаловая кислота и др. Такие углеводные гетерополимеры образуют ветвящиеся цепочки, между которыми могут располагаться выделенные из клетки гликолипиды и протеогликаны. Слой гликокаликса сильно обводнен, имеет желеподобную консистенцию, что значительно снижает в этой зоне скорость диффузии различных веществ. Здесь же могут «застревать» выделенные клеткой гидролитические ферменты, участвующие во внеклеточном расщеплении полимеров до мономерных молекул, которые затем транспортируются в цитоплазму через плазматическую мембрану.Кортикальный слой цитоплазмы, тесно контактирующий с липопротеидной наружной мембраной, имеет ряд особенностей. Здесь в толщине 0,1-0,5 мкм отсутствуют рибосомы и мембранные пузырьки, но в большом количестве встречаются фибриллярные элементы цитоплазмы -- микрофиламенты и часто микротрубочки. Основным фибриллярным компонентом кортикального слоя является сеть актиновых микрофибрилл. Здесь же располагается ряд вспомогательных белков, необходимых для движения участков цитоплазмы. Роль этих связанных с актином белков очень важна, так как она объясняет их участие в связи, в «заякоривании» интегральных белков плазматической мембраны.
Барьерная роль плазмалеммы заключается также в ограничении свободной диффузии веществ.
29. Липидный бислой
Липидный бислой-- двойной молекулярный слой, формируемый полярными липидами в водной среде. Основная структура мембраны , которая создает относительно непроницаемый барьер для большинства водорастворимых молекул. В липидном бислое молекулы ориентированы таким образом, что их полярные фрагменты обращены в сторону водной фазы и формируют две гидрофильные поверхности, а неполярные «хвосты» образуют гидрофобную область внутри бислоя. Бислой -- термодинамически выгодная форма ассоциации полярных липидов в водной среде. Липидный бислой, состоящий из фосфолипидов (фосфатидилхолина, фосфатидилсерина и др.), является основой биологических мембран.
30. Мембранные белки
К мембранным белкам относятся белки, которые встроены в клеточную мембрану или мембрану клеточной органеллы или ассоциированы с таковой. Мембранные белки могут быть классифицированы по топологическому или биохимическому принципу. Топологическая классификация основана на локализации белка по отношению к липидному бислою. Биохимическая классификация основана на прочности взаимодействия белка с мембраной. Топологическая классификация
-Трансмембранные белки полностью пронизывают мембрану и, таким образом, взаимодействуют с обеими сторонами липидного бислоя.
-Интегральные белки постоянно встроены в липидный бислой, но соединены с мембраной только на одной стороне, не проникая на противоположную сторону.
-Интегральные мембранные белки прочно встроены в мембрану. По отношению к липидному бислою интегральные белки могут быть трансмембранными политопическими или интегральными монотопическими.
-Периферические мембранные белки являются монотопическими белками. Они либо связаны слабыми связями с липидной мембраной, либо ассоциируют с интегральными белками за счёт гидрофобных, электростатических или других нековалентных сил.
31. Мембранные углеводы
В мембранных гликопротеинах и мембранных гликолипидах встречаются 9 углеводов; главные из них - галактоза , манноза , фруктоза , галактозамин , глюкозамин , глюкоза и сиаловая кислота.
Углеводная часть гликолипидов и гликопротеинов плазматической мембраны всегда находится на наружной пверхности мембраны, контактируя с межклеточным веществом. Углеводы плазматической мембраны выполняют роль специфических лигандов для белков. Они образуют участки узнавания, к которым присоединяются определенные белки; присоединившийся белок может изменить функциональное состояние клетки.В наружной мембране эритроцитов некоторые полисахариды содержат N-ацетилнейраминовую кислоту на концах цепей.
Полисахариды клеточной мембраны наряду с белками выполняют роль антигенов при развитии клеточного иммунитета, в том числе при реакции отторжения трансплантата. Они также служат местами узнавания при заражении патогенными вирусами и микроорганизмами. Например, вирус гриппа при проникновении в клетку сначала присоединяется к ее мембране, взаимодействуя с полисахаридом определенной структуры.
32. Ассиметричность плазматической мембраны
Состав липидов по обе стороны мембраны различен, что определяет асимметричность в строении билипидного слоя. Так, с помощью химического маркирования было найдено, что 80% сфингомиелина, 75% фосфатидилхолина и 20% фосфатидилэтаноламина локализованы на наружной поверхности плазматической мембраны, на внутренней -- располагается весь фосфатидилсерин и 80% фосфатидилэтаноламина. Особенно выражена асимметрия мембран в отношении интегральных белков. В составе естественных мембран белки строго ориентированы. Большей частью их Н-концы смотрят в полость вакуолей или в случае плазматической мембраны -- во внешнюю для клетки среду. Такое полярное расположение цепи белковой молекулы в липидном бислое создается в процессе синтеза мембранного белка на рибосоме. Полуинтегральные и примембранные белки также асимметрично расположены в мембранах. Так, в эндоплазматическом ретикулуме белки-ферменты, синтезирующие липиды, расположены на цитозольной стороне мембран, а ферменты, пришивающие сахара к белковым цепочкам, локализованы на внешней стороне мембраны.
Углеводный компонент мембран представлен главным образом гликопротеинами -- молекулами белков, ковалентно связанных с цепочками углеводов. Как правило, цепочки углеводов расположены в наружных слоях мембран (для цитоплазматических вакуолей наружными считают слои, обращенные не к матриксу цитоплазмы, а в полость везикул или вакуолей). Они имеют ковалентные связи с интегральными белками, образуя гликопротеиды, или с липидами (гликолипиды).
33. Мембрана как двумерная жидкость
Исследование искусственных липидных бислоев показало, что эти мембраны представляют собой двумерную жидкость, обладающую вязкостью, сравнимую с вязкостью оливкового масла. В составе таких и естественных мембран молекулы липидов постоянно движутся с огромной скоростью. Липидные молекулы двигаются вдоль липидного слоя, могут вращаться вокруг своей оси, а также переходить из слоя в слой, что происходит редко и с помощью специальных переносчиков. Белки, плавающие в «липидном озере», также обладают латеральной, продольной подвижностью, но скорость их перемещения в десятки и сотни раз ниже. Изучать перемещение белковых молекул в составе мембран на живых клетках проще на примере плазматической мембраны. Белки плазматической мембраны -- гликопротеины, часто имеют олигосахаридные цепочки, смотрящие на внеклеточную среду. Для исследования свойств плазматической мембраны широко используются лектины -- белки растительного происхождения, которые специфически связываются с олигосахаридами мембранных белков.
34. Компартментализация
Принцип компартментализации клеток эукариот постулирует о том, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами -- митохондрии, хлоропласты, пероксисомы, лизосомы, эндоплазматический ретикулюм, ядро клетки и аппарат Гольджи.
Внутри компартментов, окруженных бислоем липидов, могут существовать различные значения pH, функционировать разные ферментативные системы. Принцип компартментализации позволяет клетке выполнять разные метаболические процессы одновременно.
Классифицируют три основных клеточных компартмента:
-Ядерный компартмент, содержащий ядро
-Пространство цистерн эндоплазматического ретикулума (переходящее в ядерную ламину)
-Цитозоль
35.Функции плазматической мембраны клетки
Плазматическая мембрана - Занимает в клетке пограничное положение и играет роль полупроницаемого селективного барьера, который с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой - обеспечивает её связь с этой средой.
Функции плазмолеммы определяются ее положением и включают:
1)распознавание данной клеткой других клеток и прикрепление к ним. Более того, плазмалемма выступает как структура, «узнающая», рецептирующая, различные химические вещества и регулирующая избирательно транспорт этих веществ в клетку и из нее.
2)распознавание клеткой межклеточного вещества и прикрепление к его элементам (волокнам, базальной мембране);
3)транспорт веществ и частиц в цитоплазму и из неё(посредством ряда механизмов); Плазматическая мембрана играет роль барьера, преграды между сложно организованным внутриклеточным содержимым и внешней средой. В этом случае плазмалемма выполняет не только роль механического барьера, но, главное, ограничивает свободный поток низко- и высокомолекулярных веществ в обе стороны через мембрану
4)взаимодействие с сигнальными молекулами (гормонами, медиаторами, цитокинами и др.) благодаря наличию на её поверхности специфических рецепторов к ним;
5)движение клетки (образование псевдо-,фило- и ламеллоподий)- благодаря связи плазмолеммы с сократимыми элементами цитоскелета.
Другими словами, плазматическая мембрана осуществляет функции, связанные с регулируемым избирательным трансмембранным транспортом веществ, и исполняет роль первичного клеточного анализатора.
36.Транспорт веществ через плазматическую мембрану
Плазматическая мембрана, так же как и другие липопротеидные мембраны клетки, является полупроницаемой. Это значит, что через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы, значительно медленнее проникают сквозь мембрану ионы. Одно из важнейших свойств плазматической мембраны связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава (т.е. гомеостаза). Транспорт веществ обеспечивает наличие в клетке соответствующего рН и ионной концентрации веществ, необходимых для эффективной работы клеточных ферментов, поставляет в клетки питательные вещества, служащие источником энергии и используемые для образования клеточных компонентов. Выведение токсических и секреция необходимых клетке веществ, а также создание ионных градиентов, необходимых для нервной и мышечной активности, связано с транспортом веществ.
Механизм транспорта веществ в клетку и из нее зависит от размеров транспортируемых частиц. Малые молекулы и ионы проходят через мембраны путем пассивного и активного транспорта. Перенос макромолекул и крупных частиц осуществляется за счет образования окруженных мембраной пузырьков и называется эндоцитозом и экзоцитозом.
37 Пассивный и активный транспорт
Пассивный транспорт включает простую и облегченную диффузию - процессы, которые не требуют затраты энергии. Диффузия - транспорт молекул и ионов через мембрану из области с высокой в область с низкой их концентрацией, те. вещества поступают по градиенту концентрации. Диффузия воды через полупроницаемые мембраны называется осмосом. Вода способна проходить также через мембранные поры, образованные белками, и переносить молекулы и ионы растворенных в ней веществ.Механизмом простой диффузии осуществляется перенос мелких молекул (например, О2, Н2О, СО2); этот процесс малоспецифичен и протекает со скоростью, пропорциональной градиенту концентрации транспортируемых молекул по обеим сторонам мембраны. Облегченная диффузия осуществляется через каналы и (или) белки-переносчики, которые обладают специфичностью в отношении транспортируемых молекул. В качестве ионных каналов выступают трансмембранные белки, образующие мелкие водные поры, через которые по электрохимическому градиенту транспортируются мелкие водо растворимые молекулы и ионы. Белки-переносчики также являются трансмембранными белками, которые претерпевают обратимые изменения конформации, обеспечивающие транспорт специфических молекул через плазмолемму. Они функционируют в механизмах как пассивного, так и активного транспорта.
Активный транспорт является энергоемким процессом, благодаря которому перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Примером механизма, обеспечивающего противоположно направленный активный транспорт ионов, служит натриево-калиевый насос (представленный белком-переносчиком Nа -К -АТФазой), благодаря которому ионы Na выводятся из цитоплазмы, а ионы К одновременно переносятся в нее. Концентрация К внутри клетки в 10-20 раз выше, чем снаружи, а концентрация Na наоборот. Такая разница в концентрациях ионов обеспечивается работой (Na*-K*> насоса. Для поддержания данной концентрации происходит перенос трех ионов Na из клетки на каждые два иона К* в клетку. В этом процессе принимает участие белок в мембране, выполняющий функцию фермента, расщепляющего АТФ, с высвобождением энергии, необходимой для работы насоса.
Участие специфических мембранных белков в пассивном и активном транспорте свидетельствует о высокой специфичности этого процесса. Этот механизм обеспечивает поддержание постоянства объема клетки (путем регуляции осмотического давления), а также мембранного потенциала. Активный транспорт глюкозы в клетку осуществляется белком-переносчиком и сочетается с однонаправленным переносом иона Nа .
Облегченный транспорт ионов опосредуется особыми трансмембранными белками - ионными каналами, обеспечивающими избирательный перенос определенных ионов. Эти каналы состоят из собственно транспортной системы и воротного механизма, который открывает канал на некоторое время в ответ на (а) изменение мембранного потенциала, (б) механическое воздействие (например, в волосковых клетках внутреннего уха), (в) связывание лиганда (сигнальной молекулы или иона).
38. Транспорт через мембрану малых молекул
Мембранный транспорт может включать однонаправленный перенос молекул какого-то вещества или совместный транспорт двух различных молекул в одном или противоположных направлениях.
Через нее с различной скоростью проходят разные молекулы и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы. Одно из важнейших свойств плазматической мембраны связано со способностью пропускать в клетку или из нее различные вещества. Это необходимо для поддержания постоянства ее состава (т.е. гомеостаза).
39. Транспорт ионов
В отличие от искусственных бислойных липидных мембран, естественные мембраны, и в первую очередь плазматическая мембрана, все же способны транспортировать ионы. Проницаемость для ионов мала, причем скорость прохождения разных ионов неодинакова. Более высокая скорость прохождения для катионов (K , Na ) и значительно ниже для анионов (Cl-). Транспорт ионов через плазмалемму проходит за счет участия в этом процессе мембранных транспортных белков - пермеаз. Эти белки могут вести транспорт в одном направлении одного вещества (унипорт) или нескольких веществ одновременно (симпорт), или же вместе с импортом одного вещества выводить из клетки другое (антипорт). Так, например, глюкоза может входить в клетки симпортно вместе с ионом Na . Транспорт ионов может происходить по градиенту концентрации - пассивно без дополнительной затраты энергии. Так, например, в клетку проникает ион Na из внешней среды, где его концентрация выше, чем в цитоплазме.
...Подобные документы
Субклеточные структуры растительной клетки. Клеточная стенка и ее химический состав. Одревеснение, опробковение и кутинизация клеточной стенки. Ослизнение и минерализация клеточной стенки. Формирование рост и функции клеточной стенки.
реферат [33,9 K], добавлен 16.01.2009История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.
презентация [10,3 M], добавлен 10.09.2015История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.
реферат [529,8 K], добавлен 16.08.2009История и основные этапы исследования клетки, ее структуры и компонентов. Содержание и значение клеточной теории, выдающиеся ученые, внесшие свой вклад в ее разработку. Симбиотическая теория (хлоропласты и митохондрии). Зарождения эукариотической клетки.
презентация [974,7 K], добавлен 20.04.2016Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.
презентация [2,2 M], добавлен 08.11.2012История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.
реферат [17,1 K], добавлен 27.09.2009Цитология как наука, изучающая строение, функции и эволюцию клеток. История изучения клетки, появление первых микроскопов. Открытие мастерской оптических приборов в России. История развития клеточной теории, ее основные положения в современной биологии.
презентация [347,3 K], добавлен 23.03.2010Цитоплазма как обязательная часть клетки, заключенная между плазматической мембраной и ядром. Реакция среды и особенности движения цитоплазмы. Значение, функции и структура гиалоплазмы. Виды и роль одно- и двухмембранных органоидов живой клетки.
презентация [1009,0 K], добавлен 21.02.2014Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.
презентация [3,1 M], добавлен 09.10.2013Место цитологии среди других дисциплин. Исследование положений современной клеточной теории. Реакция клетки на повреждающее действие. Характеристика основных механизмов повреждения клетки. Анализ традиционных точек зрения на причины развития старения.
презентация [6,8 M], добавлен 28.02.2014Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.
контрольная работа [47,7 K], добавлен 22.12.2014Цитология как наука о клетках – структурных и функциональных единицах почти всех живых организмов. Основные положения клеточной теории. Открытие клетки. Основные свойства живых клеток. Открытие закона наследственности. Достижения современной цитологии.
контрольная работа [1,5 M], добавлен 28.10.2009Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.
реферат [27,3 K], добавлен 16.01.2005Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.
презентация [881,2 K], добавлен 12.09.2014Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.
лекция [44,4 K], добавлен 27.07.2013Протекание биохимических процессов, их причинно-следственный механизм. Натриево-калиевый насос, энергия гидролиза АТФ, кальциевые насосы, натрий-кальциевый обменник. Функции мембраны, электрический потенциал клетки и молекул, их роль в обменных процессах.
реферат [31,2 K], добавлен 24.10.2009Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.
реферат [36,2 K], добавлен 13.12.2007Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.
презентация [6,8 M], добавлен 27.12.2011Рассмотрение характеристик клетки как элементарной целостной системы живого организма. Типы клеток животных и растений. Строение и функции мембраны, цитоплазмы, митохондрии, аппарата Гольджи, лизосом, вакуоль, рибосом. Описание органоидов движения.
презентация [3,1 M], добавлен 16.02.2015