Физиология возбудимых образований, нервной системы, системы крови. Отделы мозга и их функции. Эндокринная система. Врожденные и приобретенные формы проведения. Психическая деятельность. Пищеварение. Обмен веществ и энергии
Основные свойства живых клеток. Мембранные потенциалы в клетках. Факторы, обуславливающие изменения возбудимости при возбуждении. Проведение возбуждения в нервном центре. Физиология головного мозга. Рефлекс как основная форма нервной деятельности.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 13.09.2017 |
Размер файла | 151,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
6. Половые железы
Мужские половые железы наряду с семевыносящими протоками, семенными пузырьками, предстательной железой, бульбоуртеральными железами относятся к внутренним половым органам. К женским внутренним половым органам относятся яичники, маточные трубы матка, влагалище. Половые железы являются местом образования половых клеток - сперматозоидов и яйцеклеток, а также местом образования половых гормонов - андрогенов и эстрогенов.
Мужские половые железы человека развиваются в брюшной полости в виде парных органов. В яичке имеется еще разновидность клеток - интерстициальные эндокриноциты (клетки Лейдига), синтезирующие андрогены.
Для синтеза половых гормонов нужны два гормона гипофиза - ФСГ и ЛГ.
Эти гормоны гипофиза выделяются под действие гонадолиберина, образующегося в гипоталамусе. Под действием ЛГ у мужчин в семенниках интерстициальными клетками (Лейдига) секретируются андрогены.
Метаболическими и функциональными эффектами тестостерона являются: 1) половая дифференцировка в эмбриогенезе; 2) развитие первичных и вторичных половых признаков; 3) формирование структур цнс, обеспечивающих половое поведение и функции; 4) генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуру, распределение подкожного жира; 5) регуляция сперматогенеза; 6) задержка в организме азота, калия, фосфата, кальция; 7) активация синтеза РНК; 8) стимуляция эритропоэза.
Яичники покрыты однослойным однорядным кубическим эпителием, который представляет собой продолжение на яичник мезотелия брюшины.
Под эпителием располагается соединительнотканная белочная оболочка. В яичнике различают внутренний слой, богатый кровеносными сосудами и нервами, и наружный, в котором расположены женские половые клетки - ооциты, находящиеся на стадии роста. Ооциты окружены одним или несколькими слоями фолликулярных клеток, которые входят в состав вторичной оболочки. Ооциты вместе с окружающими их фолликулярными клетками называются фолликулами. Фолликулярные клетки выполняют трофическую функцию.
В результате секреции ФСГ аденогипофизом происходит развитие в яичнике первичных фолликулов во вторичные. По неизвестным пока причинам только один из последних становится третичным и превращается в граафов пузырек. Созревающие фолликулы секретируют эстрогены.
Эстрогены необходимы для процессов половой дифференцировки в эмбриогенезе, полового созревания и развития женских половых признаков, установления женского полового цикла, роста мышцы и железистого эпителия матки, развития молочных желез. В итоге, эстрогены неразрывно связаны с реализацией полового поведения, с овогенезом, процессами оплодотворения и имплантации яйцеклетки развития и дифференцировки плода, нормального родового акта.
Прогестерон является гормоном сохранения беременности, т.к. ослабляет готовность мускулатуры матки к сокращению. Необходим гормон в малых концентрациях и для овуляции.
врожденные и приобретенные формы проведения
1. Рефлекс как основная форма нервной деятельности
Основной формой нервной деятельности являются рефлекторные акты.
Рефлекс - ответная реакция организма на раздражение из внешней или внутренней среды, осуществляемая и контролируемая при помощи ЦНС.
Рефлекторная дуга. Во всех органах тела располагаются нервные окончания, чувствительные к раздражителям, - рецепторы.
Принцип обратной связи. Между ЦНС и рабочими, исполнительными органами существуют как прямые, так и обратные связи. При действии раздражителя на рецепторы возникает двигательная реакция. В результате этой реакции от эффекторных органов - мышц нервные импульсы поступают в ЦНС. Это вторичные афферентные (центростремительные) импульсы постоянно сигнализируют нервным центрам о состоянии двигательного аппарата, и в ответ на эти сигналы из ЦНС поступают новые импульсы, включающие следующую фазу движения или изменяющие движение в соответствии с условиями деятельности. Значит, имеется кольцевое взаимодействие между регуляторами (нервными центрами) и регулируемыми процессами, что даёт основание говорить не о рефлекторной дуге, а о рефлекторном кольце, или рефлекторной цепи.
2.Безусловные рефлексы и инстинкты
Поведение животных состоит из 2х типов рефлексов - безусловных и условных.
Безусловные рефлексы - это врождённые, наследственно передающие реакции организма, т.к. уже к моменту рождения животных и человека готовы нервные пути, по которым они осуществляются. В названии «безусловный» отражена особенность, что они не требуют для своего возникновения особых условий, кроме целостности рефлекторной дуги. Условные рефлексы - реакции, приобретённые организмом в процессе индивидуального развития на основе «жизненного опыта».
3. Классификация условных и безусловных рефлексов
Всю совокупность безусловных и образованных на их основе условных рефлексов по их биологическому значению принято разделять на пищевые, оборонительные, половые, статокинетические и локомоторные, ориентировочные, поддерживающие гомеостаз и некоторые другие. Особое место среди безусловных рефлексов занимает ориентировочный рефлекс. Это рефлекс на новизну. Он возникает в ответ на любое изменение окружающей среды и выражается в настораживании, прислушивании, обнюхивании, повороте глаз и головы, иногда и всего тела на появившееся раздражение. Реакция эта врождённая и не исчезает при полном удалении коры полушарий большого мозга.
Условные рефлексы составляют определённый фонд знаний, индивидуального опыта человека. Они накапливаются при определённых условиях жизни организма и исчезают при отсутствии соответствующих условий.
4.Условные рефлексы
Условные рефлексы - это индивидуальная приспособительная деятельность высокоорганизованного организма, осуществляемая ЦНС путём образования временных связей, между сигнальным раздражителем и соответствующей ответной реакцией.
Биологическая роль условных рефлексов заключается в осуществлении ими индивидуального поведения, они возникают и изменяются в зависимости от внешних условий и лежат в основе психического поведения.
Условные рефлексы подразделяются по целому ряду следующих признаков: по биологическим признакам: пищевые, половые, оборонительные и.т.д.; по характеру условного сигнала: натуральные, искусственные; по виду раздражителя; по сочетанию условного сигнала и безусловного раздражителя.
Значение условных рефлексов заключается в следующем:
1. Более совершенное взаимодействие организма с окружающей средой;
2. Условные рефлексы уточняют, усложняют взаимодействие организма с окружающей средой.
3. Условные рефлексы лежат в основе поведения, воспитания, обучения.
Физиологическую основу условного рефлекса составляет процесс замыкания временной связи.
Временная связь - это совокупность нейрофизиологических, биохимических и ультраструктурных изменений мозга, возникающих в процессе сочетания условного и безусловного раздражителей и формирующих определённые взаимоотношения между различными мозговыми образованиями.
Механизм образования условного рефлекса проходит следующие этапы:
1. Иррадиация возбуждения в ЦНС.
2. Период синаптического облегчения.
3. Формирование двух доминантных очагов возбуждения.
Торможение условнорефлекторной деятельности. Выделяют безусловное и условное торможение условнорефлекторной деятельности. Безусловное торможение свойственно всем отделам нервной системы. Его не нужно вырабатывать, оно появляется одновременно с началом рефлекса, угнетая остальные рефлексы. Любой сильный раздражитель вызывает в коре образование сильного очага возбуждения, который тормозит деятельность других очагов. Выделяют следующие виды безусловного торможения: постоянный тормоз, гаснущий тормоз. Условное торможение называется внутренним, т.к.причина торможения условного рефлекса находится в пределах его рефлекторной дуги. Различают несколько видов условного торможения: угасательное, дифференцировочное, условный тормоз, торможение запаздывания.
Сон - особое состояние ВНД, широко разлившееся внутреннее торможение, выполняющее охранительную роль.
5. Понятие о функциональных системах
Функциональная система - совокупность органов и тканей, относящихся к различным анатомо-функциональным образованиям и временно объединяющихся для достижения полезного приспособительного результата.
Функциональная система состоит из 4 звеньев:
1. Центральное звено - нервные центры, которые возбуждаются для достижения полезного приспособительного результата;
2. Исполнительное звено - внутренние органы
3. Обратная связь
4. Полезная приспособительная реакция.
Выделяют следующие стадии формирования и деятельности функциональных системы:
1-я - афферентного синтеза;
2-я - принятия решения;
3-я - формирования акцептора результата действия;
4-я - действие;
5-я - результат действия;
6-я - обратной афферентации;
7-я - сопоставление полученного результата с эталоном
Основные свойства функциональных систем состоят в следующем:
1. Динамичность - функциональная система временное образование, формируется в процессе жизнедеятельности в соответствии с преобладающими потребностями организма.
2. Саморегуляция - функциональная система обеспечивает поддержание на постоянном уровне констант организма.
психическая деятельность
1. Типы ВНД
В повседневной жизни мы замечаем, что люди, попадая в одни и те же ситуации, ведут себя по разному. Однако за этим большим разнообразием поведенческих реакций и поступков проступают некоторые общие схемы или типы поведения. Это обстоятельство было отмечено ещё в древние времена и было положено в основу греческой медицины, испытавшей сильное влияние Гиппократа. Греко-арабско- персидско-таджикская медицина основана на признании четырёх элементов или стихий природы: воздуха, воды, огня и земли. Соответственно и в организме различаются четыре основные материи, каждая из которых соответствует одному из элементов или стихий природы (кровь, лимфа, желчь, чёрная желчь). Комбинации этих материй и определяет особенности, тип поведения человека. Эта идея легла в основу первой классификации темпераментов, изложенной в трудах Гиппократа. Он считал, что уровень жизнедеятельности человека зависит от соотношения четырёх жидкостей (материй), циркулирующих в организме - крови, желчи, чёрной желчи и слизи (лимфы, флегмы). Смесь этих жидкостей определяет индивидуальное своеобразие каждого организма. В переводе с греческого на латинский слово «смесь» звучит как «temperamentum». Отсюда классификация индивидов была названа классификацией темпераментов. Так, Гиппократ, исходя из учения о «соках тела», считал, что преобладание горячей крови (sangvis) делает человека энергичным и решительным сангвиником, избыток охлаждающей слизи (phlegma) предают ему черты хладнокровного и медлительного флегматика, едкая желчь (chole) обусловливает вспыльчивость и раздражительность холерика, а чёрная испорченная желчь (melan chole) определяет поведение вялого и унылого меланхолика
Сейчас эта классификация известна как учение Гиппократа о четырёх видах темпераментов.
Для сангвиника характерны высокая психическая, эмоциональная активность, богатая жестикуляция. Он подвижен, впечатлителен, быстро отзывается на окружающие события, сравнительно легко переживает неудачи и неприятности.
Поведение холерика отличает высокий уровень активности, энергичность действий, резкость и стремительность движений, сильные, импульсивные и ярко выраженные эмоциональные переживания. Несдержанность, вспыльчивость в эмоциогенных ситуациях.
Темперамент меланхолика отличается низким уровнем нервнопсихической активности, высокой эмоциональной реактивностью; отсюда эмоциональная ранимость, сниженный уровень двигательной и речевой активности.
Меланхолик замкнут, склонен к тяжёлым внутренним переживаниям при отсутствии серьёзных причин.
Флегматика отличает низкий уровень поведенческой активности. Он медлителен, спокоен, ровен. Ему трудно переключаться с одной деятельности на другую. Характеризуется постоянством чувства и настроений.
Классификация Гиппократа относится к гуморальным теориям.
Позже эта линия была продолжена немецким философом И. Кантом, который также считал природной основой темперамента особенности крови.
Теория темперамента Э. Кречмера, получившая распространение в 30-40х годах нашего века, строилась на изучении связи психических особенностей человека с его конституцией. Он определяет темпераменты на основе выделенных им конституционных типов сложения. Им было замечено, что у большинства страдающих маниакально - депрессивным психозом часто встречается пикническое телосложение: широкая грудь, коренастая, широкая фигура, крупная голова, выступающий живот. У больных шизофренией чаще астеничесий тип конституции: длинная и узкая грудная клетка, длинные конечности, удлинённое лицо, слабая мускулатура. Пикническому конституционному типу, по Кречмеру, соответствует циклоидный темперамент, для которого характерна адекватная реакция на внешние стимулы, открытость, естественность, плавность движений. Настроение таких лиц изменяется от весёлого у маниакальных субъектов до сниженного, мрачного у депрессивных индивидов. Астеническому типу свойственен шизоидный темперамент: замкнутость, уход в себя, неадекватность реакций внешним воздействиям.
Настроение меняется от раздражительности до бесчувствия, равнодушия. По мнению Кречмера, связь телосложения с психикой, отчётливо выступившая у больных, существует и у здоровых, но в скрытой форме.
К морфологическим теориям темперамента относится не только теория Кречмера, но и концепция американского психолога У.Шелдона, который выделил три основных типа соматической конституции: эндоморфный, мезоморфный и эктоморфный. Эндоморфный тип отличается мягкостью и округлостью внешнего облика, слабым развитием костной и мышечной систем.
Ему соответствует темперамент с чувственными устремлениями, любовь к комфорту, мышечная расслабленность, наслаждение едой, душевная теплота в общении с другими людьми. Мезоморфный тип характеризуется развитой костно-мышечной системой, атлетичностью, силой. Для него характерна резкость движений, склонность к риску, потребность в физических упражнениях, активность, смелость, властолюбие, безразличие к боли, агрессивность.
Экстроморфному типу свойственна хрупкость телосложения, отсутствие выраженной мускулатуры. Такие лица сдержанны, заторможены, скрытны, пугливы, склонностью к одиночеству.
Эти выводы во многом противоречивы. Однако в целом между телосложением и психическими качествами существует хотя и слабая, но статистически достоверная связь.
Теории И.П. Павлова о типах ВНД
Заслугой Павлова явилось то, что он связал четыре типа темперамента, выделяемые античной классификацией, со свойствами нервной системы, выделив среди них силу, уравновешенность и подвижность возбудительного и тормозного процесса. Четыре основных типа комбинаций этих свойств Павлов описал как четыре типа высшей нервной деятельности.
Сильный, уравновешенный, подвижный тип нервной системы у сангвиников.
Сильный, уравновешенный, инертный тип нервной системы - у флегматиков.
Сильный, неуравновешенный тип н.с. - у холериков.
Слабые нервные процессы отличают меланхоликов.
Павлов проводил опыта на собаках, оказалось, что у одних собак условные рефлексы вырабатываются быстро и прочно, а у других - с трудом и легко угасают. В этом проявляется первый прямой показатель типологических различий - сила процесса условного возбуждения. В свою очередь собаки с сильным возбудительным процессом разделились на таких, которые хорошо вырабатывали дифференцировки, и не справляющихся с этой задачей. Так определился второй показатель типологических различий - сила процесса условного торможения. Наконец, при сильных возбудительных и тормозных процессах одни собаки лучше, а другие хуже могли переделывать сигнальное значение положительных и отрицательных условных раздражителей, т.е. проявляли разную способность переучивания. Отсюда третий показатель типологических различий - подвижность нервных процессов.
2. Асимметрия мозга. Понятие о первой и второй сигнальных системах
Формирование высших психических функций (язык, восприятие, память и др.) в онтогенезе проходит длинный путь. В раннем онтогенезе они проявляются в развернутой форме предметной деятельности. По мере созревании мозга эти операции «свертываются» и приобретают характер внутренних умственных действии. Как правило, они опираются на ряд внешних вспомогательных средств.
Остановимся на двух аспектах проблемы локализации психических функций в мозге человека, которые представляются наиболее важными. Первое, что следует отметить, -- высшие формы психической деятельности человека всегда опираются на внешние средства.
Асимметрия функций полушарий головного мозга. В настоящее время функциональная асимметрия больших полушарий головного мозга человека стала одной из важнейших проблем физиологии высшей нервной деятельности.
Молодой нейрохирург Поль Брока сообщил на заседании «Общества антропологов» в Париже о том, что центр, контролирующий речь, находится в лобных долях. Однако сообщение П. Брока также не произвело на членов научного общества глубокого впечатления. Вскоре он представил еще несколько аналогичных препаратов мозга больных, страдавших потерей речи. Область мозга, разрушение которой приводило к потери речи, стали называть его именем -- центр Брока. Концепция, развиваемая Брока, известна теперь как концепция доминантности полушарий.
Немецкий невропатолог Карл Вернике (1876) предположил на основании обширного клинического материала, что задняя треть первой височной извилины левого полушария является «центром сенсорных образов слов» или, как он тогда выражался, «центром понятия слова». Эта область была названа зоной Вернике. Оказалось, что у здорового человека правши правое полушарие обладает особыми зрительно-пространственными способностями. Применение различных тестов показало, что больные с поврежденным правым или левым полушарием выполняют их не одинаково. Применялись, в частности, тесты двух видов: назвать увиденное (вербализация) и правильно воспринять пространство. Теперь уже не вызвало удивления, что при повреждении левого полушария страдают вербальные способности.
Общими для животных и человека являются синтез непосредственных конкретных сигналов предметов или явлений окружающего мира, приходящих от зрительных, слуховых, и других рецепторов организма и составляющих первую сигнальную систему.
Вместе с тем у человека в процессе трудовой деятельности и социального развития проявилась, развилась и усовершенствовалась вторая сигнальная система, связанная со словесными сигналами, с речью. Эта система сигнализации состоит в восприятии слов - слышимых, произносимых и видимых при чтении. Способность понимать, а потом и произносить слова развивается у ребёнка в результате ассоциации определённых звуков со зрительными, тактильными и другими впечатлениями о внешних объектах.
Речь -- форма общения людей друг с другом с помощью устных и письменных сигналов в виде слов, являющаяся элементом мышления человека.
Речь может быть внутренней -- необходимой формой процесса мышления, и внешней, с помощью которой человек сообщает свои мысли другим людям.
Речь -- это главная форма языка человека.
Язык человека -- средство общения людей друг с другом, главной формой которого является письменная и устная речь, а также формулы и символы, рисунки, жесты, мимика. В антропогенезе язык возник как средство общения в процессе охоты на диких зверей, защиты при нападении их, сооружения жилища, в поисках пещеры и т.д. Вначале это были отдельные звуки в виде сигналов, например об опасности, как у животных. В процессе труда возникла необходимость обращения друг к другу. Отдельные звуки превращались в более сложные сигналы, из которых впоследствии сформировались слова, затем фразы, речь.
3.Физиологические основы сознания у человека и животных
Сознание -- это идеальное, субъективное, адекватное отражение реальной действительности при участии мозга. Сознание является высшей функцией мозга. Оно отражает реальную действительность в различных формах психической деятельности человека: ощущение, восприятие, представление, мышление, внимание, чувства (эмоции) и воля.
Подключение сознания обычно достигается активацией большого количества структур, где ведущее значение имеют кора большого мозга с ближайшей подкоркой, Лимбическая система, их взаимодействие. Важнейшую роль играют восходящие активирующие влияния ретикулярной формации.
Интуиция -- источник гипотез, открытий, возможных благодаря трансформации и рекомбинации следов памяти (энграмм). Интуиция -- это результат подсознательной (неосознаваемой) деятельности мозга: догадка, чутье на основании накопленных знаний и навыков, в любой сфере деятельности (интуитивный ход в шахматной игре, решение математической задачи и т.п.).
Осознаваемая деятельность мозга -- это наиболее сложная форма психической деятельности человека, к этому виду деятельности относят следующие.
Все виды психической деятельности: ощущение, восприятие, мышление, внимание и др.
4.Функциональные расстройства ВНД. Неврозы
Термин «невроз» ввел более 200 лет тому назад шотландский врач У.Куллен. С тех пор представление о неврозе многократно пересматривалось.
Вначале к этой группе заболеваний относили большое число болезней без явного патоморфологического дефекта. Определение невроза как «заболевания нервной системы без органических поражений» оказалось неудачным.
Современная физиология считает, что невроз -- это заболевание, обусловленное психической травмой.
В школе И. П. Павлова все функциональные нарушения высшей нервной деятельности стали определять как эксперименталь ный невроз, однако такой подход затруднял сопоставление клинических и экспериментальных неврозов.
Интерес к экспериментальным неврозам в павловской лаборатории возник почти случайно. В опытах М.Н.Ерофеевой сотрудницы И. П. Павлова, была показана возможность выработки условного пищевого рефлекса на сильное электроболевое раздражение. Другая сотрудница лаборатории, Н. Р. Шенгер-Крес-товникова, изучала у собак свойства выработанной тонкой зрительной дифференцировки. Общим для обоих исследований было то, что собаки с трудом справлялись с предъявленными задачами, и часто у них наступало состояние, которое в павловских лабораториях получило название «срыва высшей нервной деятельности». Этот «срыв» проявлялся в том, что собаки стали бояться обстановки эксперимента, вырывались из станка, неадекватно реагировали на условные сигналы.
Эти работы положили начало систематическим исследованиям в павловских лабораториях явлений «срыва высшей нервной деятельности», т. е. экспериментальных неврозов.
В подавляющем числе работ павловской школы экспериментальные неврозы вызывали перенапряжением основных нервных процессов -- возбуждения и торможения -- или их подвижности.
5.Память. Виды запоминания. Забывание
Память - это способность организма приобретать, сохранять и воспроизводить в сознании информацию и навыки.
Биологическое значение памяти. Накопление, хранение и воспроизведение информации - общие свойства нейронных сетей. Без памяти не одна особь не могла бы выжить, т.к. способность к научению была бы не возможна. Большинство накопленных сведений со временем забывается.
Классификация памяти. Есть врождённая память, или генотипическая обусловливает сохранение инстинктов, импринтинга. Приобретённая память - фенотипическая, это механизм который обеспечивает обработку и хранение информации, приобретаемой организмом в процессе индивидуального развития.
Память различают по формам восприятия информации: логически-смысловая, чувственно-образная (зрительная, слуховая, моторная).
По уровням усвоения: воспроизводящая и облегчающая.
По длительности хранения информации: кратковременная (первичная - десятки секунд, вторичная - от нескольких минут, до нескольких часов), промежуточная (от нескольких часов до нескольких дней), долговременная - на протяжении всей жизни.
По механизму хранения информации: электрофизиологическая, нейрохимическая, ультраструктурная, макромолекулярная.
Онтогенетическую память составляют условные рефлексы и другие формы приобретённой информации.
Механизм кратковременной (электрофизиологической) памяти. В основе механизма кратковременной памяти лежит импульсная активность нейронов и в частности, циркуляция возбуждения по замкнутым нейронным цепям. В них сохраняется информация в виде последовательности импульсов, передающихся от нейрона к нейрону. Пока циркуляция продолжается, сохраняется нейрональный след о воздействии того или иного раздражителя на организм в прошлом.
Механизм нейрохимической памяти. В консолидации памяти (промежуточная память) важную роль играют нейропептиды. Известно, что пептиды могут находиться в пресинаптических терминалях в качестве сопутствующего медиатора. Нейропептиды оказывают пре- и постсинаптическое модулирующее действие. Очевидно, мозаика образующихся функциональных групп нейронов, подвергнутых нейрохимическому воздействию пептидов, может быть одним из механизмов оперативного функционального объединения нервных клеток в ходе обучения, в явлениях памяти.
Основой долговременной памяти являются структурные изменения в нейронах. Ее отличают длительность (часы, дни и на протяжении всей жизни при повторении информации) и практически безграничный объем. Долговременная память по своему механизму качественно отличается от кратко-временной и промежуточной памяти, так как не нарушается при многих экстремальных воздействиях на мозг -- механической травме, электрошоке, наркозе и др. Долговременная память формируется на основе кратковременной и промежуточной памяти, при этом важную роль играют синаптические процессы.
Процесс забывания характеризуется определенной скоростью. Быстрое забывание связано, по-видимому, с нарушением процесса консолидации памяти, т.е. переводом ее из кратковременной в долговременную память. Ангиотензин-П препятствует процессам забывания условно-рефлекторных оборонительных навыков у крыс. Конкретные механизмы забывания изучены мало.
Два уровня структур мозга запоминания информации. Модальноспецифический (региональный) уровень -- различные отделы новой коры большого мозга за исключением лобной коры. Мозговая кора -- основной субстрат памяти. Следует учитывать, что разрушение отдельных структур мозговой коры может вызвать расстройство памяти за счет нарушения разных процессов: либо запоминания, либо сохранения, либо воспроизведения.
Неспецифический (общемозговой) уровень -- стволовая ретикулярная формация, гипоталамус, ассоциативный таламус, гиппокамп и лобная кора.
ФИЗИОЛОГИЯ системы крови
1.Состав, количество, физико-химические свойства крови
Термин внутренняя среда организма предложен французским физиологом Клодом Бернаром. В это понятие включена совокупность жидкостей организма - кровь, лимфа, тканевая, суставная, плевральная, спино-мозговая жидкости, которые омывают клетки и околоклеточные структуры тканей.
Основой внутренней среды организма является кровь, между тем роль непосредственной питательной среды выполняет тканевая жидкость. Внутренняя среда организма характеризуется динамическим постоянством - гомеостазом.
Кровь состоит из плазмы и форменных элементов - клеток крови: красных кровяных телец (эритроцитов), белых (лейкоцитов) и кровяных пластинок (тромбоцитов). Плазма, лишенная фибрина, называется сывороткой.
На долю крови у взрослого человека приходится примерно 6-8% общей массы тела, а у детей в связи с более высоким содержанием воды - 8-9%. У взрослого человека это соответствует 4-6л крови. Процентное соотношение между плазмой и форменными элементами крови называется гематокритом (55-60% - плазмы, 40-45% - форменных элементов). У здорового человека эта величина может претерпевать существенные и достаточно длительные изменения при адаптации к большим высотам.
Вязкость крови. Если вязкость воды принять за 1, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови - 5. Вязкость крови обусловлена наличием в ней белков и особенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутреннего сопротивления. Вязкость увеличивается при сгущении крови. Т.е. потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови.
Осмотическое давление крови. Если два раствора разной концентрации разделить полупроницаемой перепонкой, пропускающей только растворитель (воду), то вода переходит в более концентрированный раствор. Сила, определяющая движение растворителя через полупроницаемую мембрану называется осмотическим давлением. Растворы, в которых концентрация хлорида натрия выше, чем в плазме здорового человека (норма) называется гипертоническими. Изменение осмотического давления жидкости, окружающей клетки, ведет к нарушению в них водного обмена. Например, в гипертоническом растворе эритроциты сморщиваются, в гипотоническом - набухают и разрушаются. У человека температура замерзания крови ниже нуля на 0,56-0,580С (чем выше в растворе суммарная концентрация мелких молекул и ионов, тем ниже температура замерзания).
Реакция крови и поддержание ее постоянства. Кровь имеет слабо щелочную реакцию. рН артериальной крови равна 7,4; рН венозной крови вследствие большого содержания в ней углекислоты составляет 7,35. Внутри клеток рН несколько ниже (7,0-7,2), что зависит от образования в них при метаболзме кислых продуктов. Постоянство рН крови называется активной реакцией крови. Крайними пределами изменений рН, совместимых с жизнью, является величина от 7,0 до 7,8. Смещение рН в кислую сторону называется ацидозом, в щелочную - алколозом. У здоровых людей рН крови колеблется в пределах 7,35-7,4. рН крови остается постоянным благодаря буферным свойствам плазмы и эритроцитов, а также деятельностью органов дыхания и выделения, удаляющих из организма избыток углекислого газа, кислот и щелочей.
Буферные свойства крови обусловлены тем, что в ней содержатся: 1) буферная система гемоглобина; 2) карбонатная буферная система; 3) фосфатная; 4) система белков плазмы. Буферность - способность поддерживать активную реакцию крови.
Состав плазмы крови. Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом белков и солей. В плазме находятся ряд белков: альбумины, глобулины и фибриноген; небелковые азотсодержащие соединения (аминокислоты и полипептиды), продукты распада белков и нуклеиновых кислот (мочевина, креатинин, мочевая кислота), безазотистые соединения (глюкоза, жиры и липоиды), минеральные вещества (катионы натрия, калия, кальция, анионы хлора, гидрокарбонаты, гидрофосфаты). Содержание органических и неорганических веществ плазмы крови поддерживается на относительно постоянном уровне.
2.Свертывание крови
Свертывание крови. Основоположников современной ферментативной теории свертывания крови является проф. А.А. Шмидт, Его теорию поддержал и уточнил П.Моравиц. Свертывание крови проходит в три фазы: 1) образование протромбиназы; 2) образование тромбина и 3) образование фибрина.
Кроме них выделяют предфазу и послефазу. В предфазу осуществляется сосудисто-тромбоцитарный гемостаз (остановка кровотечения и микоциркуляторных сосудах). Послефаза включает два процесса - ретаркцию (сокращение, уплотнение) и фибринолиз (растворение) кровяного сгустка. Таким образом, в процессе гемостаза вовлечены 3 компонента: стенки кровеносных сосудов, форменные элементы крови и плазменная ферментная система свертывания плазмы.
Сосудисто-тромбоцитарный гемостаз. Этот механизм способен самостоятельно епркратить кровотечение из наиболее часто травмируемых микроциркуляторных сосудов с низким артериальным давлением. Он складывается из ряда процессов:
1.Рефлекторный спазм поврежденных сосудов. Это реакция обеспечивается сосудосуживающими веществами, освобождающимися из тромбоцитов (серотонин, адреналин, норадреналин).
2.Адгезия тромбоцитов (приклеивание) к месту травмы
3.Обратимая агрегация (скучивание) тромбоцитов
4.Необратимая агрегация тромбоцитов
5.Ретракция тромбоцитарного тромба
Коагуляционный гемостаз. Тромбоцитарные тромбы, образующиеся при сосудисто-тромбоцитарном гемостазе, не выдерживают высокого давления и вымываются. В крупных сосудах гемостаз может быть достигнут путем образования фибринового тромба, представляющего собой более прочную пробку. Его образование осуществляется ферментативным коагуляционным механизмом, протекающим в три фазы.
Фаза 1. Самой сложной и продолжительной фазой является протромбиназа. В этом процессе различают внешнюю (тканевую) и внутреннюю (кровяную) систему. Внешний путь запускается тканевым тромбопластином, который выделяется из стенок поврежденного сосуда и окружающих тканей.
Во внутренней системе фосфолипиды и другие факторы поставляются самой кровью. В 1 фазу образуются тканевая, тромбоитарная и эритроцитарная протромбиназы. В формировании тканевой протромбиназы участвуют плазменные факторы VII, V, X и кальций. Кровяная протромбиназа образуется медленнее. Начальной реакцией является активация фактора Хагемана, который активирует XI, образуя с ним комплекс. К этому времени происходит разрушение эритроцитов и образование комплекса XII+XI. Под влиянием фактора XI активируется фактор IX, который реагирует с фактором VIII и ионами Са2+, образуя кальциевый комплекс. Он адсобируется на фосфолипидах и после этого активируется фактор Х. Активированный фактор Х на матрице фосфолипидов образует последний комплекс фактор Х+ фактор V+ кальций и завершает образование кровяной протромбиназы. Ее главной частью служит активный фактор Х.
Фаза 2. Образование тромбина протекает мгновенно. Такая скорость обусловлена тем, что протромбиназа адсорбирует протромбин и на своей поверхности превращает его в тромбин. Этот процесс протекает при участии факторов V, X и Са2+.
Фаза 3. Происходит превращение фибриногена в фибрин. Этот процесс протекает в три этапа. 1- образование золеобразного фибрин-мономера, 2 - фибрин-полимера, 3 - при участии фактора ХIII и фибриназы тканей, тромбоцитов и эритроцитов образуется окончательный или нерастворимый фибрин-1.
Таким образом, свертывание крови представляет собой ферментативный процесс, в котором на матрице фосфолипидов последовательно активируются факторы свертывания и образуются их комплексы. Фосфолипиды клеточных мембран выступают как катализаторы взаимодействия и активации факторов свертывания, ускоряя течение процесса гемокоагуляции.
Противосвертывающие механизмы. Жидкое состояние крови сохраняется за счет многих механизмов: 1) свертыванию крови препятствуют гладкая поверхность эндотелия сосудов, что предотвращает активацию фактора Хагемана и агрегация тромбоцитов; 2) стенки сосудов и форменные элементы крови имеют отрицательные заряды, что отталкивает клетки крови от сосудистых стенок; 3) стенки сосудов покрыты тонким слоем растворимого фибрина адсорбирующим активные факторы свертывания, особенно тромбин; 4) свертыванию мешает большая скорость течения крови, что не позволяет факторам гемокоагуляции достигнуть нужной концентрации в одном месте; 5) жидкое состояние крови поддерживается имеющимися в ней естественными антикоагулянтами.
Имеющиеся в организме антикоагулянты делят на две группы: 1) предшествующие (первоначальные) и 2) образующиеся в процессе свертывания крови и фибринолиза (вторичные).
В первую группу входят антитромбопластины, антитромбины, гепарин.
Вторичные антикоагулянты представляют собой «отработанные» факторы свертывания. В состоянии покоя содержание антикоагулянтов невелико, но оно резко возрастает в ответ на ускорение свертывания крови.
клетка возбуждение рефлекс нервный
3. Группы крови. Резус-фактор
Причины осложнений при переливании крови были выяснены в начале прошлого века. В1901 году австриец К.Ландштейнер и в 1903 году Я.Янский обнаружили, что при перемешивании крови разных людей часто наблюдается склеивание эритроцитов друг с другом - явление агглютинации. Это зависит от наличия в эритроцитах агглютинируемых факторов - агглютиногенов А и В. В эритроцитах они могут быть по одному или отсутствовать.
Одновременно было установлено, что в плазме содержатся агглютинирующие агенты, которые склеивают эритроциты. Указанные вещества названы агглютининами б и b. В крови человека содержатся один, либо два, либо ни одного агглютинина. При переливании несовместимой крови эритроциты не только склеиваются, но и разрушаются (гемолиз). Последнее связано с тем, что в плазме, помимо агглютининов, находятся одноименные гемолизины. Склеивание эритроцитов происходит в том случае, если эритроциты донора встречаются с одноименными агглютининами реципиента: А+б; В+b;
АВ+бb. У людей имеется 4 комбинации агглютиногенов и агглютининов системы АВО.
Выяснение причин агглютинации позволило сформулировать два основных правила переливания крови: 1) необходимо подбирать кровь так, чтобы избежать встречи одноименных агглютиногенов донора с агглютининами реципиента, т.е. плазма реципиента должна быть пригодна для жизни перелитых эритроцитов; 2) агглютинины донора в расчет не принимаются.
Прогрессивное развитие хирургии, трансфузиологии и гематологии заставило отказаться от этих правил и перейти к переливанию только одногруппной крови.
Среди агглютиногенов, не входящих в систему АВО, одним из первых был обнаружен резус-фактор (или резус-агглютиноген). Ландштейнер и Винер обнаружили его у обезьян макак. У 15% людей он отсутствует (резус-отрицательная кровь). Система резус имеет 6 разновидностей агглютиногенов - D, C, E из которых наиболее активен D. Если кровь человека, содержащего резус-фактор, перелить человеку, не имеющему его, то у него образуются иммунные антирезус-агглютинины. Повторное введение такому человеку резус-положительной крови может привести к развитию гемотрансфузионных осложнений.
При браке резус-положительного мужчины с резус-отрицательной женщиной (вероятность такого брака 50%) плод нередко наследует резус-фактор отца. Кровь плода проникает в организм матери, вызывая образование антирезус-агглютининов. Через плаценту они попадают в кровь плода, вызывая разрушение эритроцитов и внутрисосудистое свретывание крови. Если концентрация антирезус-агглютининов высока, это приводит к смерти плоад и выкидышу. При легких формах резус-несовместимости плод рождаются живым, но с гемолитической желтухой.
4. Форменные элементы крови
Эритроциты - красные кровяные тельца, представляют собой клетки, которые у человека и млекопитающих не имеют ядра. В крови у мужчин содержится в среднем 5х1012/л эритроцитов (5000000 в 1 мкл), у женщин - около 4,5х1012/л (4500000 в 1 мкл). Количество эритроцитов изменчиво. Увеличение их числа называют эритроцитозом, уменьшение - эритропенией. Эти сдвиги могут носить относительный и абсолютный характер.
Абсолютный эритроцитоз - увеличение числа эритроцитов в организме наблюдается при снижении барометрического давления (на высокогорье), у больных с хроническими заболеваниями легких и сердца вследствие гипоксии, которая стимулирует эритропоэз.
Относительный эритроцитоз - увеличение числа эритроцитов в единице объема крови без увеличения их общего количества в организме - наблюдается при сгущении крови (при обильном потении, ожогах, холере и дизентерии). Он возникает также при тяжелой мышечной работе вследствие выброса эритроцитов из селезеночного кровяного депо.
Абсолютная эритропения развивается вследствие пониженного образования, усиленного разрушения эритроцитов или после кровепотери.
Относительная эритропения возникает при разжижении крови за счет увеличения жидкости в кровотоке.
Гемоглобин является основной составной частью эритроцитов и обеспечивает дыхательную функцию крови, являясь дыхательным ферментов. Он находится в эритроцитах, что обеспечивает уменьшение вязкости крови, уменьшает онкотическое давление плазмы, предотвращая обезвоживание тканей, предупреждает потерю организмом гемоглобина вследствие его фильтрации в клубочках почек и выделения с мочой.
Гемоглобин состоит из небелковой части гемма, белковой - глобина.
Гемм имеет в своем составе двухвалентное железо, способное присоединять и отдавать кислород. В норме гемоглобин содержится в виде 3 физиологических соединений: оксигемоглобин, дезоксигемоглобин, карбгемоглобин. Патологические соединения: карбоксигемоглобин, метгемоглобин. В скелетных мышцах и миокарде находится мышечный гемоглобин - миоглобин.
Разрушение оболочки эритроцитов, сопровождающееся выходом из них гемоглобина в плазму крови называют гемолизом. Разрушение может быть вызвано уменьшением осмотическоо давления, под влиянием веществ, разрушающих белково-липидную оболочку эритроцитов (эфир, хлороформ, алкоголь, бензол, желчные кислоты, сапонин и др.), при сильных механических воздействиях на кровь (например, при сильном стряхивании ампулы с кровью), при замораживании и размораживании крови, при переливании несовместимой крови, при укусах некоторых змей, под влиянием иммунных гемолизинов и т.д.
Лейкоциты белые кровяные тельца, обеспечивающие иммунитет. У взрослых кровь содержит 4-9х109/л (4000-9000 в 1 мкл) лейкоцитов, т.е. в 500-1000 раз меньше, чем эритроцитов. Увеличение их количества называют лейкоцитозом, а уменьшение - лейкопенией. Лейкоциты делят на гранулоциты и агранулоциты.
5.Кроветворение
Кроветворение - процесс образования и развития форменных элементов крови. Различают эритропоэз - образование эритроцитов, лейкопоэз- образование лейкоцитов, тромбоцитопоэз- образование кровяных пластинок.
Эритроциты, гранулоциты (эозинофилы, базофилы, нейтрофилы) развиваются в красном костном мозге, который находится в плоских костях, метафизе трубчатых костей. Лимфоциты, кроме костного мозга, образуются в лимфатических узлах, селезенке, лимфоидной ткани кишечника и миндалин.
ФИЗИОЛОГИЯ КРОВООБРАЩЕНИЯ
1.Схема кровообращения
Большой круг кровообращения начинается самой большой артерией организма - аортой из левого желудочка. У самого ее начала отходят две коронарных артерии, которые дают начало, так называемому третьему кругу кровообращения. Аорта от сердца поднимается немного вверх, образует дугу и устремляется вниз, проходя через диафрагму в брюшную полость, где в самом низу разделяется на толстые артериальные магистрали, идущие в нижние конечности. От аорты на всем протяжении отходит множество ветвей.
Правая и левая плечеголовные, непарная и полунепарная вены объединяют свои потоки в верхнюю полую вену, впадающую в правое предсердие, подвздошные вены впадают в нижнюю полую вену. На своем пути к правому предсердию она вбирает в себя кровь от поясницы и диафрагмы, а также от полых органов брюшной полости, от всех непарных органов по селезеночной вене и нижней брыжеечным венам кровь от желудка, кишечника, селезенке, сальника уходит в печень по системе воротной вены на очистку от шлаков.
Пройдя этот фильтр впадает в нижнюю полую вену.
Таким образом, большой круг кровообращения выглядит следующим образом: левый желудочек>аорта>основные ветви аорты>артерии мелкого и среднего калибра>артериолы>капилляры>вены мелкого и среднего калибра>верхняя и нижняя полые вены>правое предсердие.
Малый круг кровообращения начинается с правого желудочка. Отходящий от правого желудочка легочной ствол является артерией, хотя несет венозную кровь. Легочные артерии, войдя в ворота легких разделяются на долевые артерии, на сегментарные, артериолы, на оплетающие ацинусы капиллярные сети. Обогатившаяся кислородом кровь по легочной вене поступает в левое предсердие.
2.Проводящая система сердца
Сердечная мышца миокарда обладает рядом свойств, обеспечивающих ее непрерывную ритмическую деятельность. Функциональным элементом сердца служит мышечное волокно - цепочка клеток миокарда, соединенных «конец в конец» и заключенных в общую саркоплазматическую оболочку (основную мембрану).
В зависимости от морфологических и функциональных особенностей в сердце различают два типа волокон: 1) волокно рабочего миокарда предсердий и желудочков, составляющие основную массу сердца и обеспечивающие го нагнетательную функцию. 2)волокна водителя ритма (пейсмекера) и проводящей системы сердца, отвечающие за генерацию возбуждения и проведения его к клеткам миокарда.
Мышечная ткань предсердий и желудочков ведет себя как функциональный синцитий: возбуждение, возникающее в каком-либо из этих отделов, охватывает все без исключения невозбужденные волокна. Благодаря этой особенности сердце подчиняется закону «все или ничего»: на раздражение отвечает либо возбуждением всех волокон либо не отвечает вовсе. Этим оно отличается от нервов и скелетных мышц.
Ритмические сокращения сердца возникают в нем самом. Если изолированное сердце поместить в соответствующие условия, оно будет продолжать биться с постоянной частотой. Это свойство называется автоматизмом.
В норме ритмические импульсы генерируются только специализированными клетками водителями ритма и проводящей системой сердца. На ранних стадиях эмбрионального развития этой способностью обладают все клетки закладки сердца. По мере дифференцировки клеток предсердий и желудочков автоматизм у них исчезает и появляется устойчивый высокий потенциал покоя.
3.Цикл сердечных сокращений
Цикл сердечных сокращений. Возбуждение клеток миокарда вызывает их сокращение. Однако для того, чтобы кровь в результате чередований сокращения и расслабления сердца передвигалась в нужном направлении - от вен к артериям необходима согласованная работа клапанов. В сердце существует два вида клапанов, препятствующих обратному току крови.
Клапаны расположены на входе и выходе обоих желудочков сердца. Атриовентрикулярные клапаны (в левом желудочке - митральный клапан, в правом - трехстворчатый) препятствуют обратному забросу крови в предсердия во время систолы желудочков. Аортальный и легочной клапаны, расположены у основания крупных артериальных стволов, предупреждают обратный ток крови в желудочки во время диастолы.
Атриовентрикулярные клапаны, образованные перепончатыми листками (створками), свешивающимися в желудочки наподобие воронки. Их свободные концы соединены тонкими сухожильными связками (нитями) с сосочковыми мышцами; это препятствует заворачиванию сворок клапанов в предсердия во время систолы желудочков.
Аортальный и легочной клапаны состоят из трех кармашков в виде полумесяца, окружающих устье сосуда (полулунные). Во время диастолы ток крови устремляется за створки клапанов, наполняет кармашки кровью, в результате чего створки захлапываются.
Сердечный цикл. Кровь по венам притекает к сердцу. Из полых вен венозная кровь попадает в правое предсердие, а легочные вены приносят артериальную кровь к левому. Оба предсердия постепенно заполняются прибывающей кровью, одна часть которой в них задерживается, другая через открытые атриовентрикулярные отверстия перетекает в желудочки. После стенки обоих предсердий напрягаются, тонус нарастает, кольцевые пучки миокарда смыкают отверстие легочных и полых вен, в результате происходит сокращение миокарда - систола предсердий.
Вся кровь из них выжимается в желудочки, стенки которых в этот момент расслаблены, а полости расширяются. Эта фаза продолжается 0,1с. Вторая фаза - систола желудочков - следует непосредственно за первой, начинаясь с периода напряжения (0,08с). В периоде напряжения различают фазу изометрического напряжения (0,03с), когда увеличивается давление в полостях желудочков. Обратному току крови в предсердия препятствует захлапывание створчатых клапанов. После достижения некой максимальной степени напряжения начинается период сокращения всего миокарда обоих желудочков (0,25с) - систола желудочков. В левом желудочке давление нарастает до 200мм рт.ст., в правом до 60мм рт.ст., что приводит к выжиманию крови в отверстия - аорту и легочной ствол (фаза быстрого изгнания).
Остаток крови выбрасывается из сердца за остальное время уже под меньшим давлением - фаза медленного изгнания. При этом предсердия уже расслаблены и начали принимать кровь из вен, т.е. систола желудочков создает отрицательное давление, кровь из аорты и легочного ствола устремляется обратно в желудочки, смыкание полулунных клапанов препятствует обратному току крови в желудочки (0,04с). В фазу изометрического расслабления в предсердиях давление становится выше, чем в желдочках, что ведет к открытию створчатых клапанов. Весь объем крови, который успел накопиться в предсердиях за начавшуюся раньше диастолу (за 0,08с) поступает в соответствующий желудочек (фаза быстрого наполнения). Кровь из полых и легочных вен еще 0,17с продолжает потихоньку заполнять правое и левое предсердия и слегка подтекает через атровентрикулярные отверстия в желудочки (фаза медленного наполнения).
Таким образом, сердечный цикл длится 0,8с и состоит из 3 фаз. Систола предсердий (0,1с) наслаивается на диастолу желудочков (0,5с), являясь ее пресистолическим периодом. Систола желудочков продолжается 0,3с и приводит к выбросу крови в аорту и легочной ствол.
4.Регуляция деятельности сердца
Регуляция работы сердца. Различают два вида регуляции: нервную и гуморальную. Нервная регуляция чрезвычайно сложно. Симпатическая нервная система учащает сокращения сердца, увеличивает их силу, повышает возбудимость миокарда и усиливает проводимость по нему импульса; парасимпатическая - урежает, уменьшает, снижает и ослабляет. Эта регуляция многоэтапна и ступенчата.
Первый уровень регуляции - внутрисердечный
Второй - спинной мозг
Третий - продолговатый мозг
Последний уровень регуляции - кора больших полушарий
Гуморальная регуляция связана с влиянием некоторых веществ, таких как гормоны, электролиты, растворенные газы и пр.
5.Кровеносные сосуды. Регуляция тонуса сосудов
Регуляция может быть нервной и гуморальной. Нервная регуляция действует через симпатическую и парасимпатическую нервные системы. Гуморальная действует, когда либо непосредственно молекулы воздействуют на сосуды, по которым протекают, либо посредством стимуляции соответствующих нервных центров. Различают следующие механизмы:
- барорецепторный механизм
- хеморецепторный механизм
- механизм стрессового расслабления сосудов
- механизм перемещения жидкости в капиллярах
- ренин-ангиотензиновый механизм
- почечно-объемный механизм
- альдостероновый механизм.
ФИЗИОЛОГИЯ ДЫХАНИЯ
1.Вентиялция легких
Вентиляция легких осуществляется в результате периодических изменений объема грудной полости. Увеличение объема грудной полости обеспечивает вдох (инспирацию), уменьшение - выдох (эксперацию). Фазы вдоха и выдоха составляют дыхательный цикл.
Изменение объема грудной полости совершается за счет сокращений дыхательных мышц, подразделяющихся на инспираторные и эксператорные.
Типы дыхания. Различают реберный (грудной) и брюшной типы дыхания.
Давление в плевральной полости. Легкие и стенки грудной полости покрыты серозной оболочкой - плеврой. Внутриплевральное давление - отрицательное. Благодаря наличию жидкости в плевральной полости и отрицательному давлению листки плевры удерживаются друг с другом.
...Подобные документы
Основные концепции современной физиологии. Лимфатическая, дыхательная, пищеварительная системы. Обмен веществ и энергии. Физиология выделений и железы внутренней секреции. Строение нервной системы, высшая нервная деятельность. Система кровообращения.
реферат [35,3 K], добавлен 01.08.2010Физиология высшей нервной деятельности. Иван Петрович Павлов - основоположник науки о высшей нервной деятельности. Образование условных рефлексов, взаимодействие процессов возбуждения и торможения, протекающих в коре больших полушарий головного мозга.
презентация [970,0 K], добавлен 03.04.2014Свойства возбудимых тканей. Рефлекторные функции продолговатого мозга. Функции ядер гипоталамуса и сенсорных систем. Стадии свертывания крови. Фазы работы сердца. Свойства желез внутренней секреции. Функции промежуточного мозга, осуществляющие их отделы.
реферат [47,0 K], добавлен 18.05.2015Нейробиологические концепции нервной системы. Составляющие нервной системы, характеристика их функций. Рефлекс - основная форма нервной деятельности. Понятие рефлекторной дуги. Особенности процессов возбуждения и торможения в центральной нервной системе.
реферат [55,5 K], добавлен 13.07.2013Нервная система: анатомическое строение, отделы и виды, нервные связи, формирование энергии передачи информации. Переработка информации в центральной нервной системе. Понятие "сенсорная система". Локализация, особенности, свойства терморегуляторов.
реферат [270,8 K], добавлен 15.08.2014Головной мозг - часть центральной нервной системы. Отделы головного мозга и их характеристика. Топография и функции среднего мозга. Ретикулярная формация как совокупность нейронов, образующих своеобразную сеть в пределах центральной нервной системы.
презентация [771,0 K], добавлен 07.12.2011Общая физиология центральной нервной системы. Нервная система позвоночных. Рефлекторный тонус нервных центров. Значение процесса торможения. Принципы координации в деятельности центральной нервной системы. Физиологические принципы исследования почек.
контрольная работа [26,4 K], добавлен 21.02.2009Сущность и исторические предпосылки учения о высшей нервной деятельности, его значение для развития современной науки. Формы приспособительной деятельности животных и человека. Основные свойства безусловного рефлекса и критерии нервной деятельности.
презентация [4,8 M], добавлен 12.01.2014Физиология центральной нервной системы. Рефлекс - реакция организма на раздражение рецепторов. Значение рефлексов для организма. Закономерности механизмов осуществления рефлекторной деятельности. Свойства анализаторов, их значение, строение и функции.
реферат [20,7 K], добавлен 28.05.2010Функции нервной системы в организме человека. Клеточное строение нервной системы. Виды нервных клеток (функциональная классификация). Рефлекторный принцип работы нервной системы. Отделы центральной нервной системы. Учение о высшей нервной деятельности.
реферат [1,6 M], добавлен 15.02.2011Структурные единицы нервной системы. Центральная и периферическая нервная система. Ответная реакция организма на раздражение из внешней или внутренней среды. Рефлекс и рефлекторная дуга. Распространение нервных импульсов по простой рефлекторной дуге.
презентация [627,5 K], добавлен 13.12.2011Основные функции и этапы в эволюции центральной нервной системы. Принципы классификации и структура нейронов. Классификация рефлексов и синапсов. Последовательность событий, происходящих в синапсе. Свойства нервных центров, трансформация возбуждения.
презентация [1,6 M], добавлен 05.01.2014Общая характеристика нервной системы. Рефлекторная регуляция деятельности органов, систем и организма. Физиологические роли частных образований центральной нервной системы. Деятельность периферического соматического и вегетативного отдела нервной системы.
курсовая работа [1,6 M], добавлен 26.08.2009Основа нервной ткани. Строение и типы нейронов. Строение нервной системы, ее функциональное деление. Основные виды рефлексов, рефлекторная дуга. Строение спинного мозга, его функции. Строение головного мозга. Затылочные, височные, лобные и теменные доли.
презентация [1,2 M], добавлен 30.11.2013Изучение строения биологической мембраны, ионоселективного канала, видов электрических явлений в возбудимых тканях. Характеристика устройства синапса и механизма передачи возбуждения. Анализ возрастных особенностей развития центральной нервной системы.
курсовая работа [61,7 K], добавлен 09.06.2011Изучение особенностей строения и функций головного мозга высших позвоночных - центрального органа нервной системы, который состоит из ряда структур: коры больших полушарий, базальных ганглиев, таламуса, мозжечка, ствола мозга. Стадии эмбриогенеза мозга.
реферат [21,9 K], добавлен 07.06.2010Строение ствола мозга, основные функции его тонических рефлексов. Особенности функционирования продолговатого мозга. Расположение варолиева моста, анализ его функций. Ретикулярная формация мозга. Физиология среднего и промежуточного мозга, мозжечка.
презентация [751,7 K], добавлен 09.10.2016Общий план строения нервной системы у позвоночных, ее основные элементы и функции. Физиологические механизмы психической деятельности. Взаимоотношения психических и нервно-физиологических процессов в работе мозга. Общие законы работы больших полушарий.
реферат [14,3 K], добавлен 11.05.2009Строение и структура головного мозга. Мозговой мост и мозжечок. Промежуточный мозг как основа сенсорных, двигательных и вегетативных реакций. Функции головного мозга. Отличительные черты и задачи спинного мозга как части центральной нервной системы.
реферат [27,1 K], добавлен 05.07.2013Основные анатомические закономерности в деятельности центральной нервной системы. Распространение нервных импульсов. Анатомия спинного и головного мозгов. Характеристика проводящих путей спинного мозга. Клеточные элементы нервной ткани, типы нейронов.
презентация [7,6 M], добавлен 17.12.2015