Клеточная теория, описание растительной клетки
История развития и основные положения клеточной теории. Методы цитологии и микроскопирования. Структурная организация и химический состав клетки. Цитоплазма как сложно структурированная система. Функции плазматической мембраны клетки, транспорт молекул.
Рубрика | Биология и естествознание |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 14.09.2015 |
Размер файла | 440,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Наличие белковых транспортных каналов и переносчиков казалось бы должно приводить к уравновешиванию концентраций ионов и низкомолекулярных веществ по обе стороны мембраны. На самом же деле это не так: концентрация ионов в цитоплазме клеток резко отличается не только от таковой во внешней среде, но даже от плазмы крови, омывающей клетки в организме животных.
Оказывается в цитоплазме концентрация K почти в 50 раз выше, а Na ниже, чем в плазме крови. Причем это различие поддерживается только в живой клетке: если клетку убить или подавить в ней метаболические процессы, то через некоторое время ионные различия по обе стороны плазматической мембраны исчезнут. Можно просто охладить клетки до 20С, и через некоторое время концентрация K и Na по обе стороны от мембраны станут одинаковыми. При нагревании клеток это различие восстанавливается. Это явление связано с тем, что в клетках существуют мембранные белковые переносчики, которые работают против градиента концентрации, затрачивая при этом энергию за счет гидролиза АТФ. Такой тип работы носит название активного транспорта, и он осуществляется с помощью белковых ионных насосов. В плазматической мембране находится двухсубъединичная молекула (K Na )-насоса, которая одновременно является и АТФазой. Этот насос при работе откачивает за один цикл 3 иона Na и закачивает в клетку 2 иона K против градиента концентрации. При этом затрачивается одна молекула АТФ, идущая на фосфорилирование АТФазы, в результате чего Na переносится через мембрану из клетки, а K получает возможность связаться с белковой молекулой и затем переносится в клетку. В результате активного транспорта с помощью мембранных насосов происходит также регуляция в клетке концентрации и двухвалентных катионов Mg2 и Ca2 , также с затратой АТФ.
Так активный транспорт глюкозы, которая симпортно (одновременно) проникает в клетку вместе с потоком пассивно транспортируемого иона Na , будет зависеть от активности (K Na )-насоса. Если этот (K -Na )- насос заблокировать, то скоро разность концентрации Na по обе стороны мембраны исчезнет, сократится при этом диффузия Na внутрь клетки, и одновременно прекратится поступление глюкозы в клетку. Как только восстановится работа (K -Na )-АТФазы и создается разность концентрации ионов, то сразу возрастает диффузный поток Na и одновременно транспорт глюкозы. Подобно этому осуществляется через мембрану и поток аминокислот, которые переносятся специальными белками-переносчиками, работающими как системы симпорта, перенося одновременно ионы.
Активный транспорт сахаров и аминокислот в бактериальных клетках обусловлен градиентом ионов водорода. Само по себе участие специальных мембранных белков, участвующих в пассивном или активном транспорте низкомолекулярных соединений, указывает на высокую специфичность этого процесса. Даже в случае пассивного ионного транспорта белки “узнают” данный ион, взаимодействуют с ним, связываются
специфически, меняют при этом свою конформацию и функционируют. Следовательно, уже на примере транспорта простых веществ мембраны выступают как анализаторы, как рецепторы. Особенно такая рецепторная роль проявляется при поглощении клеткой биополимеров.
40. Белки - переносчики, каналы и насосы
Перенос крупных полярных молекул и ионов происходит благодаря белкам-каналам или белкам-переносчикам. Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, в мембранах многих клеток - водные каналы аквапорины, а также белки-переносчики для глюкозы, разных групп аминокислот и многих ионов.
Каналы -- это трансмембранные белки, которые действуют как поры. Транспорт через каналы, как правило, пассивный. Как правило, через каналы передвигаются ионы. Скорость транспорта зависит от их величины и заряда. Если пора открыта, то вещества проходят быстро. Однако каналы открыты не всегда. Имеется механизм «ворот», который под влиянием внешнего сигнала открывает или закрывает канал. В настоящее время открыты интегральные мембранные белки, представляющие канал через мембрану для проникновения воды -- аквапорины. Способность аквапоринов к транспорту воды регулируется процессом фосфорилирования. Было показано, что присоединение и отдача фосфатных групп к определенным аминокислотам аквапоринов ускоряет или тормозит проникновение воды, но не влияет на направление транспорта.
Переносчики -- это специфические белки, способные связываться с переносимым веществом. В структуре этих белков имеются группировки, определенным образом ориентированные на наружную или внутреннюю поверхность. В результате изменения конформации белков вещество передается наружу или внутрь. Поскольку для транспорта каждой отдельной молекулы или иона переносчик должен изменить конфигурацию, скорость транспорта вещества в несколько раз меньше, чем происходит перенос через каналы. Транспорт с помощью переносчиков может быть активным и пассивным. В последнем случае такой транспорт идет по направлению электрохимического потенциала и не требует затрат энергии. Этот тип переноса называется облегченной диффузией. Благодаря переносчикам он идет с большей скоростью, чем обычная диффузии.
Насосы (помпы) -- интегральные транспортные белки, осуществляющие активное поступление ионов. Термин «насос» показывает, что поступление идет с потреблением свободной энергии и против электрохимического градиента. Энергия, используемая для активного поступления ионов, поставляется процессами дыхания и фотосинтеза и в основном аккумулирована в АТФ. В мембранах клеток обнаружены различные АТФазы: К -- Na -- АТФаза; Са2 -- АТФаза; Н -- АТФаза. Н -- АТФаза (Н --насос или водородная помпа) является основным механизмом активного транспорта в клетках растений, грибов и бактерий. Н -- АТФаза функционирует в плазмалемме и обеспечивает выброс протонов из клетки, что приводит к образованию электрохимической разности потенциалов на мембране. Н -- АТФаза переносит протоны в полость вакуоли и в цистерны аппарата Гольджи.
Насосы делят на две группы:
1. Электрогенные, которые осуществляют активный транспорт иона какого-либо одного заряда только в одном направлении. Этот процесс ведет к накоплению заряда одного типа на одной стороне мембраны.
2. Электронейтральные, при которых перенос иона в одном направлении сопровождается перемещением иона такого же знака в противоположном либо перенос двух ионов с одинаковыми по величине, но разными по знаку зарядами в одинаковом направлении.
клеточный мембрана цитоплазма цитология
41. Мембранный транспорт макромолекул и частиц: эндоцитоз и экзоцитоз (фагоцитоз и пиноцитоз)
Везикулярный перенос можно разделить на два вида: экзоцитоз - вынос из клетки макромолекулярных продуктов, и эндоцитоз - поглощениеклеткой макромолекул.
При эндоцитозе определенный участок плазмалеммы захватывает, как бы обволакивает внеклеточный материал, заключает его в мембранную вакуоль, возникшую за счет впячивания плазматической мембраны. В такую первичную вакуоль, или в эндосому, могут попадать любые биополимеры, макромолекулярные комплексы, части клеток или даже целые клетки, где затем и распадаются, деполимеризуются до мономеров, которые путем трансмембранного переноса попадают в гиалоплазму.
Основное биологическое значение эндоцитоза - это получение строительных блоков за счет внутриклеточного переваривания, которое осуществляется на втором этапе эндоцитоза после слияния первичной эндосомы с лизосомой, вакуолью, содержащей набор гидролитических ферментов.
Эндоцитоз формально разделяют на пиноцитоз и фагоцитоз.
Фагоцитоз - захват и поглощение клеткой крупных частиц (иногда даже клеток или их частей) - был впервые описан И,И, Мечниковым. Фагоцитоз, способность захватывать клеткой крупные частицы, встречается среди клеток животных, как одноклеточных (например, амебы, некоторые хищные инфузории), так и для специализированных клеток многоклеточных животных. Специализированные клетки, фагоциты характерны как для беспозвоночных животных (амебоциты крови или полостной жидкости), так и для позвоночных (нейтрофилы и макрофаги). Так же как и пиноцитоз, фагоцитоз может быть неспецифическим (например, поглощение фибробластами или макрофагами частичек коллоидного золота или полимера декстрана) и специфическим, опосредуемым рецепторами на поверхности плазматической мембраны фагоцитирующих клеток. При фагоцитозе происходит образование больших эндоцитозных вакуолей - фагосом, которые затем сливаясь с лизосомами образуют фаголизосомы.
Пиноцитоз вначале определялся как поглощение клеткой воды или водных растворов разных веществ. Сейчас известно, что как фагоцитоз так и пиноцитоз протекают очень сходно, и поэтому употребление этих терминов может отражать лишь различия в объемах, массе поглощенных веществ. Общее для этих процессов то, что поглощенные вещества на поверхности плазматической мембраны окружаются мембраной в виде вакуоли - эндосомы, которая перемещается внутрь клетки.
Эндоцитоз, включая пиноцитоз и фагоцитоз, может быть неспецифическим или конститутивным, постоянным и специфическим, опосредуемым рецепторами (рецепторным). Неспецифический эндоцитоз (пиноцитоз и фагоцитоз), так называется потому, что он протекает как бы автоматически и часто может приводить к захвату и поглощению совершенно чуждых или безразличных для клетки веществ, например, частичек сажи или красителей.
На следующем этапе происходит изменение морфологии клеточной поверхности: это или возникновение небольших впячиваний плазматической мембраны, инвагинации, или же это появление на поверхности клетки выростов, складок или “оборок” (рафл - по-английски), которые как бы захлестываются, складываются, отделяя небольшие объемы жидкой среды.
Вслед за такой перестройкой поверхности следует и процесс слипания и слияния контактирующих мембран, который приводит к образованию пеницитозного пузырька (пиносома), отрывающегося от клеточной
поверхности и уходящего вглубь цитоплазмы. Как неспецифический так и рецепторный эндоцитоз, приводящий к отщеплению мембранных пузырьков, происходит в специализированных участках плазматической мембраны. Это так называемые окаймленные ямки. Они называются так потому, что со стороны цитоплазмы плазматическая мембрана покрыта, одета, тонким(около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания, ямки . Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина, ассоциированного с рядом дополнительных белков.
Эти белки связываются с интегральными белками- рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы.
После того как окаймленный пузырек отделится от плазмолеммы и начнет переноситься вглубь цитоплазмы клатриновый слой распадается, диссоциирует, мембрана эндосом (пиносом) приобретает обычный вид. После потери клатринового слоя эндосомы начинают сливаться друг с другом.
Рецепторно-опосредованный эндоцитоз. Эффективность эндоцитоза существенно увеличивается, если он опосредован мембранными рецепторами, которые связываются с молекулами поглощаемого вещества или молекулами, находящимися на поверхности фагоцитируемого объекта - лигандами (от лат. и^аге - связывать). В дальнейшем (после поглощения вещества) комплекс рецептор-лиганд расщепляется, и рецепторы могут вновь возвратиться в плазмолемму. Примером рецепторно-опосредованного взаимодействия может служить фагоцитоз лейкоцитом бактерии.
Трансцитоз (от лат. 1гаш - сквозь, через и греч. суЮз - клетка) процесс, характерный для некоторых типов клеток, объединяющий признаки эндоцитоза и экзоцитоза. На одной поверхности клетки формируется эндоцитозный пузырек, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство.
Экзоцитоз
Плазматическая мембрана принимает участие в выведении веществ из клетки с помощью экзоцитоза - процесса, обратного эндоцитозу.
В случае экзоцитоза, внутриклеточные продукты, заключенные в вакуоли или пузырьки и отграниченные от гиалоплазмы мембраной, подходят к плазматической мембране. В местах их контактов плазматическая мембрана и мембрана вакуоли сливаются, и пузырек опустошается в окружающую среду. С помощью экзоцитоза происходит процесс рециклизации мембран, участвующих в эндоцитозе.
С экзоцитозом связано выделение синтезированных в клетке разнообразных веществ. Секретирующие, выделяющие вещества во внешнюю среду, клетки могут вырабатывать и выбрасывать низкомолекулярные соединения (ацетилхолин, биогенные амины и др.), а также в большинстве случаев макромолекулы (пептиды, белки, липопротеиды, пептидогликаны и др.). Экзоцитоз или секреция в большинстве случаев происходит в ответ на внешний сигнал (нервный импульс, гормоны, медиаторы и др.). Хотя в ряде случаев экзоцитоз происходит постоянно (секреция фибронектина и коллагена фибробластами).
42.Роль клатриновых белков в процессе эндоцитоза
Как неспецифический так и рецепторный эндоцитоз, приводящий к отщеплению мембранных пузырьков,
происходит в специализированных участках плазматической мембраны. Это так называемые окаймленные ямки. Они называются так потому, что со стороны цитоплазмы плазматическая мембрана покрыта, одета, тонким(около 20 нм) волокнистым слоем, который на ультратонких срезах как бы окаймляет, покрывает небольшие впячивания, ямки . Эти ямки есть почти у всех клеток животных, они занимают около 2% клеточной поверхности. Окаймляющий слой состоит в основном из белка клатрина, ассоциированного с рядом дополнительных белков. В покрытых клатриновой оболочкой (окаймленных) ямках рецепторные белки мембраны вытесняют все остальные; таким образом ямки действуют как приспособления для накопления и сортировки молекул Этим механизмом достигается и значительная экономия в ходе процесса эндоцитоза: для поглощения определенного количества молекул лиганда требуется значительно меньше пузырьков, чем было бы в случае диффузного распределения комплексов рецептор-лиганд.
Три молекулы клатрина вместе с тремя молекулами низкомолекулярного белка образуют структуру трискелиона, напоминающего трехлучевую свастику.
Клатриновый трискелионы на внутренней поверхности ямок плазматической мембраны образуют рыхлую сеть, состоящую из пяти- и шестиугольников, в целом напоминающую корзинку. Клатриновый слой одевает весь периметр отделяющихся первичных эндоцитозных вакуолей, окаймленных пузырьков.
Клатрин относится к одному из видов т.н. “одевающих” белков. Эти белки связываются с интегральными белками- рецепторами со стороны цитоплазмы и образуют одевающий слой по периметру возникающей пиносомы, первичного эндосомного пузырька - “окаймленного” пузырька. в отделении первичной эндосомы участвуют также белки - динамины, которые полимеризуются вокруг шейки отделяющегося пузырька.
После того как окаймленный пузырек отделится о плазмолеммы и начнет переноситься вглубь цитоплазмы клатриновый слой распадается, диссоциирует, мембрана эндосом (пиносом) приобретает обычный вид. После потери клатринового слоя эндосомы начинают сливаться друг с другом. Было найдено, что мембраны окаймленных ямок содержат сравнительно мало холестерина, что может определять снижение жесткости мембран и способствовать образованию пузырьков. Биологический смысл появления клатриновой “шубы” по периферии пузырьков, возможно, заключается в том, что он обеспечивает сцепление окаймленных пузырьков с элементами цитоскелета и последующий их транспорт в клетке, и препятствует их слиянию друг с другом.
43. Эндосомы
Эндосомы - мембранные пузырьки с постепенно закисляющимся содержимым, которые обеспечивают перенос макромолекул с поверхности клетки в лизосомы и их частичный или полный гидролиз на стадиях, предшествующих лизосомальному уровню деградации. В связи с указанными свойствами совокупность эндосом в настоящее время считают не просто механизмом транспорта веществ в клетке (как полагали ранее), а частью системы их переваривания ("внутриклеточного пищеварительного тракта"), в которую входят также лизосомы.
Большинство эндосом, образующихся в результате эндоцитоза из плазматической мембраны, транспортируются внутрь клетки, где сливаются с существующими эндосомами либо закисляются за счёт активности протонной АТФазы (H-АТФаза). В процессе созревания эндосома проходит несколько последовательных стадий, постепенно превращаясь в лизосому.
Различают три типа эндосом: ранние, или первичные, эндосомы(Первичные эндосомы содержат в основном захваченные в жидкой среде чужеродные молекулы и не содержат гидролитических ферментов. эндосомы могут сливаться друг с другом при этом увеличиваясь в размере. Они затем сливаются с первичными лизосомами (см. ниже), которые вводят в полость эндосом ферменты, гидролизующие различные биополимеры. Действие этих лизосомных гидролаз и вызывает внутриклеточное пищеварение - распад
полимеров до мономеров), поздние эндосомы (или мультивезикулярные тельца) и рециркулирующие эндосомы. Они различаются по своей морфологии. После того, как везикулы теряют оболочку, они сливаются с ранними эндосомами, которые в свою очередь в процессе созревания превращаются в поздние липосомы перед тем, как слиться с лизосомами.
Слияние поздних эндосом с лизосомами приводит первоначально к образованию гибридной структуры с промежуточными характеристиками.Так, например, лизосомы обладают большей плотностью, чем эндосомы, в то время как такие гибридные структуры имеют промежуточную плотность.
Ранняя эндосома -- в нее поступают эндоцитозные (пиноцитозные) пузырьки. Из ранней эндосомы рецепторы, отдавшие (из-за пониженного рН) свой груз, возвращаются на наружную мембрану.
Поздняя эндосома -- в нее из ранней эндосомы поступают пузырьки с материалом, поглощенном при пиноцитозе, и пузырьки из аппарата Гольджи с гидролазами. Рецепторы маннозо-6-фосфата возвращаются из поздней эндосомы в аппарат Гольджи.
44. Эндоплазматическая сеть (ретикулум)
В световом микроскопе в фибрибластах после фиксации и окраски видно, что периферия клеток (эктоплазма) окрашивается слабо, в то время как центральная часть клеток (эндоплазма) хорошо воспринимает красители. Так К.Портер в 1945 году увидел в электронном микроскопе, что зона эндоплазмы заполнена большим числом мелких вакуолей и каналов, соединяющихся друг с другом и образующих что-то наподобие рыхлой сети (ретикулум). Было видно, что стопки этих вакуолей и канальцев ограничены тонкими мембранами. Так был обнаруженэндоплазматический ретикулум, или эндоплазматическая сеть. Позднее, в 50-х гг., при использовании метода ультратонких срезов удалось выяснить структуру этого образования и обнаружить его неоднородность. Самым же главным оказалось, что эндоплазматический ретикулум (ЭР) встречается практически у всех эукариот.
Подобный электронно-микроскопический анализ позволил выделить два типа ЭР: гранулярный (шероховатый) и гладкий.
45. Понятие и общая характеристика
Эндоплозматическая сеть (ЭПС) - органелла, обеспечивающая синтез углеводов, липидов и белков, а также начальные посттрансляционные изменения последних. Она имеет мембранное строение и состоит из системы уплощенных, удлиненных, трубчатых и везикулярных образований. Название органеллы обусловлено характером связи этих элементов друг с другом, образующих в цитоплазме непрерывную трехмерную сеть, элементы которой лишь на отдельных срезах могут иметь вид изолированных структур. Мембрана ЭПС тоньше, чем плазмолемма и содержит более высокую концентрацию белка, что связано с наличием в ней многочисленных ферментных систем. Степень развития ЭПС и особенности ее строения варьируют в различных клетках и зависят от их функции. Выделяют две разновидности ЭПС: гранулярную ЭПС (грЭПС) и гладкую, или агранулярную ЭПС (аЭПС), которые связаны друг с другом в области перехода, называемой переходной (транзиторной) ЭПС. Переходная (транзиторная) ЭПС - участок перехода грЭПС в аЭПС у формирующейся поверхности комплекса Голъджи. В области переходной ЭПС трубочки распадаются на отдельные фрагменты, образующие окаймленные транспортные пузырьки, которые переносят материал из ЭПС в комплекс Гольджи.
Строение. Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки. Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов противградиента концентрации. Эндоплазматический ретикулум образ-ся из нитей,стенку канальцев образ.2х слойная мембрана. Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.
Трубочки, диаметр которых колеблется в пределах 0,1--0,3 мкм, заполнены гомогенным содержимым. Их функция -- осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.
46. Гранулярная эндоплазматическая сеть
Гранулярная ЭПС обеспечивает биосинтез всех мембранных белков и белков, предназначенных для экспорта из клетки, и начальное гликозилирование и посттрансляционные изменения белковых молекул. Гранулярная ЭПС образована уплощенными мембранными цистернами и трубочками, на наружной поверхности которых располагаются рибосомы и полисомы, придающие мембранам зернистый вид. Мембраны грЭПС содержат особые белки, которые обеспечивают связывание рибосом и уплощение цистерн. Полость грЭПС содержит рыхлый материал умеренной плотности (продукты синтеза) и сообщается с перинуклеарным пространством. Благодаря грЭПС происходит отделение (сегрегация) вновь синтезированных белковых молекул от гиалоплазмы
Синтез белка на грЭПС начинается на свободных полисомах, которые в дальнейшем связываются с мембранами ЭПС. На первом этапе взаимодейстия иРНК с рибосомами происходит образование особого сигнального пептида, связывающегося с рибонуклеопротеидным комплексом - сигнал-распознающею частицей (СРЧ). Присоединение СРЧ к сигнальному пептиду угнетает дальнейший синтез белка до тех пор, пока комплекс СРЧ-полисома не свяжется со специфическим рецептором на мембране ЭПС - причальным белком . После связывания с рецептором СРЧ отделяется от полисом, что разблокирует синтез белковой молекулы. В мембране грЭПС имеются интегральные ре-цепторные белки рибофорины, обеспечивающие прикрепление больших субъединиц рибосом. Эти белки не диффундируют в область аЭПС и формируют гидрофобные каналы в мембране, служащие для проникновения вновь синтезированной белковой цепочки в просвет грЭПС, что, наряду с рибофоринами, способствует удержанию рибосом на поверхности мембран грЭПС. В просвете грЭПС сигнальный пептид отщепляется особым ферментом сигнальной пептидазой, которая располагается на внутренней поверхности мембраны. В ходе продолжающейся трансляции внутри цистерны грЭПС накапливается белок, который приобретает вторичную и третичную структуру, а также подвергается начальным посттрансляционным изменениям - гидроксилированию, сульфатированию и фосфорилированию. Наиболее важным из этих изменений является гликозилирование - присоединение к белкам олигосахаридов с образованием гликопротеинов, которое происходит перед секрецией или транспортом большинства белков к другим участкам внутри клетки (комплексу Гольджи, лизосомам или плазмолемме). В отличие от них, растворимые белки гиалоплазмы не гликозилированы. Гликозилирование обеспечивается связанным с мембраной ферментом гликозилтрансферазой, переносящим олигосахарид. Хотя грЭПС присутствует во всех клетках, степень ее развития существенно варьирует. Она особенно хорошо развита в клетках, специализирующихся на белковом синтезе. Для этих клеток характерна выраженная базофилия цитоплазмы в области расположения элементов грЭПС.
Синтез мембран
Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.
47. Гладкая эндоплазматическая сеть
Агранулярная (гладкая) ЭПС представляет собой трехмерную замкнутую сеть мембранных анастомозирующих трубочек, канальцев, цистерн и пузырьков диаметром 20-100 нм, на поверхности которых рибосомы отсутствуют. Соответственно, на мембранах аЭПС отсутствуют рецепторы, связывающие субъединицы рибосом (рибофорины). Предполагают, что аЭПС образуется в результате формирования выростов грЭПС, мембрана которых утрачивает рибосомы.
Функции аЭПС включают: синтез липидов, в том числе мембранных (ферменты липидного синтеза располагаются на наружной -обращенной в сторону гиалоплазмы - поверхности мембраны аЭПС), синтез гликогена, синтез холестерина, детоксикацию эндогенных и экзогенных веществ, накопление ионов Са2 , восстановление кариолеммы в телофазе митоза (эта функция оспаривается авторами, считающими, что кариолемма восстанавливается за счет мембранных пузырьков, на которые она ранее распалась).
48. Особенности строения
Строение. Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки. Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов противградиента концентрации. Эндоплазматический ретикулум образ-ся из нитей,стенку канальцев образ.2х слойная мембрана. Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.
Трубочки, диаметр которых колеблется в пределах 0,1--0,3 мкм, заполнены гомогенным содержимым. Их функция -- осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.
49. Связь ЭПС с синтезом полисахаридов и липидов
Деятельность гладкой эндоплазматической сети связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Гладкая эндоплазматическая сеть участвует в заключительных этапах синтеза липидов. Она сильно развита в клетках, секретирующих такие категории липидов, как стероиды, например, в клетках коркового вещества надпочечников, в сустентоцитах семенников.
Функции аЭПС включают: синтез липидов, в том числе мембранных (ферменты липидного синтеза располагаются на наружной -обращенной в сторону гиалоплазмы - поверхности мембраны аЭПС), синтез гликогена, синтез холестерина, детоксикацию эндогенных и экзогенных веществ, накопление ионов Са2 , восстановление кариолеммы в телофазе митоза (эта функция оспаривается авторами, считающими, что кариолемма восстанавливается за счет мембранных пузырьков, на которые она ранее распалась).
50. Рибосомы
Рибосома -- важнейший немембранный органоид живой клетки сферической или слегка эллипсоидной формы, диаметром 100--200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричнойРНК, или мРНК. Этот процесс называется трансляцией.
Рибосомы - это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК. Полная, работающая рибосома, состоит из двух неравных субъединиц, которые легко обратимо диссоциируют на большую субъединицу и малую. Форма и детальные очертания рибосом из разнообразных организмов и клеток, включая как прокариотические, так и эукариотические, поразительно похожи, хотя и отличаются рядом деталей.
51. История изучения
Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции". Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы. В начале 2000-х появились атомные структуры отдельных субъединиц, а также полной рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, антибиотиками, тРНК и мРНК.
52. Молекулярная организация рибосом
Рибосомы -- это сложные рибонуклеопротеидные частицы, в состав которых входит множество молекул индивидуальных (неповторенных) белков и несколько молекул РНК. Рибосомы прокариот и эукариот по своим размерам и молекулярным характеристикам отличаются, хотя и обладают общими принципами организации и функционирования. Полная, работающая рибосома состоит из двух неравных субъединиц, которые легко обратимо диссоциируют на большую субъединицу и малую. Полная прокариотическая рибосома имеет коэффициент седиментации 708 и диссоциирует на две субъединицы: 503 и 308. Полная эукариотическая рибосома с коэффициентом седиментации 808 диссоциирует на субъединицы 608 и 408. Малая рибосомная субъединица имеет палочковидную форму с несколькими небольшими выступами. Большая субъединица похожа на полусферу с тремя торчащими выступами. В состав малых субъединиц входит по одной молекуле РНК, а в состав большой - несколько; у прокариот - две, у эукариот - три. Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя сложные петли и шпильки на комплементарных участках, что приводит к самоупаковке, самоорганизации этих молекул в сложное по форме тело. Для того чтобы образовались рибосомы, необходимо наличие четырех типов рибосомных РНК в эквимолярных отношениях и наличие всех рибосомных белков. Сборка рибосом может происходить спонтанно in Vitro, если последовательно добавлять к РНК белки в определенной последовательности.
Нередко с одной молекулой мРНК ассоциировано несколько рибосом , такая структура называется полирибосомой (полисомой). Синтез рибосом у эукариот происходит в специальной внутриядерной структуре -- ядрышке.
53. Функции
Рибосомы осуществляет несколько функций: 1) специфическое связывание и удержание компонентов белоксинтезирующей системы [информационная, или матричная, РНК (иРНК): аминоацил-тРНК; пептидил-тРНК; гуанозинтрифосфат (ГТФ); белковые факторы трансляции EF - Т и EF - G]: 2) каталитические функции (образование пептидной связи, гидролиз ГТФ): 3) функции механического перемещения субстратов (иРНК, тРНК), или транслокации. Функции связывания (удержания) компонентов и катализа распределены между двумя рибосомными субчастицами. Малая рибосомная субчастица содержит участки для связывания иРНК и аминоацил-тРНК и, по-видимому, не несёт каталитических функций. Большая субчастица содержит каталитический участок для синтеза пептидной связи, а также центр, участвующий в гидролизе ГТФ: кроме того, в процессе биосинтеза белка она удерживает на себе растущую цепь белка в виде пептидил-тРНК.Каждая из субъединиц может проявить связанные с ней функции отдельно, без связи с другой субчастицей.
54. Синтез белков в гиалоплазме
Гиалоплазма- составляет примерно 53-55 % от общего объема цитоплазмы (cytoplasma), образуя гомогенную массу сложного состава. В гиалоплазме присутствуют белки, полисахариды, нуклеиновые кислоты, ферменты. При участии рибосом в гиалоплазме синтезируются белки, происходят различные реакции промежуточного обмена. В гиалоплазме располагаются также органеллы, включения и клеточное ядро.
Синтез белка (трансляция) является самым сложным из биосинтетических процессов: он требует очень большого количества ферментов и других специфических макромолекул, общее количество которых, видимо, доходит до трёхсот. Часть из них к тому же объединены в сложную трёхмерную структуру рибосом. Но несмотря на большую сложность синтез протекает с чрезвычайно высокой скоростью (десятки аминокислотных остатков в секунду). Процесс может замедляться и даже останавливаться ингибиторами-антибиотиками.
Сам процесс протекает в пять этапов.
1.Активация аминокислот. Каждая из 20 аминокислот белка соединяется ковалентными связями к определённой т-РНК, используя энергию АТФ. Реакция катализуется специализированными ферментами, требующими присутствия ионов магния.
2.Инициация белковой цепи. и-РНК, содержащая информацию о данном белке, связывается с малой частицей рибосомы и с инициирующей аминокислотой, прикреплённой к соответствующей т-РНК. т-РНК комплементарна с находящимся в составе и-РНК триплетом, сигнализирующим о начале белковой цепи.
3.Элонгация. Полипептидная цепь удлиняется за счёт последовательного присоединения аминокислот, каждая из которых доставляется к рибосоме и встраивается в определённое положение при помощи соответствующей т-РНК. В настоящее время генетический код полностью расшифрован, то есть всем аминокислотам поставлены в соответствие триплеты нуклеотидов. Элонгация осуществляется при помощи белков цитозоля (так называемые факторы элонгации).
4.Терминация. После завершения синтеза цепи, о чём сигнализирует ещё один специальный кодон и-РНК, полипептид высвобождается из рибосомы.
5.Сворачивание и процессинг. Чтобы принять обычную форму, белок должен свернуться, образуя при этом определённую пространственную конфигурацию. До или после сворачивания полипептид может претерпевать процессинг, осуществляющийся ферментами и заключающийся в удалении лишних аминокислот, присоединении фосфатных, метильных и других групп и т. п.
55. Синтез, накопление и транспорт синтезированного белка в системе ЭПС
Синтез белка на грЭПС начинается на свободных полисомах, которые в дальнейшем связываются с мембранами ЭПС. На первом этапе взаимодейстия иРНК с рибосомами происходит образование особого сигнального пептида, связывающегося с рибонуклеопротеидным комплексом - сигнал-распознающею частицей (СРЧ). Присоединение СРЧ к сигнальному пептиду угнетает дальнейший синтез белка до тех пор, пока комплекс СРЧ-полисома не свяжется со специфическим рецептором на мембране ЭПС - причальным белком . После связывания с рецептором СРЧ отделяется от полисом, что разблокирует синтез белковой молекулы. В мембране грЭПС имеются интегральные ре-цепторные белки рибофорины, обеспечивающие прикрепление больших субъединиц рибосом. Эти белки не диффундируют в область аЭПС и формируют гидрофобные каналы в мембране, служащие для проникновения вновь синтезированной белковой цепочки в просвет грЭПС, что, наряду с рибофоринами, способствует удержанию рибосом на поверхности мембран грЭПС. В просвете грЭПС сигнальный пептид отщепляется особым ферментом сигнальной пептидазой, которая располагается на внутренней поверхности мембраны. В ходе продолжающейся трансляции внутри цистерны грЭПС накапливается белок, который приобретает вторичную и третичную структуру, а также подвергается начальным посттрансляционным изменениям - гидроксилированию, сульфатированию и фосфорилированию. Наиболее важным из этих изменений является гликозилирование - присоединение к белкам олигосахаридов с образованием гликопротеинов, которое происходит перед секрецией или транспортом большинства белков к другим участкам внутри клетки (комплексу Гольджи, лизосомам или плазмолемме). В отличие от них, растворимые белки гиалоплазмы не гликозилированы. Гликозилирование обеспечивается связанным с мембраной ферментом гликозилтрансферазой, переносящим олигосахарид. Хотя грЭПС присутствует во всех клетках, степень ее развития существенно варьирует. Она особенно хорошо развита в клетках, специализирующихся на белковом синтезе. Для этих клеток характерна выраженная базофилия цитоплазмы в области расположения элементов грЭПС.
56. Теория сигиальной последовательности
Сигнальный пептид, или сигнальная последовательность -- короткая (от 3 до 60 аминокислот) пептидная цепь в составе белка, которая обеспечивает пост-трансляционный транспорт белка в соответствующую органеллу (ядро, митохондрия, эндоплазматический ретикулум, хлоропласт, апопласт или пероксисома). После доставки белка в органеллу сигнальный пептид может отщепляться под действием специфич. сигнальной протеазы.
Существует несколько путей транспортировки идентичных полипептидов в различные компартменты клетки: 1) Несколько сигнальных последовательностей в одном полипептиде преднозначенные для разных компартментов. 2) Одна сигнальная последовательность узнается различными рецепторами на поверхности компартментов. 3) Сигнал может быть блокирован другим белком. 4) Сигнал может быть блокирован специфическим сворачиванием белка. 5) Сигнал может быть блокирован после модификации полипептида. 6) Одна РНК может иметь два сайта инициации трансляции при этом образуются два белка - один с сигнальной последовательностью, другой без нее, что определит различную локализацию белков в клетке.
57. Аппарат Гольджи
Комплекс Гольджи - сложно организованная мембранная органелла, образованная тремя основными элементами - стопкой уплощенных мешочков (цистерн), пузырьками и вакуолями, или секреторными пузырьками.
1. Цистерны имеют вид изогнутых дисков и образуют стопку из 3-30 элементов, разделенных пространством; выпуклой стороной стопка обычно обращена к ядру, вогнутой - к плазмолемме. Каждая группа цистерн внутри стопки отличается особым составом ферментов, определяющим характер реакций белков. Периферические отделы цистерн несколько расширены, от них отщепляются пузырьки и вакуоли. Механизм, удерживающий стопку в виде единого образования, неизвестен.
2. Пузырьки - сферические окруженные мембраной элементы с содержимым умеренной плотности; образуются путем отщепления от цистерн.
3. Вакуоли - крупные, окруженные мембраной сферические образования, отделяющиеся от цистерны на зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Они содержат секреторный продукт умеренной плотности, находящийся в процессе конденсации.
Полярность комплекса Гольджи. Комплекс Гольджи представляет собой поляризованную структуру, в которой выделяют две поверхности, обладающие структурными и функциональными различиями:
- цис- ,незрелую, формирующуюся -выпуклой формы, обращенную к ЭПС и связанную с системой мелких (транспортных) пузырьков, отщепляющихся от ЭПС;
- транс- , зрелую - вогнутой формы, обращенную к плазмолемме и связанную с отделяющимися от цистерн вакуолями. Между цистернами цис- и транс-поверхностей располагаются цистерны медиальной части комплекса Гольджи.
Белки проникают в стопку цистерн комплекса Гольджи из транспортных пузырьков с цис-поверхности, а выходят в вакуолях с транс-поверхности. Возможные пути этого транспорта описываются двумя моделями:
1) модель перемещения цистерн постулирует, что за счет слияния транспортных пузырьков на цис-поверхности непрерывно происходит новообразование цистерн, в дальнейшем смещающихся к транс-поверхности, по достижении которой они распадаются на вакуоли. Транспорт веществ из одной цистерны в другую, в соответствии с описанной моделью, отсутствует;
2) модель везикулярного транспорта предполагает, что цистерны не меняют своего расположения, а продукты синтеза переносятся от цис к транс-поверхности в пузырьках (везикулах), которые отпочковываются от предшествующей цистерны, сливаясь с последующей.
58. История открытия
Камилло Гольджи - в 1898году обнаружил в нервных клетках вокруг ядра сетчатые структуры. Затем назвал - сетчатый аппарат. Сантьяго Рамон-Кахаль - Ноб. Премия 1906, «в знак признания их работы по изучению структуры нервной системы».
59. Локализация в клетке
Обычно элементы аппарата Гольджи расположены около ядра, вблизи клеточного центра (центриоли). Участки аппарата Гольджи, четко выявляемые методом импрегнации, имели в некоторых клетках вид сложных сетей, где ячейки были связаны друг с другом или представлялись в виде отдельных темных участков, лежащих независимо друг от друга имеющих вид палочек, зерен, вогнутых дисков. Между сетчатой и диффузной формой аппарата Гольджи нет принципиального различия, так как часто в одних и тех же клетках наблюдается смена форм этого органоида. Элементы аппарата Гольджи часто связаны с вакуолями, что особенно характерно для секретирующих клеток.
В специализированных секреторных клетках комплекс Гольджи располагается надъядерно под апикальной частью клетки, через которую происходит выделение секрета механизмом экзоцитоза.
60. Общая характеристика, ультраструктура и молекулярная организация
Аппарат Гольджи представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран является диктиосомой. В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены в виде стопки плоские мембранные мешки, или цистерны, между которыми располагаются тонкие прослойки гиалоплазмы. Каждая отдельная цистерна имеет диаметр около 1 мкм и переменную толщину; в центре ее мембраны могут быть сближены (25 нм), а на периферии иметь расширения, ампулы, ширина которых непостоянна. Количество таких мешков в стопке обычно не превышает 5-10.. Кроме плотно расположенных плоских цистерн в зоне АГ наблюдается множество вакуолей. Мелкие вакуоли встречаются главным образом в периферических участках зоны АГ; иногда видно, как они отшнуровываются от ампулярных расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный или формирующийся, цис-участок, и дистальный или зрелый, транс-участок. Между ними располагается средний или промежуточный участок АГ.
По данным электронно-микроскопического исследования, ультраструктура комплекса Гольджи включает три основных компонента:
1. Система плоских цистерн. 2. Система трубочек. 3. Крупные и мелкие пузырьки. Все три компонента аппарата Гольджи взаимосвязаны и могут возникать друг из друга. В клетках различных органов и тканей компоненты аппарата Гольджи развиты неодинаково.
В средней части диктиосомы периферия каждой цистерны также сопровождается массой мелких вакуолей около 50 нм в диаметре. В дистальном или транс-участке диктиосом к последней мембранной плоской цистерне примыкает участок, состоящий из трубчатых элементов и массой мелких вакуолей, часто имеющих фибриллярную опушенность по поверхности со стороны цитоплазмы - это опушенные или окаймленные пузырьки такого же типа, как и окаймленные пузырьки при пиноцитозе. Это - так называемая транс-сеть аппарата Гольджи , где происходит разделение и сортировка секретируемых продуктов. Еще дистальнее располагается группа более крупных вакуолей - это уже продукт слияния мелких вакуолей и образования секреторных вакуолей.
61. Функции аппарата Гольджи
1)синтез полисахаридов и гликопротеинов (гликокаликса, слизи);
2)модификация белковых молекул (терминальное гликозилирование - включение углеводных компонентов; фосфорилирование - добавление фосфатных групп; ацилирование - добавление жирных кислот; сульфатирование - добавление сульфатных остатков и т.д.;
3)конденсация секреторного продукта (в конденсирующих вакуолях) и образование секреторных гранул;
4)сортировка белков на транс-поверхности;
5)упаковка секреторных продуктов в мембранные структуры.
Сортировка белков в аппарате Гольджи
Комплекс Гольджи обладает полярностью: в каждой диктиосоме выделяют две поверхности: формирующуюся (незрелую, или цис-поверхность) и зрелую (транс-поверхность). Цис-поверхность выпуклой формы обращена в сторону ЭПС и связана с ней системой мелких транспортных пузырьков, отщепляющих от ЭПС. Таким образом, белки в транспортных пузырьках проникают через цис-поверхность. Каждая группа медиальных цистерн внутри стопки отличается особым составом ферментов, и для каждой группы характерны свои реакции обработки белков. Обработанные вещества выходят в вакуолях с вогнутой транс-поверхности.
62. Лизосомы
- мембранные органеллы, которые обеспечивают внутриклеточное переваривание (расщепление) макромолекул внеклеточного и внутриклеточного происхождения, и обновление компонентов клетки.
63. История открытия
Лизосомы как мембранные внутриклеточные частицы были открыты биохимиками (Де Дюв, 1955). Ферменты изолированных лизосом проявляют свою активность только в том случае, если предварительно вызывается повреждение самих лизосом, либо воздействием осмотического шока или детергентов, либо замораживанием и оттаиванием препаратов. На основании этого было сделано заключение, что лизосомы окружены липопротеидной мембраной, которая препятствует доступу находящихся снаружи субстратов к ферментам, находящимся внутри лизосом.
64. Структура Лизосом
-представляют собой небольшие округлые частицы, располагающиеся в цитоплазме. Каждая лизосома ограничена плотной мембраной, внутри которой заключено свыше 12 гидролитических ферментов, имеющих наибольшую активность в кислой среде. Мембрана лизосомы имеет типичное трехслойное строение.
Ферменты, содержащиеся в лизосомах, способны расщеплять важные в биологическом отношении соединения, т. е. белки, нуклеиновые кислоты, полисахариды. Эти вещества поступают в клетку в качестве пищи путем фагоцитоза и пиноцитоза, и лизосомы принимают активное участие в их расщеплении, или лизисе. Отсюда происходит и название самого органоида. Совокупность лизосом можно назвать "пищеварительной системой" клетки, так как они участвуют в переваривании всех веществ, поступающих в клетку.
65. Лизосомальный аппарат клетки. Классификация лизосом
Было обнаружено, что среди различных по морфологии лизосомных частиц можно выделить по крайней мере четыре типа: первичные лизосомы, вторичные лизосомы, аутофагосомы и остаточные тельца.
Первичные лизосомы (гидролазные пузырьки) - округлые пузырьки небольшого размера , с мелкозернистым, гомогенным, плотным матриксом. Надежная идентификация первичных лизосом возможна только при гистохимическом выявлении характерных ферментов (кислая фосфатаза). Первичные лизосомы - неактивные структуры, еще не вступившие в процессы расщепления субстратов.
Вторичные лизосомы - органеллы, активно участвующие в процессах внутриклеточного переваривания. Диаметр вторичных лизосом обычно составляет 0.5-2 мкм, их форма и структура могут существенно варьировать в зависимости от перевариваемого субстрата, но обычно содержимое вторичных лизосом гетерогенно. Вторичная лизосома - результат слияния первичной лизосомы с фагосомой или аутофагосомой.
Фаголизосома формируется путем слияния первичной лизосомы с фагосомой - мембранным пузырьком, содержащим материал, захваченный клеткой извне. Процесс разрушения этого материала называется гетерофагией.
Аутофаголизосома образуется при слиянии первичной лизосомы с аутофагосомой - мембранным пузырьком, содержащим собственные компоненты клетки, которые подлежат разрушению. Источником мембраны, окружающей клеточные компоненты, служит ЭПС. Процесс переваривания внутриклеточного материала называется аутофагией.
66.Функции лизосом
1.Переваривающая. При эндоцитоце клетка захватывает не только питательные вещества, но и бактерии и другие вещества, попадающие в организм. Ферменты лизосом переваривают захваченные частицы, сливаясь с вакуолями.
2. Процесс переваривания внутриклеточного материала называется аутофагией. Аутофагия обеспечивает постоянное обновление клеточных структур благодаря перевариванию митохондрий, полисом, фрагментов мембран. Частным случаем аутофагии является кринофагия - лизосомальное разрушение избытка невыведенного секрета
3.При автолизе лизосомы самоуничтожают клетки, которые могут оказать пагубно влияние на организм. Этот процесс происходит при развитии организма и дифференцировании клеток, отвечающих за специализированные процессы.
4. к функциям лизосом можно отнести их участие в обмене веществ. Переваренные лизосомами вещества поступают в межклеточную жидкость или плазму крови и вовлекаются в обмен веществ. В растительных организмах лизосомы способны накапливать ионы, пигменты, белки и вторичные метаболиты.
67. Гетерофагия
- внутриклеточное пищеварение для питания клеток.Гетерофагия играет очень важную роль в функции клеток всех тканей и органов. Дефицит тех или иных лизосомальных ферментов может приводить к развитию ряда заболеваний, вызванных накоплением в клетках непереваренных веществ (чаще всего гликогена, гликолипидов, гликозаминогликанов), которые нарушают их функцию. При наиболее распространенных заболеваниях, относящихся к этой группе, повреждаются нейроны, макрофаги, фибробласты и остеобласты, что клинически проявляется разнообразными по тяжести нарушениями строения и функции скелета, нервной системы, печени, селезенки. В почке в результате гетерофагии клетки захватывают белки из просвета канальцев и расщепляют их до аминокислот, которые далее возвращаются в кровь. Гетерофагия в клетках щитовидной железы обеспечивает отщепление йодсодержащих гормонов от белковой матрицы и последующее всасывание их в кровь.
68.Физиологические адаптации гетерофагии (защита, реконструкция кости, образование тироксина, почечная реабсорбция и др)
В многоклеточных организмах гетерофагия приспособлена к широкому кругу функций, служащих скорее организму в целом, а не отдельным клеткам. Сходная деятельность наблюдается у макрофагов, представляющих собой группу клеток, разбросанных по всем тканям и характеризующихся чрезвычайно выраженной и неразборчивой фагоцитарной активностью. Макрофаги также участвуют в защите организма, но помимо этого выполняют роль основных «чистильщиков» и «мусорщиков». Мы находим их в легких, где они беспрестанно чистят поверхность альвеол. Все, что они не могут переварить, откладывается в их лизосомах, и, когда лизосомы наполняются, макрофаги, сморщиваются и умирают, а затем с мокротой удаляются из организма.
...Подобные документы
Субклеточные структуры растительной клетки. Клеточная стенка и ее химический состав. Одревеснение, опробковение и кутинизация клеточной стенки. Ослизнение и минерализация клеточной стенки. Формирование рост и функции клеточной стенки.
реферат [33,9 K], добавлен 16.01.2009История изучения клетки. Открытие и основные положения клеточной теории. Основные положения теории Шванна-Шлейдена. Методы изучения клетки. Прокариоты и эукариоты, их сравнительная характеристика. Принцип компартментации и поверхность клетки.
презентация [10,3 M], добавлен 10.09.2015История развития клеточной теории, ее эволюция. Строение и функции оболочки клетки, характеристика оболочки, цитоплазмы, ядра. Роль плазматической мембраны и аппарата Гольджи в жизнедеятельности клеток. Рибосомы и митохондрии, их функции и состав.
реферат [529,8 K], добавлен 16.08.2009История и основные этапы исследования клетки, ее структуры и компонентов. Содержание и значение клеточной теории, выдающиеся ученые, внесшие свой вклад в ее разработку. Симбиотическая теория (хлоропласты и митохондрии). Зарождения эукариотической клетки.
презентация [974,7 K], добавлен 20.04.2016Химический состав и значение оболочки растительной клетки. Физические свойства цитоплазмы. Структура мембраны клетки, ее мембранные органоиды. Особенности нуклеинового и белкового обмена двумембранных органоидов. Одномембранные и немембранные органоиды.
презентация [2,2 M], добавлен 08.11.2012История развития, предмет цитологии. Основные положения современной клеточной теории. Клеточное строение живых организмов. Жизненный цикл клетки. Сравнение процессов митоза и мейоза. Единство и многообразие клеточных типов. Значение клеточной теории.
реферат [17,1 K], добавлен 27.09.2009Цитология как наука, изучающая строение, функции и эволюцию клеток. История изучения клетки, появление первых микроскопов. Открытие мастерской оптических приборов в России. История развития клеточной теории, ее основные положения в современной биологии.
презентация [347,3 K], добавлен 23.03.2010Цитоплазма как обязательная часть клетки, заключенная между плазматической мембраной и ядром. Реакция среды и особенности движения цитоплазмы. Значение, функции и структура гиалоплазмы. Виды и роль одно- и двухмембранных органоидов живой клетки.
презентация [1009,0 K], добавлен 21.02.2014Строение животной клетки. Основные положения клеточной теории, понятие про прокариоты и эукариоты. Структура цитоплазмы и эндоплазматический ретикулум. Хромосомный набор человека. Способы деления клетки (амитоз, митоз и мейоз) и ее химический состав.
презентация [3,1 M], добавлен 09.10.2013Место цитологии среди других дисциплин. Исследование положений современной клеточной теории. Реакция клетки на повреждающее действие. Характеристика основных механизмов повреждения клетки. Анализ традиционных точек зрения на причины развития старения.
презентация [6,8 M], добавлен 28.02.2014Клеточная теория Шлейдена и Шванна. Состав вирусов. Методы изучения клетки. Строение и функции ее поверхностного аппарата, мембраны, надмембранного комплекса, хромопластов, лейкопластов, рибосом, органелл, ядра, ядерной оболочки, кариоплазмы, хромосом.
презентация [3,6 M], добавлен 13.11.2014Элементарная генетическая и структурно-функциональная биологическая система. Клеточная теория. Типы клеточной организации. Особенности строения прокариотической клетки. Принципы организации эукариотической клетки. Наследственный аппарат клеток.
контрольная работа [47,7 K], добавлен 22.12.2014Цитология как наука о клетках – структурных и функциональных единицах почти всех живых организмов. Основные положения клеточной теории. Открытие клетки. Основные свойства живых клеток. Открытие закона наследственности. Достижения современной цитологии.
контрольная работа [1,5 M], добавлен 28.10.2009Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.
реферат [27,3 K], добавлен 16.01.2005Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.
презентация [881,2 K], добавлен 12.09.2014Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.
лекция [44,4 K], добавлен 27.07.2013Протекание биохимических процессов, их причинно-следственный механизм. Натриево-калиевый насос, энергия гидролиза АТФ, кальциевые насосы, натрий-кальциевый обменник. Функции мембраны, электрический потенциал клетки и молекул, их роль в обменных процессах.
реферат [31,2 K], добавлен 24.10.2009Клетка–элементарная единица жизни на Земле. Химический состав клетки. Неорганические и органические вещества: вода, минеральные соли, белки, углеводы, кислоты. Клеточная теория строения организмов. Обмен веществ и преобразование энергии в клетке.
реферат [36,2 K], добавлен 13.12.2007Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.
презентация [6,8 M], добавлен 27.12.2011Рассмотрение характеристик клетки как элементарной целостной системы живого организма. Типы клеток животных и растений. Строение и функции мембраны, цитоплазмы, митохондрии, аппарата Гольджи, лизосом, вакуоль, рибосом. Описание органоидов движения.
презентация [3,1 M], добавлен 16.02.2015