Физиологические основы выносливости

Аэробные возможности организма и выносливость. Исследование функциональных свойств кислородтранспортной системы. Внешнее дыхание и легочная вентиляция у спортсменов. Распределение сердечного выброса, мышечный кровоток. Диффузионная способность легких.

Рубрика Биология и естествознание
Вид лекция
Язык русский
Дата добавления 19.09.2017
Размер файла 792,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. При одинаковой субмаксимальной аэробной работе кровоснабжение и потребление О2 тренированным сердцем меньше, чем нетренированным. Более высокое парциальное напряжение О2 в венозной крови, оттекающей от тренированного сердца, указывает на благоприятные условия для снабжения кислородом всех миокардиальных клеток.

3. Тренированное сердце обладает повышенной способностью к экстракции из крови и утилизации лактата. При одинаковой концентрации лактата в артериальной крови сердце выносливого спортсмена экстрагирует больше лактата, чем нетренированное сердце. Если при максимальной аэробной работе доля лактата среди всех окисляемых энергетических веществ у нетренированного человека может достигать примерно 60%, то у очень выносливого спортсмена - более 80%. Иначе говоря, подавляющая часть окислительного метаболизма тренированного сердца покрывается за .счет использования лактата.

6. Распределение сердечного выброса, мышечный кровоток и АВР-О2

Высокий уровень аэробных возможностей у тренированных спортсменов зависит не только от большого сердечного выброса, но и от способности более эффективно использовать его. Эта способность может быть оценена величиной системной АВР-О2, т. е. разностью между содержанием О2 в артериальной крови и в смешанной венозной крови, протекающей через правое сердце. Чем больше системная АВР-О2, тем более эффективно организм использует сердечный выброс, тем экономнее работает его кислородтранспортная система. Содержание О2 в артериальной крови у тренированных спортсменов ни в условиях покоя, ни при аэробных нагрузках любой мощности не отличается от содержания его у неспортсменов. Поэтому увеличение системной АВР-О2 в результате тренировки выносливости может происходить исключительно за счет снижения содержания О2 в смешанной венозной крови, т. е. за счет более полного использования О2, транспортируемого кровью.

Рис. Содержание О2 в смешанной венозной крови при разной скорости потребления О2 во время выполнения аэробных нагрузок: 1 - умеренно тренированные, 2 - нетренированные, 3 - хорошо тренированные

У умеренно тренированных и нетренированных мужчин содержание О2 в смешанной венозной крови уменьшается примерно одинаково по мере увеличения мощности выполняемой нагрузки. При максимальной аэробной работе оно в среднем равно около 55 мл О2 на каждый литр смешанной венозной крови. Системная АВР-О2 в этих условиях составляет примерно 140 мл О2/л. У очень выносливых спортсменов при одинаковой с нетренированными людьми работе (равном потреблении О2) содержание кислорода в смешанной венозной крови ниже. Минимальное содержание О2 в смешанной венозной крови у таких спортсменов составляет в среднем около 25 мл О2/л. Поэтому максимальная система АВР-О2 у них выше, чем у нетренированных, - в среднем 150 - 155 мл О2/л.

Следовательно, спортсмены, тренирующие выносливость, более эффективно реализуют свои кислородтранспортные возможности, так как "извлекают" из каждой единицы объема крови, прокачиваемого сердцем, больше О2, чем нетренированные люди.

В процессе тренировки совершенствуется перераспределение кровотока между активными и неактивными органами, так что максимальная доля сердечного выброса, которая может быть направлена к работающим мышцам, у спортсменов больше, чем у нетренированных людей.

В результате тренировки выносливости увеличивается число капилляров в тренируемых мышцах. Обильная капилляризация тренируемых мышц - один из важнейших механизмов повышения их работоспособности (см. ниже). Благодаря увеличению объема капиллярной сети максимально возможный мышечный кровоток у спортсменов выше, чем у неспортсменов. У спортсменов, тренирующих выносливость, повышена и общая скорость диффузии различных веществ, в том числе и О2, через капиллярные стенки, соответственно и максимальное количество О2, которое могут получать тренированные мышцы, больше того, которое могут получать нетренированные мышцы.

Тренированные мышцы обладают повышенной способностью экстрагировать (и утилизировать) кислород из крови. Максимальная скорость потребления О2 на единицу объема у тренированных мышц примерно в 1,5 раза выше, чем у нетренированных. Это означает, что тренированным мышцам требуется меньше крови, чем нетренированным, чтобы получить такое же количество О2. Поэтому при выполнении одинаковой работы кровоток через работающие мышцы после тренировки ниже, чем до тренировки. При одинаковой субмаксимальной работе кровоток на 1 кг работающей мышечной массы у спортсменов ниже, чем у нетренированных людей.

Рис. Мышечный кровоток во время стандартной работы: 1 - до тренировки, 2 - после 5 недель тренировки выносливости

При выполнении одинаковой субмаксимальной аэробной работы (с равным потреблением О2) сердечный выброс у спортсменов и неспортсменов примерно одинаков. Следовательно, доля сердечного выброса (абсолютная в л/мин и относительная в %), направляемая к работающим мышцам, у спортсменов ниже. Таким образом, у них больше крови может быть направлено во время работы к другим органам и тканям тела, в частности в чревную область и в должную сеть. Поэтому во время выполнения спортивных упражнений важнейшие внутренние органы у спортсменов находятся в более благоприятных условиях кровоснабжения, чем у нетренированных людей.

Рис. Температура ядра тела во время выполнения работ разной аэробной мощности: 1 - у нетренированных, 2- у тренированных мужчин

Возможность направить более значительную часть сердечного, выброса в систему кожной циркуляции означает, что у спортсменов лучше условия для усиления теплоотдачи и тем самым для предотвращения нежелательного повышения температуры тела. Это одна из главных причин, почему температура тела у тренированного человека ниже, чем у нетренированного, при выполнении одинаковой работы

Иначе обстоит дело при максимальной аэробной работе. Прежде всего, такие нагрузки по мощности и предельной продолжительности значительно выше у спортсменов, чем у неспортсменов, и недоступны последним. Возможность их выполнения спортсменами определяется, в частности, высокой способностью кислородтранспортной системы доставлять к работающим мышцам большое количество О2 в единицу времени, что обеспечивается большим сердечным выбросом и увеличенной долей его (%), направляемой к работающим мышцам. При максимальной аэробной нагрузке работающие мышцы спортсменов получают значительно большее количество крови в единицу времени и, кроме того, экстрагируют из него больше О2, чем нетренированные мышцы у неспортсменов. Хотя в этих условиях очень большая доля сердечного выброса направляется к работающим мышцам (до 85-90%), условия кровоснабжения жизненно важных ("неактивных") органов и тканей тела у спортсменов лучше, чем у нетренированных людей.

Следует отметить также, что при выполнении максимальной аэробной работы у спортсменов значительно снижается рН и повышается температура венозной крови, протекающей через работающие мышцы. В результате происходит сдвиг кривой диссоциации оксигемоглобина вправо (эффект Бора), что облегчает освобождение гемоглобина от О2 в крови тканевых капилляров и его диффузию в мышечные клетки. Кроме того, сдвиг кривой диссоциации выполняет и важную "защитную" функцию: несмотря на усиленную экстракцию Ог тренированными мышцами и сильное снижение процента насыщения гемоглобина кислородом, парциальное напряжение О2 в мышечной венозной крови у спортсменов в среднем не отличается от такового у нетренированных людей и не падает ниже 10-20 мм рт. ст. Это обеспечивает поддержание достаточного градиента напряжения О2, так что даже мышечные клетки, расположенные вблизи венозного конца капилляра, продолжают получать достаточное количество О2 из крови.

Таким образом, главные эффекты тренировки выносливости в отношении сердечно-сосудистой системы состоят в:

· повышении производительности сердца, т. е. увеличении максимального сердечного выброса (за счет систолического объема);

· увеличении систолического объема;

· снижении. ЧСС (брадикардии) как в условиях покоя, так и при стандартной работе;

· повышении эффективности (экономичности) работы сердца;

· более совершенном перераспределении кровотока между активными и неактивными органами и тканями тела;

· усилении, капилляризации тренируемых мышц и других активных органов и тканей тела (в частности, сердца).

7. Мышечный аппарат и выносливость

Выносливость спортсмена в значительной мере зависит от физиологических особенностей его мышечного аппарата, которые, в свою очередь, определяются специфическими структурными и биохимическими свойствами мышечных волокон.

Композиция мышц. Как известно, мышечные волокна человека относятся к двум основным типам: медленным (I) и быстрым (II). Внутри быстрых волокон выделяют два вида: быстрые окислительно-гликолитические (II-А) и быстрые гликолитические (II-В). Медленные волокна лучше, чем быстрые, приспособлены к длительным, относительно несильным повторным сокращениям с преимущественно аэробным типом энергопродукции, характерным для выполнения упражнений на выносливость.

Отличительной особенностью композиции мышц у выдающихся представителей видов спорта, требующих проявления выносливости, является относительно высокий процент медленных волокон, составляющих их мышцы. При этом между процентом-медленных волокон и МПК существует прямая связь. Вместе с тем при одинаковом проценте медленных волокон МПК у спортсменов выше, чем у неспортсменов.

В табл. приведены данные о процентном соотношении и размерах медленных и быстрых волокон, а также об активности- некоторых основных ферментов четырехглавой мышцы бедра (наружной головки) у бегунов на длинные и средние дистанции по сравнению с нетренированными мужчинами того же возраста и сходной конституции тела. Как следует из этих данных, у стайеров медленные волокна составляют около 80% всех волокон исследованной мышцы, что в среднем примерно в 1,5 раза больше, чем у нетренированных людей.

Таблица. Композиция мышц, площадь поперечного сечения мышечных волокон и активность ряда ферментов четырехглавой мышцы бедра у спортсменов разной квалификации и у неспортсменов (У. Финк и др., 1977)

Показатели

Выдающиеся марафонцы (n=6)

Выдающиеся бегуны на средние к длинные дистанции (n=8)

Хорошие бегуны на средние дистанции (n=8)

Нетренированные мужчины (n=10)

МПК (мл/кг-мин)

74,3

79,8

69,2

54,2

Процент медленных волокон

80,5 (50-96)

77,9 (60-98)

71,8

57,7

Площадь поперечного сечения волокон (1000 мкм2):

медленных

6,5

6,5

6,3

4,9

быстрых

8,5

8,2

6,4

5,5

Процент площади, занимаемой медленными волокнами

83,5

81,4

62,1

60,0

Активность ферментов (мкм/г/мин):

сукцинатдегидрогеназы

22,3

21,0

17,7

6,4

лактатдегидрогеназы

737

746

788

843

фосфорилазы

7,6

8,3

8,9

8,6

Теоретически возможны две причины этого. Первая причина: преобладание медленных волокон в мышцах может быть врожденным, генетически предопределенным. Человек с такими особенностями мышечного аппарата имеет предпосылки к достижению высокого результата именно в видах спорта, требующих наиболее активного участия медленных: ("выносливых") волокон. Вторая причина: увеличение процента медленных волокон является следствием тренировки выносливости и происходит за счет соответствующего уменьшения числа быстрых волокон. Имеющиеся в настоящее .время данные говорят; в пользу первого предположения.

Во-первых, очень высокий процент медленных волокон наблюдается и у людей, никогда не занимавшихся спортом. Кстати, в этом случае можно предположить, что. они не воспользовались возможностью, предоставленной им природой, стать хорошими стайерами.

Во-вторых, даже многомесячная тренировка выносливости практически не изменяет соотношения быстрых и медленных волокон в мышцах, хотя вызывает явные эффекты в отношений выносливости - повышает спортивный результат, МПК, толщину медленных волокон и активность мышечных ферментов окислительного метаболизма.

В-третьих, процент медленных и быстрых волокон, в интенсивно и мало тренируемых мышцах примерно одинаков у спортсменов одной специализации, хотя окислительный потенциал и другие биохимические характеристики интенсивно тренируемых мышц выше. Так, у тренирующихся в ориентировании с большой нагрузкой для мышц ног процент медленных волокон в этих мышцах примерно такой же, что и в мышцах рук.

В-четвертых, результаты исследований моно- (генетически идентичных) и дизиготных (генетически неидентичных) близнецов показывают, что у первых поразительно близко соотношение двух типов волокон в мышцах (даже если один из пары активно занимается спортом, а другой нет), тогда как у вторых возможны большие вариации в композиции мышцы.

Таблица. Процентное распределение волокон в мышцах рук и ног у спортсменов разных специализаций и у неспортсменов (по данным разных авторов)

Группа спортсменов и исследуемые мышцы

Виды мышечных волокон

I

II-А

II-В

Выдающиеся спортсмены-ориентировщики (n=8):

наружная мышца бедра

68

24

3

икроножная мышца

67

29

2

дельтовидная мышца

68

14

17

Бегуны-стайеры (га = 10):

икроножная мышца

61

37

0

Пловчихи (n=11):

наружная мышца бедра

58

34

8

дельтовидная мышца

68

32

0

широчайшая мышца спины

66

34

0

Нетренированные юноши 16-18 лет (n=69):

наружная мышца бедра

53,9

32,9

13

Нетренированные мужчины (n=40):

наружная мышца бедра

51

33

16

дельтовидная мышца

52

32

18

Вместе с тем в процессе тренировки выносливости в композиции тренируемых мышц все же происходят определенные специфические перестройки. Как следует из данных, приведенных в табл., в нагружаемых мышцах у спортсменов почти отсутствуют быстрые гликолитические волокна (II-В) и основную массу быстрых волокон составляют быстрые окислительные волокна (II-А). Таким образом, при неизменном соотношении медленных и быстрых мышечных волокон тренировка выносливости способствует превращению быстрых волокон преимущественно (или исключительно) в подтип быстрых окислительных волокон (II-А). Это увеличивает общий процент волокон, способных в основном к аэробному метаболизму и наиболее приспособленных к выполнению длительных упражнений на выносливость.

Структурные особенности мышечных волокон. Одним из эффектов тренировки выносливости является увеличение толщины мышечных волокон -рабочая гипертрофия. Об этом свидетельствуют различия в площади поперечного сечения мышечных волокон разного типа у спортсменов и нетренированных мужчин. Тренировка выносливости ведет к рабочей гипертрофии преимущественно саркоплазматического типа, которая связана в большей мере с увеличением саркоплазматического пространства мышечных волокон.

Существенные изменения при этом происходят также в отдельных межфибриллярных структурных компонентах мышечных волокон, особенно в митохондриях. В процессе тренировки выносливости усиливается синтез белков, составляющих митохондриальные мембраны мышечных волокон. В результате возрастают число и размеры митохондрий внутри мышечных волокон. У высококвалифицированных спортсменов, например, объемная плотность центральных и периферических митохондрий соответственно на 50 и 300%. больше, чем у нетренированных мужчин. Объемная плотность и размеры митохондрий у женщин (спортсменок и неспортсменок) меньше, чем у мужчин. Чем больше число и объем митохондрий (и соответственно выше активность митохондриальных ферментов окислитительного метаболизма), тем выше способность мышцы к утилизации ею кислорода, доставляемого с кровью. Капиллиризация мышечных волокон. Тренировка выносливости вызывает увеличение числа капилляров, окружающих мышечные волокна, так что возрастает прежде всего число капилляров, приходящихся на одно мышечное волокно. Поэтому, несмотря на. утолщение (гипертрофию) волокон, дистанция от капилляра до наиболее удаленных (центральных); Митохондрий внутри них, по крайней мере, не .уменьшается по сравнению с предтренировочным расстоянием. Среднее число капилляров на 1 мм2 поперечника мышечных волокон у нетренированных людей составляет 325, а у тренированных - 400.

У хорошо тренированных спортсменов мышечное волокно может быть окружено 5-6 капиллярами (у мужчин это число несколько больше, чем у женщин). Быстрые и медленные волокна могут иметь общие капилляры, но в среднем плотность капилляров вокруг медленных волокон больше, чем вокруг быстрых (как у спортсменов, так и у нетренированных людей), а вокруг быстрых окислительных (II-А) больше, чем вокруг быстрых гликалитических (II-А).

Таблица. Капилляризация трех видов мышечных волокон в латеральной головке четырехглавой мышцы бедра у мужчин и женщин - бегунов на средние и длинные дистанции, а также у неспортсменов

Виды мышечных волокон

Мужчины

Женшины

неспортсмены

спортсмены

неспортсменки

спортсменки

Среднее число капилляров вокруг одного волокна

I

4,2

5,9

4,6

5,1

II-А

4,0

5,2

3,7

4,8

II-В

3,2

4,3

2,9

3,6

Средняя площадь поперечного сечения волокна (мкм2), приходящаяся на один капилляр

I

1014

997

1034

901

II-А

1335

1213

1062

871

II-В

1338

1235

878

840

Следует подчеркнуть, что усиленная капилляризация наблюдается только в мышцах, которые очень активны при тренировке выносливости, и отсутствует в мышцах, не принимающих активного участия в выполнении упражнений.

Повышенная плотность капилляров мышц увеличивает поверхность диффузии и укорачивает путь, который должны пройти молекулы из кровеносных сосудов в мышечные клетки. Это способствует певышению аэробной мышечной работоспособности, так как обеспечивает большую емкость кровотока в рабочих мышцах и облегчает передачу энергетических веществ (прежде всего кислорода) через капиллярно-клеточные мембраны. Отсюда понятно, почему у спортсменов-стайеров максимальный мышечный кровоток и капиллярная диффузионная способность значительно выше, чем у неспортсменов и спринтеров.

Биохимическая адаптация мышц к тренировке выносливости. Повышение выносливости в результате тренировки связано не только с увеличением возможностей кислородтранспортной системы по доставке О2 к работающим мышцам. В скелетных мышцах происходят также большие изменения, которые приводят к увеличению возможностей всего организма в целом в использовании О2, т. е. к повышению аэробных возможностей (выносливости) тренирующегося спортсмена. Главные механизмы тренировочного эффекта повышения выносливости мышц связаны с их биохимической адаптацией и подробно рассматриваются в курсе биохимии. Здесь перечислены лишь основные физиологические следствия действия этих биохимических механизмов.

Наиболее характерными эффектами тренировки выносливости являются повышенные емкость и мощность аэробного метаболизма рабочих мышц. Главные биохимические механизмы этих эффектов следующие:

1. увеличение содержания и активности специфических ферментов аэробного (окислительного) метаболизма;

2. увеличение содержания мио-глобина (максимально в 1,5 - 2 раза);

3. повышение содержания энергетических субстратов - мышечного гликогена и липидов (максимально на 50%);

4. усиление способности мышц окислять и углеводы, и особенно жиры.

Тренированный человек во время аэробной работы получает относительно больше энергии за счет окисления жиров и соответственно меньше за счет окисления углеводов по сравнению с нетренированными. Это находит отражение в более низком дыхательном коэффициенте при работе одинаковой абсолютной или относительной мощности у тренированных по сравнению с нетренированными. Такой субстратный энергетический сдвиг в сторону преимущественного использования жиров может быть обозначен как "жировой сдвиг". Значение его состоит в сохранении более ограниченных запасов углеводов Как уже говорилось, при субмаксимальных аэробных нагрузках одним из главных - механизмов утомления является расходование мышечного гликогена. "Жировой сдвиг" у тренированных на выносливость спортсменов позволяет медленнее (экономичнее) расходовать мышечный гликоген и тем отодвигать мвмент его истощения, а следовательно, повышать продолжительность выполнения упражнения. Чем выше окислительная способность мышц, тем больше "жировой сдвиг" и тем соответственно меньше расходуется (больше сохраняется) дефицитный мышечный гликоген.

Усиленное использование жирных кислот уменьшает потребление глюкозы рабочими мышцами и благодаря этому защищает спортсмена от развития гипогликемии, лимитирующей работоспособность.

Кроме того, уменьшение использования углеводов приводит к снижению лактата в мышцах. Действительно,- у хорошо тренированных спортсменов содержание лактата в мышцах ниже, чем у нетренированных. То же самое наблюдается у одного и того же человека после периода тренировки выносливости.

Итак, тренировка выносливости вызывает два основных эффекта:

1) усиливает максимальные аэробные возможности организма

2) повышает эффективность (экономичность) деятельности организма при выполнении аэробной работы.

О первом эффекте можно судить по увеличению МПК (и других функциональных показателей) при максимальной аэробной нагрузке, о втором - по снижению функциональных показателей (ЧСС, легочной вентиляции температуры тела, концентрации лактата в крови и др.) при стандартной не максимальной аэробной нагрузке.

В основе положительных эффектов тренировки выносливости лежат структурно-функциональные изменения в кислородтранспортной, кислородутилизирующей и других физиологических системах, а также совершенствование центрально-нервной и нейрогуморальной (эндокринной) регуляций деятельности этих систем в процессе выполнения аэробной работы.

Вопросы

1.Как различается выносливость в зависимости от типа и характера выполняемой физической (мышечной) работы.

2.Как влияет МПК (максимальное потребление кислорода) на аэробные возможности человека.

3. От каких функциональных систем зависит уровень МПК (максимальное потребление кислорода).

4. Какие показатели крови влияют на аэробную выносливость.

5. Какое значение имеет увеличение ОЦК (объем циркулирующей крови) для спортсменов, тренирующих выносливость.

6.Какие особенности состава крови у спортсменов, тренирующих выносливость.

7. От каких факторов зависит содержание молочной кислоты в крови во время выполнения мышечной работы.

8.Почему в процессе систематической тренировки выносливости содержание лактата в мышцах и крови уменьшается.

9. Показатели работы сердца у тренированных людей.

10. Почему в процессе тренировки выносливости снижается показатель ЧСС.

11. Размеры, эффективность работы и метаболизм спортивного сердца.

12. Распределение сердечного выброса, мышечный кровоток у тренированных людей.

13. В чем состоят главные эффекты тренировки выносливости в отношении сердечно-сосудистой системы .

14.От чего зависит композиция мышц. Как она меняется под воздействием тренировки.

Размещено на Allbest.ru

...

Подобные документы

  • Структура дыхательной системы. Функция воздухопроводящей и респираторной зон. Значение легких в физиологических процессах. Основные этапы дыхания. Биомеханика вдоха, работа наружных межреберных мышц. Давление в плевральной щели. Виды пневмоторакса.

    презентация [2,9 M], добавлен 15.02.2014

  • Дыхательная система человека. Первый вдох. Лёгочное дыхание: плевра, кровеносные сосуды легких, легочная вентиляция, изменения объема легких, насыщение тканей кислородом. О человеческом носе. Лабиринт с многомиллионными ходами. Дыхательный центр.

    реферат [31,5 K], добавлен 26.01.2008

  • Изменение показателей функционального состояния системы внешнего дыхания. Оценка жизненной емкости легких. Минутный объем дыхания, легочная вентиляция. Проба Триффто-Вотчала. Изучение влияния физических и дыхательных упражнений на организм спортсмена.

    курсовая работа [46,1 K], добавлен 15.06.2015

  • Обзор последовательности этапов доставки кислорода к тканям. Дыхательная мускулатура. Основные типы дыхания. Анатомическое и физиологическое мертвое пространство. Эластическая тяга легких. Легочные объемы и емкости. Методы измерения вентиляции легких.

    презентация [3,1 M], добавлен 08.01.2014

  • Сущность и функции дыхания. Внешнее и внутреннее дыхание. Перенос кислорода от легких к тканям и углекислого газа из тканей к легким. Верхние и нижние дыхательные (воздухоносные) пути. Строение гортани, носовой полости, трахеи. Образование звука.

    презентация [752,6 K], добавлен 16.02.2012

  • Опыт математического моделирования органов и структур человеческого организма с целью предсказания критических ситуаций и выяснения механизмов формирования патологии. Модели гемодинамики сердечно-сосудистой системы и регуляции сердечного выброса.

    реферат [617,7 K], добавлен 27.02.2010

  • Основные защитные факторы, препятствующие повреждению слизистой оболочки желудка. Характеристика центрального дыхательного механизма. Волокна слухового нерва. Наружное, среднее и внутреннее ухо. Регуляция сердечного выброса. Дыхательные объемы легких.

    контрольная работа [444,3 K], добавлен 24.04.2015

  • Исследование строения, деятельности функциональных систем организма, особенности и принципы их организации. Теории изучения закономерностей развития организма ребенка и особенностей функционирования его физиологических систем на разных этапах онтогенеза.

    контрольная работа [22,9 K], добавлен 08.08.2009

  • Органы, системы и аппараты органов. Целостность организма. Продолговатый мозг, его расположение, внешнее и внутреннее строение. Мост, его расположение, внешнее и внутреннее строение. Вспомогательные органы глаза: мышцы и защитный аппарат. Иннеpвация.

    реферат [1,1 M], добавлен 30.10.2008

  • Внешнее и тканевое дыхание: молекулярная основа процессов. Этапы процесса дыхания. Поступление кислорода в организм и удаление из него углекислого газа как физиологическая сущность дыхания. Строение дыхательной системы человека. Влияние нервной регуляции.

    реферат [1,6 M], добавлен 27.01.2010

  • Механизм внешнего дыхания, альвеолярный и выдыхаемый воздух. Факторы, определяющие диффузию газов в легких, и направление данного процесса. Расчет парциального давления. Отношения вентиляции и перфузии в альвеолах. Физиологическое мертвое пространство.

    презентация [1023,6 K], добавлен 15.02.2014

  • Анатомия малого круга кровообращения. Давление в системе легочного кровообращения, причины низкого давления. Легочный кровоток, трансмуральное давление. Распределение кровотока по легким. Вентиляционно-перфузионное отношение, альвеолярная вентиляция.

    презентация [164,8 K], добавлен 28.12.2013

  • Процесс транспорта компонентов пищи из полости пищеварительного тракта во внутреннюю среду, кровь и лимфу организма. Всасывание и секреция электролитов и воды. Прямое всасывание жирных кислот в кровоток. Жирорастворимые и водорастворимые витамины.

    реферат [22,2 K], добавлен 03.12.2013

  • Рефлексы, участвующие в регуляции дыхания. Разновидности рецепторов бронхо-легочного аппарата, принимающих участие в регуляции дыхания. Рефлексы, возникающие при изменении объема легких. Дополнительные разновидности патологических дыхательных движений.

    презентация [2,4 M], добавлен 08.01.2014

  • Характеристика понятия "дыхание". Особенности обмена газов в легких и их переноса в крови. Описание двигательной и гомеостатической функций дыхательного центра. Рассмотрение особенностей легочной вентиляции при занятиях художественной гимнастикой.

    реферат [445,5 K], добавлен 30.10.2011

  • Анатомо-физиологические особенности органов дыхания, кровообращения у детей. Сердечно-сосудистая, мочевыделительная и нервная системы. Анализ развития опорно-двигательного аппарата в детском возрасте. Функции пищеварительной системы и системы крови.

    презентация [4,5 M], добавлен 28.12.2014

  • Значение дыхания в жизни растительного организма. Специфика дыхания у растений. Каталитические системы дыхания. Типы окислительно-восстановительных реакций. Основные пути диссимиляции углерода. Цепь переноса водорода и электрона (дыхательная цепь).

    реферат [2,8 M], добавлен 07.01.2011

  • Функции почек и процесс образования мочи. Почечный кровоток, принцип ауторегуляции, гормональной и нервной регуляции. Канальцево-клубочковая обратная связь. Почечный кровоток при стрессе, повышение симпатического тонуса (адреналин, норадреналин).

    презентация [54,7 K], добавлен 22.12.2010

  • Легочная артерия, аорта и их крупные ветви. Распределение потока крови по всем тканям организма. Регуляция пропускной способности. Изменение просвета внеорганных артерий нервным и гуморальным путем. Сосуды возврата крови к сердцу. Причины движения крови.

    лекция [4,2 M], добавлен 27.05.2014

  • Физиологические процессы, обеспечивающие газообмен между организмом, внешней средой и окислительными процессами в клетках. Особенности строения, расположение и функции органов дыхания. Механизм вдоха и выдоха; искусственное дыхание; заболевания и смерть.

    презентация [1,4 M], добавлен 14.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.