Общая гистология

Современные представления о микроанатомической, гистологической и клеточной организации тканей человека. Общие морфологические признаки эпителия как ткани. Ткани внутренней среды. Хрящевые, костные и мышечные ткани. Особенности нервной ткани организма.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 08.10.2017
Размер файла 316,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Митохондрии в нейронах многочисленны. Они имеют средние и крупные размеры (диаметр 1-3 мкм), могут быть овальной или нитчатой формы. Кристы имеют трабекулярное строение. Нейроны в энергетическом отношении крайне зависимы от аэробного фосфорилирования и во взрослом состоянии фактически не способы к анаэробному гликолизу. В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока нервные клетки практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. Практически сразу же начинаются процессы саморазрушения в нейронах, и прекращается их специфическая функциональная активность. Их мембраны деполяризуются. Митохондрии, ЭПС, ядерные оболочки набухают, а затем и разрушаются. Начинаются процессы аутолиза и перекисного окисления. Эти процессы могут носить обратимый или необратимый характер. При мгновенной смерти, при комнатной температуре, и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком так называемой клинической смерти, когда возможно оживление организма. Необратимые изменения в нервной ткани приводят к переходу от клинической смерти к биологической. В случае продолжительного умирания, высокой внутренней или внешней температуре, особенно при сердечно-сосудистой и дыхательной недостаточности время необратимого разрушения нервных клеток значительно сокращается до 1-2 и менее минут. Наоборот, внезапная остановка сердечной деятельности при низких температурах окружающей среды и головного мозга может значительно удлинять время клинической смерти.

В нейронах значительного развития достигает пластинчатый комплекс. Он может располагаться компактно или быть рассеян в цитоплазме тела нейрона. Нередко наблюдается поляризация этой органеллы. Это указывает на преимущественное направление транспортных потоков и процессов созревания секретируемых продуктов (медиаторов) от тела к аксону.

Специфическими органеллами нейрона считают нейрофиламенты и нейротубулы. Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками. Основной функцией этих элементов цитоскелета является опорная - для обеспечение стабильной формы нейрона. Подобную же роль играют тонкие микрофиламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Они, как и все микротрубочки имеют поперечный диаметр около 24 нм, кольца замыкают 13 молекул глобулярного белка тубулина. Микротрубки полярны. В нервной ткани они выполняют очень важную, если не сказать уникальную роль. Как и всюду они несут каркасную (опорную) функцию. В отличие от нейрофиламентов являются менее стабильными и обеспечивают процессы циклоза. Именно полярность микротрубки, в которой имеется отрицательно и положительно заряженные концы, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Их подробное описание приведем несколько ниже.

В цитоплазме тел нейронов часто встречаются лизосомы. Они участвуют в пластических процессах, осуществляя катаболизм (разрушение) старых органелл и структур. В результате переваривания образуются остаточные тельца. Часть из них содержит непереваренные остатки органелл, включающие липофусцин. Избыточное накопление липофусцина может приводить к дистрофическим процессам в нейроне, к нарушению его специфической активности и даже гибели. Такие явления характерны для старческих изменений и при различных патологических воздействиях.

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Особенности морфологии отростков нейронов. Дендриты короткие отростки, нередко сильно ветвятся. Их ветвления более выражены в терминальных областях. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон чаще всего длинный, слабо ветвится или не ветвится. Ветвления чаще всего наблюдаются в терминальных зонах. Уже в начальном сегменте аксона, в нем отсутствует гранулярная ЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в центральной нервной системе, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика. Именно в зоне аксонного холмика происходит суммация поступающих в нервную клетку сигналов и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

От отростков нейронов, а нередко и от его тела, отходят небольшие выпячивания, которые имеют форму напоминающую шипики, откуда и получили название. Особенно развиты шипики на некоторых нервных клетках центральной нервной системы. Шипики являются постсинаптическими структурами и соответствуют зонам взаимодействия одних нервных клеток с другими. Они имеют элементы цитоскелета, митохондрии. Нередко видны уплощенные цистерны и электронно-плотное вещество мембраны.

Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный структурный аппарат - микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток) и от периферии к центру (ретроградный аксоток). Направление аксотока обеспечивает полярность микротрубочек. В нем участвует белок кинезин, взаимодействующий с тубулином микротрубочек, и осуществляющий транспорт с затратой энергии АТФ.

Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток.

Быстрый аксоток - одинаков для различных волокон; требует значительной концентрации АТФ; происходит с участием транспортных пузырьков. Он осуществляет транспорт медиаторов и модуляторов.

Медленный аксоток - за счет него от центра к периферии распространяются биологически активные вещества, а также составляющие компоненты мембран клеток и белков.

За счет антероградного тока происходит дифференциация мышц. Это имеет большое биологическое значение. Есть мышцы фазные (мышцы конечностей) и тонические (поддерживают позу). В эксперименте установлено, что если перерезать нервы, иннервирующие эти мышцы, а затем произвести перекрест иннервации, то есть центральный конец нерва, иннервирующего фазные мышцы, подшить к нерву, иннервирующему тонические мышцы, то после прорастания нервов, фазные мышцы начинают выполнять функции тонических, а тонические - фазных. Меняется их структура, так как за счет аксотока обеспечивается трофическая функция двигательных нервов. За счет ретроградного тока нейротропные вещества поступают от периферии к центру, оказывая трофическое влияние на саму нервную клетку. За счет ретроградного тока в ЦНС могут поступать различные токсические вещества.

Синапсы. Синапсы это специфические контакты нейронов обеспечивающие передачу возбуждения от одной нервной клетки к другой. В зависимости от способов передачи возбуждения (так называемого потенциала действия) выделяют химические (рис.25). и электрические синапсы.

Эволюционно более древними и примитивными являются электрические синаптические контакты. Они по строению близки к щелевидным контактам (нексусам) и представляют собой ограниченные области контактов двух соседних нейронов, где расстояние между соседними мембранами сужено до 3-4 нм. В зоне этих сужений имеются белковые мембранные комплексы аналогичные коннексонам. Коннексоны представляют собой группу высокомолекулярных интегральных белков. В центральной зоне они формируют пору. При этом белки соседних мембран тесно взаимодействуют между собой, что приводит к тому, что пора, формируемая одной клеткой, переходит на соседнюю клетку. Через нее могут свободно диффундировать вода, ионы, низкомолекулярные органические вещества (в том числе и гормоноподобные). Считается, что обмен происходит в обе стороны, но имеются случаи, когда возбуждение передаются в одном направлении.

Таким образом, возбуждение в таком синапсе в большинстве случаев идет в обе стороны и носит равновероятностный, диффузный характер. Такие контакты часто встречаются у низших беспозвоночных и хордовых. У млекопитающих электрические контакты имеют большое значение в процессе межнейронных взаимодействий в эмбриональном периоде развития. С дифференцировкой нервной ткани их число убывает. Подобный вид контактов у взрослых млекопитающих имеет место в ограниченных участках, например их можно видеть в мезэнцефалическом ядре тройничного нерва.

Химические синапсы. Химические синапсы для передачи возбуждения от одной нервной клетки к другой используют специальные вещества - медиаторы, от чего и получили свое название. Кроме медиаторов ими используются и модуляторы. Модуляторы это специальные химические вещества, которые сами возбуждения не вызывают, но могут либо усиливать, либо ослаблять чувствительность к медиаторам (то есть модулировать пороговую чувствительность клетки к возбуждению). Согласно закону Дейля каждый нейрон содержит один специфичный для него медиатор и один или несколько модуляторов. Эти вещества накапливаются в синаптических пузырьках, которые отделены от матрикса цитоплазмы одной двухслойной мембраной. Форма, размеры, строение пузырьков зависит от содержащегося в них вещества.

Любой из химических синапсов обеспечивает однонаправленную передачу возбуждения. В связи с чем в химическом синапсе выделяют следующие зоны:

Пресинаптическая зона (пресинаптическое расширение, наиболее часто представляющее собой терминаль аксона)

Синаптическая щель (размерыетром 20-50 нм)

Постсинаптическая зона

Пресинаптическая зона всегда содержит синаптические пузырьки, элементы цитоскелета (нейротубулы и нейрофиламенты), митохондрии. Часто мембрана, обеспечивающая передачу импульса имеет хорошо выраженное электронноплотное вещество. Оно представляет собой скопление мембранных белков, одной из функций которых является направленное выделение содержимого синаптических пузырьков в синаптическую щель. Таким образом, выделение медиаторов осуществляется лишь через строго определенные участки пресинаптической мембраны.

Синаптическая щель изолируется от окружающего межклеточного вещества нейроглией (в центральной нервной системе отростками астроцитов), принимает медиаторы из пресинаптической зоны

Постсинаптическая зона включает электронноплотное вещество постсинаптической мембраны, митохондрии. Электронноплотное вещество представлено комплексом мембранных белков, в том числе рецепторных (на гликокаликсе), белков ионных каналов, и ферментами расщепляющими медиаторы.

В зависимости от того, какие структуры взаимодействуют в синапсе, можно выделить:

аксо-дендритические (пресинаптическая структура аксон, постсинаптическая - дендрит),

аксо-аксональные (аксон с аксоном)

аксо-соматические (аксон с телом нервной клетки).

В нервной системе имеются и иные синаптические взаимодействия, в том числе дендро-дендритические, дендро-соматические и т.д.

По строению выделяют сложные и простые синапсы. Простые синапсы содержат лишь одну поверхность взаимодействия между терминалью и посттерминальным (постсинаптическим) образованием. Сложные синапсы имеют несколько поверхностей взаимодействия. Они могут быть дивергентного, конвергентного, параллельного или эфаптического типа. Дивергентный синапс, это окончание, когда одно пресинаптическое расширение обеспечивает передачу возбуждения к нескольким постсинаптическим структурам. Конвергентный синапс предполагает одну постсинаптическую зону, к которой импульс передается от нескольких пресинаптических расширений. Параллельный синапс предполагает возможность передачи возбуждения от одной нервной структуры к близлежащей после ее стимуляции соседним претерминальным образованием. В центральной нервной системе преобладающими являются сложные синапсы.

Функционально выделяют возбуждающие и тормозные синапсы. Возбуждающие приводят к деполяризации постсинаптической мембраны, что приводит к активации нервной клетки и возникновению в ней потенциала действия. Тормозные, наоборот, приводят к гиперполяризации мембраны, что снижает пороговую чувствительность нейрона к внешним влияниям.

Синапсы могут быть симметричными (когда электронноплотное вещество хорошо выражено как на синаптической, так и постсинаптической мембранах) и асимметричными (слабее выявляется электронноплотное вещество пресинаптической мембраны). Симметричным синапсам часть авторов приписывает роль тормозных, а асимметричным - возбуждающих.

По основному медиатору, содержащемуся в синаптических пузырьках, синапсы делятся на группы:

Холинергические (ацетилхолинергические). Возбуждающие и тормозные.

Адренергические (моноаминергические, норадренергические, дофаминергические). В основном, возбуждающие, но есть и тормозные.

Серотонинергические (иногда приписываются к предыдущей группе). Возбуждающие.

ГАМК-ергические (медиатор гаммааминомаслянная кислота). Тормозные.

Глутаматергические. Возбуждающие.

Аспартатергические. Возбуждающие.

Глицинергические (тормозные).

Пептидергические. Большая группа вешеств, в основном в ЦНС. Это может быть вазоинтерстициальный полипептид, вазопрессин, вещество Р (медиатор боли), нейропептид Y, окситоцин, бета-эндорфин и энкефалины (противоболевые), динорфин и т.д.

В последние годы значительный интерес проявляется к роли закиси азота как к медиатору, в том числе и внесинаптической нервной передачи. В частности, значительная группа нейронов-водителей ритма (пейсмекеров) имеет NO-активность.

В зависимости от типа медиатора синаптические пузырьки имеют разнообразную структуру. Все они отделены от гиалоплазмы одной двухслойной мембраной. Холинсодержащие пузырьки электронносветлые, диаметром 40-60 мкм. Адренсодержащие - с электронноплотной сердцевиной, светлой каемкой, диаметром 50-80 мкм. Глицинсодержащие и ГАМК-содержащие - имеют овальную форму. Пептидсодержащие - с электронноплотной сердцевиной, светлой каемкой, диаметром 90-120 мкм.

Механизм передачи возбуждения в химическом синапсе: Импульс, приходящий по афферентному волокну, вызывает возбуждение в синаптической бляшке и приводит к выделению медиатора через пресинаптическую мембрану. В периферических синапсах медиатором служит преимущественно ацетилхолин. В синаптическую щель поступает медиатор. На пресинаптической мембране имеются активные зоны, то есть участки пресинаптической мембраны, где больше всего происходит выброс ацетилхолина в синаптическую щель. Рядом расположены неактивные участки. На постсинаптической мембране имеются специальные холинорецепторы (для медиатора ацетилхолина) или адренорецепторы (для норадреналина).

Виды секреции ацетилхолина:

квантовая секреция (вызванная) - с помощью импульса - является основным фактором, вызывающим деполяризацию постсинаптической мембраны и сокращение мышц.

неквантовая секреция - на нее приходится около 90% выделяемого медиатора, но, т.к. он поступает микродозами, не сопровождается деполяризацией постсинаптической мембраны, и не вызывает сокращения мышц. Этот механизм участвует в ауторегуляции секреции ацетилхолина и обеспечивает трофические воздействия на мышцу

После выхода через активные зоны медиатор взаимодействует с холинорецепторами постсинаптической мембраны. Происходит изменение концентраций Na+ и К+, что приводит к возникновению потенциала действия. В постсинаптическом волокне медиатор холинэстераза разрушает ацетилхолин на ацетатную группу (утилизируется) и холин, который возвращается в постсинаптическую бляшку и участвует в ресинтезе медиатора.

Особенности функционирования химического синапса:

Односторонняя передача возбуждения (от нерва на рабочий орган) - связано с тем, что рецепторы, воспринимающие медиатор, находятся на постсинаптической мембране.

“Синаптическая задержка” - время, необходимое на выделение медиатора в пресинаптической бляшке.

Следовые явления или синаптическое последействие - после прекращения раздражения продолжают поступать импульсы, т.е. продолжается потенциал действия (связано с тем, что необходимо время для разрушения медиатора холинэстеразой).

Суммация возбуждения - при действии подпорогового раздражителя выделяется небольшое количество медиатора, способное вызвать миниатюрный потенциал (т.е. локальное возбуждение), который не передается на постсинаптическую мембрану. Суммация может быть последовательная (временная) и пространственная. Последовательная - при частом поступлении по одному пути импульсов подпороговой величины происходит накопление достаточного количества медиатора и возникает возбуждение (потенциал действия), которое передается на постсинаптическую мембрану. Пространственная - при раздражении 2-х рецептивных полей, расположенных рядом повышается возбудимость и может возникнуть ответная реакиця.

Трансформация ритма раздражения в сторону увеличения или уменьшения количества импульсов на выходе - связано с низкой функциональной лабильностью синапса.

Высокая чувствительность к химическим веществам и специфичность (рецепторы обладают избирательной чувствительностью к медиаторам.

Быстрое утомление - связано с низкой функциональной лабильностью синапса и ограниченным наличием медиатора.

Способны изменять свою возбудимость в сторону повышения (синаптическая потенциация) или в сторону уменьшения (при длительном действии - десенситизация)

Цитофизиологические и нейрофизиологические основы межнейронной передачи. Возбуждение в нейроне, как уже указывалось, связано со специфическими или (и) неспецифическими воздействиями на нервную клетку, приводящими к деполяризации мембраны нейрона. Потенциал покоя нервной клетки составляет 60-70 мВ, скорость деполяризации 1-2 мс, время реполяризации 1-2 мс. В момент деполяризации возбуждение достигает аксонального холмика, где оно может затормаживаться (если не достигает достаточной силы - пороговой чувствительности) или может распространяться далее по аксону к пресинаптической структуре (терминали аксона). Когда деполяризационная волна возбуждения достигает пресинаптического расширения, в нем открываются кальциевые каналы, в результате чего концентрация ионов кальция увеличивается. Это способствует связыванию синаптических пузырьков с пресинаптической мембраной. В данном процессе участвуют микротрубочки. Белок синаптических пузырьков - синаптобревин связывается с белками пресинаптических мембран (синтаксин и SNAP-25), после чего мембраны сливаются и содержимое пузырьков с медиатором выделяется в синаптическую щель. Медиатор взаимодейтсвует с рецепторами постсинаптических мембран. Часть из них, взаимодействуя с ионными каналами, открывает К/Na каналы и приводит к деполяризации мембран и возбуждению следующей нервной клетки. Другие - активируют процессы выделения натрия из клетки и гиперполяризации мембран нервных клеток.

В последующем связь медиаторов с рецепторами разрывается. Медиатор либо метаболизируется, либо подвергается обратному всасыванию пресинаптическими мембранами, либо захватывается мембранами астроцитов с последующей передачей медиатора к нервным клеткам.

Нейроглия. Впервые данный термин ввел Вирхов для описания клеток между нейронами. Занимают они около половины всего объема ткани. К ней относят нейроглию центральной нервной системы и периферической нервной системы. Выделяют макроглию и микроглию

Среди макроглии центральной нервной системе имеются волокнистые (фиброзные) и протоплазматические астроциты, олигодендроциты, эпендимоциты (в том числе и танициты). В периферической нервной системе нейроглия представлена леммоцитами (шванновскими клетками) и сателлитоцитами.

Астроциты. Astro - звездчатые, cites - клетки. В дословном переводе звездчатые клетки. Названы так из-за обилия отростков, отходящих от тела клетки. Многочисленные отростки ветвятся и окружают другие структуры мозга. Астроциты есть только в ЦНС и анализаторах - производных нервной трубки. Среди них встречаются волокнистые и протоплазматические астроциты. Терминали отростков обеих типов клеток имеют пуговичные расширения (ножки астроцитов), значительная часть из которых заканчивается в периваскулярном пространстве, окружая капилляры периваскулярными глиальными бухтами занимающими 80% обменной поверхности микрососудов.

Волокнистые астроциты имеют многочисленные, длинные, тонкие, слабо или совсем не ветвящиеся отростки. В основном присутствуют в белом веществе мозга.

Протоплазматические астроциты отличаются короткими, толстыми и сильно ветвящимися отростками. Имеются преимущественно в сером веществе мозга. Морфология астроцитов отличается крайним разнообразием и коррелирует с формой капиллярных петель и нейронных ансамблей в ЦНС. Клетки диффузно распределены в объеме мозга. Их отростки взаимопереплетаются между собой, так и другими элементами нейропиля. Астроциты занимают исключительное положение в ЦНС, располагаясь между телами нейронов, немиелинизированной и миелинизированной частями нервных отростков, синапсами, кровеносными сосудами, подэпендимными пространствами изолируя и в то же время структурно связывая их.

Специфическим маркером астроцитов является так называемый глиальный фибриллярный кислый белок, из которого образуются промежуточные филаменты.

Строение астроцитов. Клетки имеют относительно крупные светлые ядра, со слабо развитым ядрышковым аппаратом. Цитоплазма слабо оксифильная. В ней слабо развиты гладкая и гранулярная ЭПС, пластинчатый комплекс. Митохондрий мало, они небольших размеров. Цитоскелет развит умеренно в протоплазматических и хорошо - в волокнистых астроцитах. Между клетками значительное число щелевидных и десмосомоподобных контактов.

В постнатальный период жизни человека астроциты способны к миграции, особенно в зоны повреждения и, как полагают, способны к пролиферации.

Функции астроцитов:

1. Участвуют в гематоэнцефалическом и ликворогематическом барьерах. Астроциты своими ножками покрывают капилляры, поверхности мозга и участвуют в транспорте веществ от сосудов к нейронам и наоборот. Способы передавать метаболиты нейронам.

2. Обеспечивают ионный обмен, особенно ионов калия. При активации нейронов, их частая и длительная деполяризация может вести к значительному увеличению ионов калия, что может изменять мембранный потенциал нейронов, повышая их чувствительность к внешним воздействиям. Астроциты, захватывая избыточный калий, предотвращают перевозбуждение. Нарушения в этой функции могут вести к развитию состояний эпилепсии.

3. Изолируют рецепторные поверхности тел нейронов и синапсов. При этом клетки способны к ритмичным сокращениям (по некоторым авторам к набуханию) изменяя зоны изоляции.

4. Способны к захвату нейромедиаторов (глиоксиловой кислоты, гамма-аминомаслянной кислоты) из зон синаптической передачи. Под их влиянием изменяется активность самих астроцитов, что приводит к внесинаптической модуляции сигнала в соседних нервных клетках и их отростках.

5. Фагоцитоз погибших нейронов. На месте фагоцитированных нейронов в результате их гибели, глиальные рубцы. Это скопления гипертрофированных астроцитов, заменяющих собой рубцы в периферических органах.

6. Выделяют большое количество биологически активных веществ (факторы роста нервов, факторы роста фибробластов, ангиогенные факторы, эпидермальный фактор роста, интерлейкин-I, простагландины), контролирующих местные межклеточные метаболические и внесинаптические информационные взаимодействия. Факторы роста способны инициировать и ускорять рост отростков нейронов. Выделение интерлейкина-I, способность экспрессировать МНС-комплексы 1 и 2 классов, указывает на роль астроцитов в формировании специфических иммунных реакций и антигенпрезентирующую функцию.

Выделение факторов роста фибробластов, компонентов межклеточного вещества (ламелин, фибронектин), простагландинов, антиваскулярных факторов позволяет астроцитам контролировать состояние местного кровотока в ЦНС.

7. В эмбриональном развитии человека предшественники астроцитов контролируют направление миграции астробластов, во всяком случае, в части зон головного мозга (мозжечок, гипоталамус), а также в зоне их отростков (зрительный нерв).

В постнатальном развитии стабилизируют структуры ЦНС, ингибируя рост отростков нейронов и в то же время, предотвращая апоптозы (запрограммированную гибель) нейронов, предотвращая избыточное снижение их числа при повреждении.

Олигодендроциты. Олигодендроциты (олигодендроглиоциты) центральной нервной системы относятся к миелинообразующим клеткам и участвуют в формировании нервных волокон. Подобную им функцию в периферической нервной системе играют леммоциты (шванновские клетки) периферической нервной системы.

Тела по размерам как правило мельче астроцитов. Ядра мелкие, округлые, темноокрашенные. Ядрышки мелкие. Отростков мало. Они тонкие, не ветвятся или слабо ветвятся и заканчиваются вокруг аксонов и дендритов нервных клеток. Часть олигодендроцитов концентрируется в непосредственной близости к телам нервных клеток (сателлитные олигодендроциты). Терминальная зона каждого отростка участвует в формировании сегмента нервного волокна, то есть каждый олигодендроцит обеспечивает окружение сразу нескольких нервных волокон. Цитоплазма слабоксифильная и при общих методах окрашивания сливается с нейропилем. На электроннооптическом уровне-в цитополазме хорошо развиты органеллы по составу близкие к нейронам, но в отличие от них не имеют развитого цитоскелета.

Леммоциты (шванновские клетки) периферической нервной системы. Окружают отростки нейронов в периферической нервной системе. При этом клетки имеют удлиненную форму, распластываясь на поверхности аксона, не имеют отростков и обеспечивают формирование глиальной оболочки в одном сегменте миелинового или безмиелинового нервного волокна.

В области формирования корешков спинномозговых и черепно-мозговых нервов формируют скопления (глиальные пробки), предотвращая проникновение отростков ассоциативных нейронов ЦНС за ее пределы.

Кроме леммоцитов в периферической нервной системе имеются сателлитные (мантийные) глиоциты в периферических нервных узлах вокруг тел нейронов, глиоциты нервных окончаний, конкретные морфологические особенности которых рассматриваются при изучении нервных окончаний и анатомии нервных узлов.

Леммоциты характеризуются удлиненными, темноокрашенными ядрами, слабо развитыми митохондриями и синтетическим аппаратом (гранулярная, гладкая ЭПС, пластинчатый комплекс).

Мантийные клетки уплощенной формы с несколькими отростками. Они распластаны на поверхности нейрона и формируют вокруг него глиальную капсулу. Ядра уплощены, темные, со слабо развитым ядрышковым аппаратом. Синтетический аппарат слабо развит. Клетки обеспечивают изолирующую, трофическую, опорную, защитную функции. Играют барьерную роль.

Функции олигодендроглии и леммоцитов.

Формируют оболочки вокруг нервных клеток, обеспечивая барьерно-транспортные функции и изоляцию тел нейронов.

Образуют миелиновые оболочки, участвуя в проведении возбуждения в нервном отростке. Они изолируют отростки, ускоряя проведение возбуждения и предотвращая его затухание и распространение (ирритацию) на соседние отростки.

Механическая (опорная) функция.

Трофическая.

Участие в регенерации поврежденных нервных клеток. Повреждение стимулирует выделение олигодендроцитами большого количества биологически активных веществ, предотвращающих гибель нейронов и стимулирующих регенерацию.

Активация роста аксонов и направление роста их отростков при повреждении.

В составе нервных окончаний производные олигодендроглии способствуют рецепторным функциям.

Фагоцитируют остатки поврежденных осевых цилиндров и миелина при нарушении структуры аксона дистальнее места повреждения.

Эпендимоциты. Это клетки низкопризматической формы. Они образуют непрерывный пласт, покрывающий полости мозга. Эпендимоциты тесно прилежат друг к другу, формируя плотные, щелевидные и десмосомальные контакты. Апикальная поверхность содержит реснички, которые у большинства клеток затем замещаются микроворсинками. Базальная поверхность имеет базальные впячивания (инвагинации), а также длинные тонкие отростки (от одного до нескольких), которые проникают до периваскулярных пространств микрососудов мозга.

В цитоплазме эпендимоцитов обнаруживаются митохондрии, умеренно развитый синтетический аппарат, хорошо представлен цитоскелет, имеется значительное количество трофических и секреторных включений.

Вариантом эпендимной глии являются танициты. Они выстилают сосудистые сплетения желудочков головного мозга, субкомиссуральный орган задней комиссуры. Активно участвуют в образовании ликвора (спинномозговой жидкости). Характеризуются тем, что базальная часть содержит тонкие длинные отростки.

Функции эпендимоцитов:

Выстилают желудочки мозга, обеспечивая гемато-ликворный барьер и отделяя ликвор от структур мозговой ткани.

Образуют ликвор, т.е. обеспечивают секреторную функцию.

Контролируют ионный состав ликвора.

Направляют миграцию нейробластов в нервной трубке в эмбриональном периоде развития (предшественники таницитов).

Опорная функция.

Микроглиоциты (нейральные макрофаги). Клетки небольших размеров, диффузно распределенные в центральной нервной системе, с многочисленными сильно ветвящимися отростками, способны к миграции. Ядра характеризуются грубыми глыбками гетерохроматина (выраженная конденсация хроматина). В цитоплазме обнаруживается много лизосом, гранул липофусцина. Умеренно развит белковосинтетический аппарат (гранулярная ЭПС, пластинчатый комплекс).

Строение нервных волокон. Все нервные волокна подразделяются на миелиновые и безмиелиновые (рис.26):

* Миелиновые (мякотные) - имеют миелиновую оболочку, перехваты Ранвье, имеющие важное значение для передачи возбуждения. Сама миелиновая оболочка является мощным биологическим изолятором. Через нее возбуждение не перескакивает с одного нервного волокна, на соседнее. Поэтому проходящий импульс неэффективен для соседних волокон;

*Безмиелиновые нервные волокна - передача возбуждения в них происходит по поверхности нерва через изменение поверхностного заряда.

Обычно нервный ствол содержит большое количество нервных волокон. Безмиелиновые волокна в нем находятся среди миелиновых.

В периферической нервной системе нервные волокна окружают леммоциты. Один леммоцит связан с одним нервным волокном. В центральной нервной системе отростки нейронов окружают олигодендроциты. Каждый олигодендроцит участвует в формировании нескольких нервных волокон.

В безмиелиновых нервных волокнах в состав волокна может входить несколько отростков нейронов (кабельный тип волокна) или один отросток; отростки могут переходит из одного волокна в другое.

В нервном волокне выделяют осевой цилиндр (отросток нервной клетки), мезаксон, область плотного контакта впячивания (дубликатуры) глиоцита, цитоплазму глиоцита. Один отросток олигодендроцита или один леммоцит окружает участок нервного волокна, называемый сегментом.

В миелиновом волокне мезаксон многократно оборачивается вокруг осевого цилиндра, формируя многократные витки мембраны - миелин. В миелиновом (мякотном) нервном волокне имеется только один осевой цилиндр. Зоны разрыхления миелина называются насечками (насечки Шмидта-Лантермана). Границы сегментов немиелинизированы и называются перехватами Ранвье. Эти области соответствуют контактам глиоцитов.

Миелинизация волокон осуществляется путем удлинения и "наворачивания" мезаксона вокруг отростка нервной клетки (в периферической нервной системе) или удлинения и вращения отростка олигодендроцита вокруг осевого цилиндра в ЦНС.

Классификация нервных волокон:

1. Тип А имеет подгруппы:

· А - обладают наибольшей скоростью проведения возбуждения - 70-120 м/с (соматические двигательные нервные волокна).

· А - скорость проведения составляет 40-70 м/с. Это соматические афферентные нервы и некоторые эфферентные соматические нервы.

· А - скорость проведения составляет 15-40 м/с - афферентные и эфферентные симпатические и парасимпатические нервы.

· А (дельта) - скорость проведения 5-18 м/с. По этой группе афферентных соматических нервов проводятся первичная (быстрая) боль.

2. Тип В - скорость проведения от 3 до 14 м/с - преганглионарные симпатические волокна, некоторые парасимпатические волокна, то есть это вегетативные нервы.

3. Тип С - скорость проведения 0,5-3 м/с. Постганглионарные вегетативные волокна (безмиелиновые). Проводят болевые импульсы медленной вторичной боли (от рецепторов пульпы зуба), а так как, нет ограничителей возникают сильные боли.

Нейрогенез. Нервная ткань формируется из первичной эктодермы. На 15-17 сутки внутриутробного развития человека под индуцирующим влиянием хорды формируется нервная пластинка (скопление продольно лежащего клеточного материала). Такая индукция называется первичной. С 17 по 21 сутки формируется нервный желобок, а затем и трубка. К 25 суткам эмбриогенеза происходит отщепление нервной трубки от эктодермы и замыкание переднего и заднего отверстий (нейропоров). Индукция хордомезодермой нервной трубки осуществляется за счет сложного комплекса межклеточных взаимодействий. Среди них важную роль играют биологически активные факторы (серотонин, норадреналин) и биологически активные метаболиты. По бокам от нервного желобка располагаются структуры нервного гребня.

На ранних сроках развития нервная трубка сформирована медулобластами (стволовые клетки нервной ткани центральной нервной системы). Из нервного гребня образуется ганглиозная пластинка состоящая из ганглиобластов (стволовые клетки нейронов и нейроглии периферической нервной системы. Медулобласты и ганглиобласты интенсивно иммигрируют, делятся и затем дифференцируются.

В ранние сроки внутриутробного развития нервная трубка представляет собой пласт отростчатых клеток, лежащих в виде одного слоя, но в несколько рядов. Изнутри и снаружи они ограничены пограничными мембранами. На внутренней поверхности (прилежащей к полости нервной трубки) медулобласты делятся.

В последующем нервная трубка формирует несколько слоев. Среди них можно выделить:

Внутренняя пограничная мембрана. Отделяет полость нервной трубки от клеток.

Эпендимный слой (вентрикулярный в области мозговых пузырей) представлен бластными клетками-предшественниками макроглии.

В передних мозговых пузырях некоторые авторы выделяют субвентрикулярную зону, где происходит пролиферация нейробластов.

Мантийный (плащевой) слой, содержит мигрирующие и дифференцирующиеся нейробласты и глиобласты.

Маргинальный слой (краевая вуаль). Сформирована отростками глиобластов и нейробластов. В ней можно видеть тела отдельных клеток.

Наружная пограничная мембрана.

Диффероны нервной ткани центральной нервной системы. Из медулобластов дифференцируются эпендимобласты. Нейробласты и спонгиобласты. Назовем несколько гистоенетических рядов дифференцировки:

1. Медулобласт-нейробласт-молодой нейрон-зрелый нейрон.

2. Медулобласт-спонгиобласт (как вариант радиальный глиобласт) - астробласт-протоплазматический или волокнистый астроцит.

3. Медулобласт-спонгиобласт-олигодендробласт-олигодендроцит.

4. Медулобаст-эпендимобласт-эпендимоцит или таницит.

Микроглиоцит, в основной своей массе, по мнению большинства авторов формируются из моноцитов, проникающих в нервную трубку в первой половине внутриутробного развития. Для них дифферон выглядит следующим образом: стволовая клетка крови-полустволовая клетка крови (КОЕ ГЭММ) - КОЕ ГМ - КОЕ М - монобласт - промоноцит - моноцит - микроглиоцит покоя - активированный микроглиоцит.

Диффероны нервной ткани в периферической нервной системе.

1. Ганглиобласт - нейробласт - молодой нейрон - зрелый нейрон.

2. Ганглиобласт - глиобласт - леммоцит (шванновская клетка)

3. Ганглиобласт - глиобласт - мантийный глиоцит (сателлитоцит).

Механизмы нейрогенеза. В процессе внутриутробного развития нейробласты мигрируют в области анатомических закладок нервных центров. При этом они прекращают делиться. В ЦНС миграция нейробластов контролируется адгезивными межклеточными взаимодействиями (с помощью кадгеринов и интегринов радиальной глии), сигнальными молекулами межклеточного вещества (в том числе фибронектинами и ламининами). После того как нейробласты достигают области своей постоянной локализации, они начинают дифференцироваться и формировать отростки. Направление роста отростков также контролируется упомянутыми адгезивными молекулами (кадгерины, интегрины, сигнальные молекулы межклеточного вещества).

Во внутриутробном развитии и после рождения происходит конкурентное взаимодействие между аналогичными нейронами нервных центров. При этом нервные клетки, не успевшие занять соответствующую зону, либо сформировать контакты, подвергаются апоптозу. В раннем развитии погибает от трети до половины нервных клеток.

В последующем развитии вокруг нервных клеток формируется глиальное окружение и происходит миелинизация нервных волокон. Нервные клетки до полового созревания продолжают формировать отростки и синаптические контакты. Максимального развития нервная ткань достигает к 25-30 годам.

С возрастом наблюдается гибель части нервных клеток и компенсаторная гипертрофия других. В нейронах может накапливаться липофусцин. Области с погибшими телами нервных клеток замещаются глиальными рубцам, образованными скоплением гипертрофированных астроцитов.

Вопросы для самоконтроля

Назовите структуры специфичные для нейронов.

Специализированные органеллы нервной клетки.

Классификации нейронов.

Механизмы нейрогенеза.

Классификация и строение синапсов. Их значение.

Классификация и строение нейроглии.

Сравнительная характеристика астроцитов и олигодендроцитов.

Строение глиоцитов периферической нервной системы.

Строение и значение микроглиоцитов.

Строение и значение миелиновых и безмиелиновых нервных волокон.

Механизмы проведения возбуждения в нервных волокнах.

Представление о миелинизации.

Постравматическая регенерация нейронов и нервных волокон.

Ситуационные задачи

1. В результате травмы у больного в месте перерыва нерва преждевременно возник грубый соединительнотканный рубец. Спрогнозируйте процесс регенерации нерва.

2. Как зависит от функционального состояния нейроцита гранулярная эндоплазматическая сеть?

3. Леммоцит является "футляром" для нескольких осевых цилиндров. О каком типе нервного волокна идет речь?

4. У зародыша в эксперименте удалена ганглиозная пластинка. Каковы нарушения дальнейшей дифференцировки нервной ткани?

5. В нервной клетке пять отростков. Назовите форму нейрона и число афферентных и эфферентных (аксонов) проводников импульса.

Список литературы

1. Артишевский А.А., Леонтюк А.С., Слука Б.А. Гистология с техникой гистологических исследований. - Минск, "Вышейшая школа". - 1999. - 231с.

2. Гистология. Под ред. Афанасьева Ю.И., Юриной Н.А. - М. Медицина-1999. - 744с.

3. Гистология. Под ред. проф. Улумбекова Э.Г., проф. Челышева Ю.А. - М. ГЭОТАР-МЕД-2001. - 670с.

4. Лабораторные занятия по курсу гистологии, цитологии и эмбриологии. Под ред. Афанасьева Ю.И., Яцковского А.Н. - М. Медицина-1999. - 321с.

5. Леонтюк А.С., Слука Б.А. Основы возрастной гистологии. - Минск, "Вышейшая школа". - 2000. - 415с.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение видов и функций различных тканей человека. Задачи науки гистологии, которая изучает строение тканей живых организмов. Особенности строения эпителиальной, нервной, мышечной ткани и тканей внутренней среды (соединительной, скелетной и жидкой).

    презентация [309,1 K], добавлен 08.11.2013

  • Общая характеристика тканей человека: эпителиальная, нервная, соединительная, мышечная. Репаративная регенерация как процесс восстановления тканей при их повреждении. Нейрон как функциональная единица нервной системы. Роль и значение мышечной ткани.

    презентация [5,9 M], добавлен 18.05.2014

  • Общая характеристика мышечной ткани, морфологические признаки и основные свойства. Виды белков и их функции. Разновидности мышечной ткани. Общая характеристика и функции нервной ткани. Характеристика нейронов. Классификация нейроглий. Эмбриогенез.

    презентация [2,2 M], добавлен 10.04.2016

  • Состав нервной ткани. Возбуждение нервных клеток, передача электрических импульсов. Особенности строения нейронов, сенсорного и моторного нервов. Пучки нервных волокон. Химический состав нервной ткани. Белки нервной ткани, их виды. Ферменты нервной ткани.

    презентация [4,1 M], добавлен 09.12.2013

  • Изучение протеолитических ферментов нервной ткани. Пептидгидролазы нервной ткани и их функции. Протеолитические ферменты нервной ткани нелизосомальной локализации и их биологическая роль. Эндопептидазы, сигнальные пептидазы, прогормонконвертазы.

    реферат [49,4 K], добавлен 13.04.2009

  • История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат [24,3 K], добавлен 07.01.2012

  • Определение и общая характеристика эпителиальной ткани. Онтофилогенетическая и морфологическая классификация эпителия. Количество клеток, направление секреции и состав секрета железистого эпителия. Особенности регенерации покровных и железистых тканей.

    презентация [365,4 K], добавлен 18.09.2013

  • Изучение видов тканей внутренней среды – комплекса тканей, образующих внутреннюю среду организма и поддерживающих ее постоянство. Соединительная ткань – главная опора организма. Трофическая, опорно-механическая, защитная функция ткани внутренней среды.

    презентация [364,9 K], добавлен 12.05.2011

  • Структурные особенности мышечных тканей. Изучение механизма мышечного сокращения и аппарата передачи возбуждения. Гистогенез и регенерация мышечной ткани. Принципы работы сократительных, проводящих и секреторных кардиомиоцитов сердечной мышечной ткани.

    шпаргалка [22,3 K], добавлен 14.11.2010

  • Общая характеристика и возрастные особенности хрящевой ткани. Виды хрящевой и костной ткани. Общая характеристика и возрастные особенности костной ткани. Особенности строения мышечной ткани в детском и в пожилом возрасте. Скелетная мышечная ткань.

    презентация [1,3 M], добавлен 07.02.2016

  • Эпителиальная ткань, ее регенерационная способность. Соединительные ткани, участвующие в поддержании гомеостаза внутренней среды. Клетки кровы и лимфы. Поперечнополосатые и сердечные мышечные ткани. Функции нервных клеток и тканей животных организмов.

    реферат [634,0 K], добавлен 16.01.2015

  • Опорная, защитная и трофическая функции соединительной ткани. Межклеточная структура (волокно и основное вещество). Неоформленные или диффузные, оформленные или ориентированные, ретикулярные, жировые, скелетные и хрящевые ткани. Слизистая оболочка языка.

    курсовая работа [1,8 M], добавлен 14.01.2014

  • Виды эпителиальной ткани. Однослойный плоский эпителий. Мерцательный или реснитчатый, цилиндрический эпителий. Основные виды и функции соединительной ткани. Овальные тучные клетки, фибробласты. Плотная соединительная ткань. Функции нервной ткани.

    презентация [2,5 M], добавлен 05.06.2014

  • Гистогенез хрящевой ткани, деление хондроцитов и формирование между дочерними клетками межклеточного вещества в процессе ее роста. Характеристика клеток хрящевой ткани. Плотная оболочка на поверхности гиалинового и эластического хрящей, ее особенности.

    презентация [1,5 M], добавлен 19.09.2014

  • Структурно-функциональные единицы гладкой ткани. Скелетная мышечная ткань. Миозиновые и актиновые нити. Внутриклеточная регенерация, пролиферация и дифференцировка стволовых клеток. Саркоплазматическая сеть агранулярного типа. Скелетные мышечные волокна.

    реферат [13,4 K], добавлен 04.12.2011

  • Функции крови, ее форменные элементы. Атипичные формы эритроцитов. Рыхлая неоформленная волокнистая соединительная ткань, ее функции. Общая особенность плотной волокнистой соединительной ткани. Ретикулярные клетки и волокна. Назначение эндотелия.

    контрольная работа [39,4 K], добавлен 17.06.2014

  • Функции и строение эпителия, регенерация его клеток. Типы соединительной ткани, преобладание межклеточного вещества над клетками. Химический состав и физические свойства межклеточного вещества. Костная, жировая, хрящевая, мышечная и нервная ткани.

    реферат [1,1 M], добавлен 04.06.2010

  • Изучение особенностей строения тканей животных, функционирование и разновидности. Проведение исследования характерной черты строения соединительной и нервной тканей. Структура плоской, кубической, мерцательной и железистой эпителии. Виды мышечной ткани.

    презентация [2,1 M], добавлен 08.02.2015

  • Механические ткани – опорные ткани. Прочность органов растений для сопротивления статическим и динамическим нагрузкам. Развитие механических тканей и условия обитания. Колленхима – простая первичная опорная ткань. Функции арматурной ткани колленхима.

    контрольная работа [26,7 K], добавлен 01.04.2009

  • Составляющие растительной клетки. Плазматическая мембрана, ее функции. Компоненты клеточной стенки. Типы митоза эукариот. Образовательные ткани в теле растений и их расположение. Механические свойства растительных клеток. Наружные выделительные ткани.

    учебное пособие [76,4 K], добавлен 12.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.