Амилорид - чувствительные эпителиальные натриевые каналы (ENaC): строение, функции и патология

Структурно-функциональная организация эпителиальных натриевых каналов (ENaC), их биофизические характеристики и топология в мембране. Стехиометрия ENaC и модель поры. Функция каналов в различных тканях и органах человека. Основные причины патологий ENaC.

Рубрика Биология и естествознание
Вид дипломная работа
Язык русский
Дата добавления 30.10.2017
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Заключение

Важнейшая роль ENaC в транспорте Na+ в осморегулирующих эпителиях в последнее время стала хорошо изучена. Известно, что мутации ENaC приводят к тяжелым наследственным заболеваниям, связанным с нарушением артериального давления и Na+-K+ гомеостаза.

Проведенное теоретическое исследование показало, что на сегодняшний момент накоплен значительный объем экспериментальных данных, позволяющий составить достаточно подробную картину структурно-функциональной организации ENaC. Детальный анализ современных представлений относительно биофизических характеристик, молекулярного строения, особенностей функционирования ENaC и их роли в поддержании функциональной активности реабсорбирующих эпителиев в норме и при патологии позволил сделать следующие выводы.

Выводы

1. Представления о стехиометрии и структуре ENaC в последнее время претерпели определенные изменения, что связано, в первую очередь, с установлением структуры ASIC, входящих в то же суперсемейство. Принятая модель стехиометрии канала, возможно, требует дополнительных исследований в виду противоречивости накопленных данных.

Также в настоящее время остаются дискуссионными и требуют дополнительного исследования такие моменты, как: поиск участков взаимодействия с блокаторами и их влияние на свойства ENaC, некоторые биофизические характеристики ENaC, в том числе механизмы активации и инактивации каналов, а также механочувствительность ENaC и ее физиологическая роль. Представляется также важным дальнейший поиск участков в составе субъединиц ENaC, отвечающих за взаимодействие канала с различными сигнальными белками.

2. Достаточно подробно охарактеризована физиологическая функция ENaC в эпителии почки, кишечника и легких. В то же время появляются новые данные об экспрессии ENaC в тканях и органах, не участвующих в регуляции водно-солевого баланса организма, для которых роль ENaC еще во многом неясна.

Существенного дополнения требуют также знания о молекулярных механизмах регуляции ENaC как ключевыми гормонами, так и различными сигнальными белками (такими как, например, CFTR) и фармакологическими агентами.

3. Показано также, что в настоящее время достаточно подробно изучены механизмы наследования заболеваний, вызванных нарушениями в структурно-функциональной организации ENaC, и локализовано множество мутаций, приводящих к таким заболеваниям.

Подробный анализ таких экспериментальных данных важен для более полного понимания и разработки наиболее эффективных фармакологических и терапевтических методов в лечении некоторых заболеваний человека. Важным остается и поиск новых мутаций ENaC, вызывающих те или иные наследственные заболевания.

Список литературы

1. Вачугова Д.В., Морачевская Е.А. Механочувствительность катионных каналов семейства DEG/ENaC// Цитология.-2009.-Т.51.-С.806-814.

2. Мельницкая А.В., Крутецкая З.И., Лебедев О.Е. Структурно-функциональная организация и механизмы регуляции эпителиальных Na+-каналов// Цитология.-2006.-Т.48.-С.817-840.

3. Смит К. Биология сенсорных систем// Москва: БИНОМ. Лаборатория знаний, 2005. 583 с.

4. Adams C.M., Snyder P.M., Welsh M.J. Interactions between subunits of the human epithelial sodium channel// J. of Biol. Chem.-1997.-V.272.-P.27295-27300.

5. Anantharam A., Palmer L.G. Determination of epithelial Na+ channel subunit stoichiometry from single-channel conductances// J. Gen. Physiol.-2007.-V.130.-P.55-70.

6. Anantharam A., Tian Y., Palmer L.G. Open probability of the epithelial sodium channel is regulated by intracellular sodium// J. Physiol.-2006.-V.574.-P.333-347.

7. Arias R.L., Sung M.L., Vasylyev D., Zhang M.Y., Albinson K., Kubek K., Kagan N., Beyer C., Lin Q., Dwyer J.M., Zaleska M.M., Bowlby M.R., Dunlop J., Monaghan M. Amiloride is neuroprotective in an MPTP model of Parkinson's disease// Neurobiol. Dis.-2008.-V.31.-P.334-341.

8. Astrand A.B., Hemmerling M., Root J., Wingren C., Pesic J., Johansson E., Garland A.L., Ghosh A., Tarran R. Linking increased airway hydration, ciliary beating, and mucociliary clearance through ENaC inhibition// J. Physiol. Lung Cell Mol. Physiol.-2015.-V.308.-P.22-32.

9. Bachhuber T., Kцnig J., Voelcker T., Mьrle B., Schreiber R., Kunzelmann K. Cl?interference with the epithelial Na+ channel ENaC// J. Biol. Chem.-2005.-V.280.-P.31587-31594.

10. Baer J.E., Jones C.B., Spitzer S.A., Russo H.F. The potassium-sparing and natriuretic activity of N-amidino-3,5-diamino-6-chloropyrazinecarboxamide hydrochloride dihydrate (amiloride hydrochloride)// J. Pharmacol. Exp. Ther.-1967.-V.157.-P.472-485.

11. Barker P.M., Nguyen M.S., Gatzy J.T., Grubb B., Norman H., Hummler E. et al. Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism// J. Clin. Invest.-1998.-V.102-P.1634-1640.

12. Belot A., Ranchin B., Fichtner C., Pujo L., Rossier B.C., Liutkus A., Morlat C., Nicolino M., Zennaro M.C., Cochat P. Pseudohypoaldosteronisms, report on a 10-patient series// Nephrol. Dial. Transpl.-2008.-V.23.-P.1636-1641.

13. Benos D.J., Stanton B.A. Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels// J. Physiol.-1999.-V.520.-P.631-644.

14. Benos D.J., Simon S.A., Mandel L.J., Cala P.M. Effect of amiloride and some of its analogues of cation transport in isolated frog skin and thin lipid membranes// J. Gen. Physiol.-1976.-V.68.-P.43-63.

15. Bentley P.J. Amiloride: a potent inhibitor of sodium transport across the toad bladder// J. Physiol.-1968.-V.195.-P.317-330.

16. Berthiaume Y., Matthay M.A. Alveolar edema fluid clearance and acute lung injury// Respir. Physiol. Neurobiol.-2007.-V.159.-P.350-359.

17. Bize V., Horisberger J.D. Sodium self-inhibition of human epithelial sodium channel: selectivity and affinity of the extracellular sodium sensing site// J. Physiol. Renal. Physiol.-2007.-V.293.-P1137-1146.

18. Bogert P.T., LaRusso N.F. Cholangiocyte biology// Curr. Opin. Gastroenterol.-2007.-V.23.-P.299-305.

19. Bonny O., Knoers N., Monnens L., Rossier B.C. A novel mutation of the epithelial Na+ channel causes type 1 pseudohypoaldosteronism// Pediatr. Nephrol.-2002.-V.17.-P.804-808.

20. Botero-Velez M., Curtis J.J., Warnock D.G. Liddle's syndrome revisited - a disorder of sodium reabsorption in the distal tubule// New Eng. J. Med.-1994.-V.330.-P.178-181.

21. Boucher R.C., Cotton C.U., Gatzy J.T., Knowles M.R., Yankaskas J.R. Evidence for reduced Cl? and increased Na+ permeability in cystic fibrosis human primary cell cultures// J. Physiol.-1988.-V.405.-P.77-103.

22. Butterworth M.B., Edinger R.S., Frizzell R.A., Johnson J.P. Regulation of the epithelial sodium channel by membrane trafficking// J. Physiol. Renal Physiol.-2009.-V.296.-P.10 -24.

23. Butterworth M.B., Edinger R.S., Johnson J.P., Frizzell R.A. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool// J. Gen. Physiol.-2005.-V.125.-P.81-101.

24. Canessa C.M., Merillat A.-M., Rossier B.C. Membrane topology of the epithelial sodium channel in intact cells// Am. J. of Physiol.-1994.-V267.-P.1682-1690.

25. Canessa C.M. Structural biology: unexpected opening// Nature.-2007.-V.449.-P.293-294.

26. Carattino M.D., Sheng S., Kleyman T.R. Epithelial Na+ channels are activated by laminar shear stress// J. Biol. Chem.-2003.-V.279.-P.4120--4126.

27. Chalfant M., Karlson K., McCoy D., Denton J., Stanton B.A. The N-terminus of the a subunit of the epithelial sodium channel (ENaC) regulates channel function// J. of Am. Soc. of Nephrol.-1998.-V.9.-P.32.

28. Chalfant M.L., Denton J.S., Berdiev B.K., Ismailov I.I., Benos D.J., Stanton B.A. Intracellular H+ regulates the alpha-subunit of ENaC, the epithelial Na+ channel// Am. J. Physiol.-1999.-V.276.-P.477-486.

29. Chalfant M.L., Denton J.S., Langloh A.L., Karlson K.H., Loffing J., Benos D.J., Stanton B.A. The NH2 terminus of the epithelial sodium channel contains an endocytic motif// J. Biol. Chem.-1999.-V.274.-P.32889-32896.

30. Chandrashekar J., Kuhn C., Oka Y., Yarmolinsky D.A., Hummler E., Ryba N.J. Zuker C.S. The cells and peripheral representation of sodium taste in mice// Nature.-2010.-V.464.-P.297-301.

31. Chang S.S., Grunder S., Hanukoglu A., Rцsler A., Mathew P.M., Hanukoglu I., Schild L., Lu Y., Shimkets R.A., Nelson-Williams C., Rossier B.C., Lifton R.P. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1// Nat Genet.-1996.-V.12.-P.248-253.

32. Charles R.P., Guitard M., Leyvraz C., Breiden B., Haftek M., HaftekTerreau Z. et al. Postnatal requirement of the epithelial sodium channel for maintenance of epidermal barrier function// J. Biol. Chem.- 2008.-V.283.-P.2622-2630.

33. Cheek D.B., Perry J.W. A salt wasting syndrome in infancy// Arch. Dis. Child.-1958.-V.33.-P.252-256.

34. Chen J., Myerburg M.M., Passero C.J., Winarski K.L., Sheng S. External Cu2+ inhibits human epithelial Na+ channels by binding at a subunit interface of extracellular domains// J. Biol. Chem.

35. Collawn J.F., Lazrak A., Bebok Z., Matalon S. The CFTR and ENaC debate: how important is ENaC in CF lung disease?// Am. J. Physiol. Lung Cell Mol. Physiol.-2012.-V.302.-P.1141-1146.

36. Collier D.M., Snyder P.M. Extracellular chloride regulates the epithelial sodium channel// J. Biol. Chem.-2009.-V.284.-P.29320-29325.

37. Collier D.M., Snyder P.M. Identification of epithelial Na+ channel (ENaC) intersubunit Cl? inhibitory residues suggests a trimeric бгв channel architecture// J. Biol. Chem. 286: 6027-6032, 2010

38. Collier D.M., Snyder P.M. Identification of epithelial Na+ channel (ENaC) intersubunit Cl? inhibitory residues suggests a trimeric бгв channel architecture// J. Biol. Chem. 286: 6027-6032, 2010.

39. Couloigner V., Fay M., Djelidi S., Farman N., Escoubet B., Runembert I., Sterkers O., Friedlander G., Ferrary E. Location and function of the epithelial Na channel in the cochlea// Am. J. Physiol. Renal Physiol.-2001.-V.280.-P.214-222.

40. Debonneville C., Flores S.Y., Kamynina E., Plant P.J., Tauxe C., Thomas M.A., Munster C., Chraibi A., Pratt J.H., Horisberger J.D., Pearce D., Loffing J., Staub O. Phosphorylation of Nedd4 -2 by Sgk1 regulates epithelial Na channel cell surface expression// EMBO J.-2001.-V.20.-P.7052-7059.

41. Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics//Nature.-2006.-V.443.-P.651-657.

42. Diakov A., Korbmacher C. A novel pathway of epithelial sodium channel activation involves a serum- and glucocorticoid-inducible kinase consensus motif in the C terminus of the channel's alpha-subunit// J. Biol. Chem.-2004.-V.279.-P.38134-38142.

43. Dijkink L., Hartog A., van Os C.H., Bindels R.J. The epithelial sodium channel (ENaC) is intracellularly located as a tetramer//Pflьgers Arch.-2002.-V.444.-P.549-555.

44. Donald B. Cheek and John W. Perry. A Salt Wasting Syndrome in Infancy// Arch Dis. Child.-1958.-V.33(169).-P.252-256.

45. Doyle D.A., Cabral J.M., Pfuetzner R.A., Kuo A.L., Gulbis J.M., Cohen S.L., Chait B.T., MacKinnon R. The structure of the potassium channelmolecular basis of K+ conduction and selectivity// Science.-1998.-V.280.-P.69-77.

46. Drummond H.A., Welsch M.J., Abboud F.M. ENaC subunits are molecular components of the arterial baroreceptor complex// Sci.-2001.-V.234.-P.42--47.

47. Drummond H.A., Abboud F.M., Welsh M.J. Localization of beta and gamma subunits of ENaC in sensory nerve endings in the rat foot pad// Brain Res.-2000.-V.884.-P.1-12.

48. Drummond H.A., Price M.P., Welsh M.J., Abboud F.M. A molecular component of the arterial baroreceptor mechanotransducer// Neuron.-1998.-V.21.-P.1435-1441.

49. Duc C., Farman N., Canessa C.M., Bonvalet J.P., Rossier B.C. Cell-specific expression of epithelial sodium channel б, в, and г subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry// J. Cell Biol.-1994.-V.127.-P.1907-1921.

50. Edelheit O., Hanukoglu I., Gizewska M., Kandemir N., Tenenbaum-Rakover Y., Yurdakцk M., Zajaczek S., Hanukoglu A. Novel mutations in epithelial sodium channel (ENaC) subunit genes and phenotypic expression of multisystem pseudohypoaldosteronism// Clin. Endocrinol. (Oxf).-2005.-V.62.-P.547-553.

51. Edelheit O., Hanukoglu I., Shriki Y., Tfilin M., Dascal N., Gillis D., Hanukoglu A. Truncated beta epithelial sodium channel (ENaC) subunits responsible for multi-system pseudohypoaldosteronism support partial activity of ENaC// J. Steroid. Biochem. Mol. Biol.-2010.-V.119.-P.84-88.

52. Eskandari S., Snyder P.M., Kreman M., Zampighi G.A., Welsh M.J., Wright E.M. Number of subunits comprising the epithelial sodium channel// J. Biol. Chem.-1999.-V.274.-P.27281-27286.

53. Firsov D., Gautschi I., Merillat A.M., Rossier B.C., Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC)// EMBO J.-1998.-V.17.-P.344-352.

54. Firsov D., Robert-Nicoud M., Gruender S., Schild L., Rossier B.C. Mutational analysis of cysteine-rice domains of the epithelium sodium channel (ENaC)// J. of Biol. Chem.-1999.-V.274.-P.2743-2749.

55. Friese M.A., Craner M.J., Etzensperger R., Vergo S., Wemmie J.A., Welsh M.J., Vincent A., Fugger L. Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system// Nat. Med.-2007.-V.13.-P.1483-1489.

56. Frindt G., Silver R.B., Windhager E.E., Palmer L.G. Feedback regulation of Na channels in rat CCT. II. Effects of inhibition of Na entry// Am. J. Physiol.- 1993.-V.264.-P.565-574.

57. Frindt G., Silver R.B., Windhager E.E., and Palmer L.G. Feedback regulation of Na channels in rat CCT. III. Response to cAMP// Am. J. Physiol.-1995.-V.268.-P.480-489.

58. Furukawa Y., Miyawaki Y., Abe G. Molecular cloning and functional characterization of the Aplysia FMRFamide-gated Na+ channel// Eur. j. of physiol.-2006.-V.451.-P.646-656.

59. Garty H., Palmer L.G. Epithelial sodium channels--function, structure, and regulation// Physiol. Rev.-1997.-V.77.-P.359-396.

60. Geller D.S., Rodriguez-Soriano J,. Vallo Boado A., Schifter S., Bayer M., Chang S.S., Lifton R.P. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I// Nat. Genet.-1998.-V.19.-P.279-281.

61. Golestaneh N., Nicolas C., Picaud S., Ferrari P., Mirshahi M. The epithelial sodium channel (ENaC) in rodent retina, ontogeny and molecular identity// Curr. Eye. Res.-2000.-V.21.-P.703-709.

62. Grunder S., Firsov D., Chang S.S., Jaeger N.F., Gautschi I., Schild L., Lifton R.P., Rossier B.C. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel// EMBO J.-1997.-V.16.-P.899-907.

63. Tamura H.,Schild L.,Enomoto N., Matsui N., Marumo F., Rossier B.C. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene// J. Clin. Invest.-1996.-V.97(7).-P.1780-1784.

64. Hansson J.H., Schild L., Lu Y., Wilson T.A., Gautschi I., Shimkets R., Nelson-Williams C., Rossier B.C., Lifton R.P. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity// Proc. Natl. Acad. Sci. USA.-1995.-V.92.-P.11495-11499.

65. Hanukoglu A., Bistritzer T., Rakover Y., Mandelberg A. Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cystic fibrosis// J. Pediatr.-1994.-V.125.-P.752-755.

66. Hanukoglu A., Edelheit O., Shriki Y., Gizewska M., Dascal N., Hanukoglu I. Renin-aldosterone response, urinary Na/K ratio and growth in pseudohypoaldosteronism patients with mutations in epithelial sodium channel (ENaC) subunit genes.// J. Ster. Biochem. Mol. Biol.-2008.-V.111.-P.268-274.

67. Hanukoglu I., Hanukoglu A., Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases// Gene.-2016.-V.579.-P.95-132.

68. Hiltunen T.P., Hannila-Handelberg T., Petдjдniemi N., Kantola I., Tikkanen I., Virtamo J., Gautschi I., Schild L., Kontula K. Liddle's syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel gamma subunit// J. Hypertens.-2002.-V.20.-P.2383-2390.

69. Hogg R.J., Marks J.F., Marver D., Frolich J.C. Long term observations in a patient with pseudohypoaldosteronism// Pediatr. Nephrol.-1991.-V.5.-P.205-210.

70. Hong H., Park S., Jimйnez R.H.F., Rinehart D,. Tamm L.K. Role of aromatic side chains in the folding and thermodynamic stability of integral membrane proteins// J. Am. Chem. Soc.-2007.-V.129.-P.8320-8327.

71. Horisberger J.D., Chraпbi A. Epithelial sodium channel: a ligand-gated channel?// Nephron, Physiol.-2004.-V.96.-P.37-41.

72. Abriel H., Loffing J., Rebhun J.F., Pratt J.H., Schild L., Horisberger J.-D., Rotin D., Staub O. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome// J. Clin. Invest.-1999.-V.103.-P.667-673.

73. Hummler E., Barker P., Gatzy J., Beermann F., Verdumo C., Schmidt A. et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice// Nat Genet.-1996-V.12.-P.325-328.

74. Jeggle P., Callies C., Tarjus A., Fassot C., Fels J., Oberleithner H. et al. Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice// Hypertension.-2013.-V.61.-P.1053-1059.

75. Jeziorski M.C., Green K.A., Sommerville J., Cottrell G.A. Cloningand expression of a FMRFamide-gated Na(+) channel from Helisoma trivolvis and comparison with the native neuronal channel// J. Physiol.-2000.-V.526.-P.13-25

76. Ji H.L., Chalfant M.L., Jovov B., Lockhart J.P., Parker S.B., Fuller C.M., Stanton B.A., Benos D.J. The cytosolic termini of the beta- and gamma-ENaC subunits are involved in the functional interactions between cystic fibrosis transmembrane conductance regulator and epithelial sodium channel// J. Biol. Chem.-2000.-V.275.-P.27947-27956.

77. Kashlan O.B., Sheng S., Kleyman T.R. On the interaction between amiloride and its putative б-subunit epithelial Na+ channel binding site// J Biol Chem.-2005.-V.280.-P.26206-26215.

78. Kashlan O.B., Maarouf A.B., Kussius C., Denshaw R.M., Blumenthal K.M., Kleyman T.R. Distinct structural elements in the first membrane-spanning segment of the epithelial sodium channel// J. Biol. Chem.-2006.-V.281.-P.30455-30462.

79. Kellenberger S., Auberson M., Gautschi I., Schneeberger E., Schild L. Permeability properties of ENaC selectivity filter mutants// J. Gen. Physiol.-2001.-V.118.-P.679-692.

80. Kellenberger S., Gautschi I., Rossier B.C., Schild L. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system// J. Clin. Invest.-1998.-V.101.-P.2741-2750.

81. Kellenberger S., Gautschi I., Schild L. A single point mutation in the pore region of the epithelial Na+ channel changes ion selectivity by modifying molecular sieving// Proc Natl Acad Sci U S A.-1999.-V.96.-P.4170-4175.

82. Kellenberger S., Hoffmann-Pochon N., Gautschi I., Schneeberger E., Schild L. On the molecular basis of ion permeation in the epithelial Na+ channel// J. Gen. Physiol.-1999.-V.114.-P.13-30.

83. Kellenberger S., Gautschi I., Rossier B.C., Schild L. Mutations causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system// J. Clin. Invest.-1998.-V.101(12).-P.2741-2750.

84. Kellenberger S,. Schild L. Structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel// Pharmacol. Rev.-2015.-V.67.-P.1-35

85. Kellenberger S., Boscardin E., Alijevic O., Hummler E., Frateschi S. The function and regulation of acid-sensing ion channels (ASICs) and the epithelial Na+ channel (ENaC): IUPHAR Review 19// Br. J. Pharmacol.-2016.

86. Kellenberger S., Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure// Physiol. Rev.-2002.-V.82.-P.735-767.

87. Kerem E., Bistritzer T., Hanukoglu A., Hofmann T., Zhou Z., Bennett W., MacLaughlin E., Barker P., Nash M., Quittell L., Boucher R., Knowles M.R. Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism// N. Engl. J. Med.-1999.-V.341.-P.156-162.

88. O'Shaughnessy K.M. The genetics of essential hypertension// Br. J. Clin. Pharmacol.-2001.-V.51(1).-P.5-11.

89. Kieber-Emmons T., Lin C., Prammer K.V., Villalobos A., Kosari F., Kleyman T.R. Defining topological similarities among ion transport proteins with anti-amiloride antibodies// Kidn. Internat.-1995.-V.48.-P.956-964.

90. Kosari F., Sheng S., Li J., Mak D.O., Foskett J.K., Kleyman T.R. Subunit stoichiometry of the epithelial sodium channel// J. Biol. Chem.-1998.-V.273.-P.13469-13474.

91. Kretz O., Barbry P., Bock R., Lindemann B. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat// J. Histochem. Cytochem.-1999.-V.47.-P.51-64.

92. Krueger B., Schlotzer-Schrehardt U., Haerteis S., Zenkel M., Chankiewitz V.E., Amann K.U. et al. Four subunits (бвгД) of the epithelial sodium channel (ENaC) are expressed in the human eye in various locations// Invest. Ophthalmol. Vis. Sci.-2012.-V.53.-P.596-604.

93. Lewis S.A., Eaton D.C., Diamond J.M. The mechanism of Na+ transport by rabbit urinary bladder// J. Membr. Biol.-1976.-V.28.-P.41-70.

94. Li X.J., Xu R.H., Guggino W.B., Snyder S.H. Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pore// Mol. Pharm.-1995.-V.47.-P.1133-1140.

95. Liddle G.W., Bledsoe T., Coppage W.S. Jr. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion// Trans. Assoc. Am. Phys.-1963.-V.76.-P.199-213.

96. Lingueglia E., Champigny G., Lazdunski M., Barbry P. Cloning of the amiloride-sensitive FMRFamide peptide-gated sodium channel// Nature.-1995.-V.378.-P.730-733.

97. Livraghi A., Randell S.H. Cystic fibrosis and other respiratory diseases of impaired mucus clearance// Toxicol. Pathol.-2007.-V.35.-P.116-129.

98. Loffing J., Loffing-Cueni D., Macher A., Hebert S.C., Olson B., Knepper M.A., Rossier B.C., and Kaissling B. Localization of epithelial sodium channel and aquaporin-2 in rabbit kidney cortex// Am. J. Physiol. Renal. Physiol.-2000.-V.278.-P.530-P539.

99. Loffing J., Zecevic M., Feraille E., Kaissling B., Asher C., Rossier B.C., Firestone G.L., Pearce D., Verrey F. (2001) Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK// Am. J. Physiol. Renal. Physiol.-2001.-V.280.-P.675-682.

100. Mall M., Grubb B.R., Harkema J.R., O'Neal W.K., Boucher R.C. Increased airway epithelial Na+ absorption produces cystic fibrosislikelung disease in mice// Nat. Med.-2004.-V.10.-P.487-493.

101. Mall M.A., Button B., Johannesson B., Zhou Z., Livraghi A., Caldwell R.A. et al. Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaENaCoverexpressing mice// J. Biol. Chem.-2010.-V.285.-P.26945-26955.

102. Malsure S., Wang Q., Charles R.P., Sergi C., Perrier R., Christensen B.M. et al. Colon-specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance// J. Am. Soc. Nephrol.-2014.-V.25.-P.1453-1464.

103. Marinelli R.A., Larusso N.F. Solute and water transport pathways in cholangiocytes// Semin. Liver. Dis.-1996.-V.16.-P.221-9.

104. Matalon S., O'Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance// Annu. Rev. Physiol.-1999.-V.61.-P.627-661.

105. Matsubara M., Ohkubo T., Michimata M., Hozawa A., Ishikawa K., Katsuya T., Nagai K., Tsuji I., Higaki J., Araki T., Satoh H., Hisamichi S., Ito S., Ogihara T., Imai Y. Japanese individuals do not harbor the T594M mutation but do have the P592S mutation in the C-terminus of the beta-subunit of the epithelial sodium channel: the Ohasama study// J. Hypertens.-2000.-V.18(7).-P.861-6.

106. Matsushita K., McCray P.B. Jr., Sigmund R.D., Welsh M.J., Stokes J.B. Localization of epithelial sodium channel subunit mRNAs in adult rat lung by in situ hybridization// Am. J. Physiol. Lung. Cell. Mol. Physiol.-1996.-V.271.-P.332-339.

107. Matthay M.A., Folkesson H.G., Verkman A.S. Salt and water transport across alveolar and distal airway epithelia in the adult lung// Am. J. Physiol. Lung Cell Mol. Physiol.-1996.-V.270.-P.487-503.

108. Mazzochi C., Bubien J.K., Smith P.R., Benos D.J. 2006. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin// J. Biol. Chem.-2006.-V.281.-P.6528-6538.

109. Palmer L.G. Epithelial Na channels the nature of the conducting pore// Renal Physiol. Biochem.-1990.-V.13.-P,51-58.

110. Palmer L.G,. Frindt G. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule// Proc. Natl. Acad. Sci. USA.-1986.-V.83.-P.2727-2770.

111. Palmer L.G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder// J. Membr. Biol.-1982.-V.67.-P.91-98.

112. Palmer L.G. Voltage-dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder// J. Membr. Biol.-1984.-V.80.-P.153-165.

113. Perry S.J., Straub V.A., Schofield M.G., Burke J.F., Benjamin P.R. (2001) Neuronal expression of an FMRFamide-gated Na+ channel and its modulation by Peptide-recognition of FaNaC 12 acid pH// J. neurosci.-2001.-V.21.-P.5559-5567.

114. Persu A., Barbry P., Bassilana F., et al. Genetic analysis of the beta subunit of the epithelial Na+ channel in essential hypertension// Hypertens.-1998.-V.32.-P.129-137.

115. Persu A., Coscoy S., Houot A.-M., Corvol P., Barbry P., Jeunemaitre X. Polymorphisms of the [gamma] subunit of the epithelial Na+ channel in essential hypertension// J. Hypertens.-1999.-V.17(5).-P.639-645.

116. Pignataro G., Simon R.P., Xiong Z.G. Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia// Brain.-2007.-V.130.-P.151-158.

117. Pochynyuk O., Staruschenko A., Tong Q., Medina J., Stockand J.D. Identification of a functional phosphatidylinositol 3,4,5-trisphosphate binding site in the epithelial Na+ channel// J. Biol. Chem.-2005.-V.280.-P.37565-37571.

118. Pochynyuk O., Tong Q., Medina J., Vandewalle A., Staruschenko A., Bugaj V., Stockand J.D. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel// J. Gen. Physiol.-2007.-V.130.-P.399-413.

119. Prince L.S., Welsh M.J. Cell surface expression and biosynthesis of epithelial Na+ channels// Biochem.-1998.-V.336.-P.705-710.

120. Rab A, Rowe S.M., Raju S.V., Bebok Z., Matalon S., Collawn J.F. Cigarette smoke and CFTR: implications in the pathogenesis of COPD// Am. J. Physiol. Lung Cell Mol. Physiol.-2013.-V.305.-P.530-P541.

121. Rayner B.L., Owen E.P., King J.A., Soule S.G., Vreede H., Opie L.H., Marais D., Davidson J.S. A new mutation, R563Q, of the beta subunit of the epithelial sodium channel associated with low-renin, low-aldosterone hypertension// J. Hypertens.-2003.-V.21.- P.921-926.

122. Reeh P.W., Steen K.H. Tissue acidosis in nociception and pain// Prog. Brain Res.-1996.-V.113.-P.143-151.

123. Ribeiro C.M., O'Neal W.K. Endoplasmic reticulum stress in chronic obstructive lung diseases// Curr. Mol. Med.-2012.-V.12.-P.872-882.

124. Riordan J.R., Rommens J.M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J.L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA// Science.-1989.-V.245.-P.1066-1073.

125. Rossier BC, Canessa CM, Schild L, Horisberger JD (1994) Epithelial sodium channels// Curr Opin Nephrol Hypertens 3:487-496.

126. Rossier BC, Staub O, Hummler E (2013). Genetic dissection of sodium and potassium transport along the aldosterone-sensitive distal nephron: importance in the control of blood pressure and hypertension// FEBS Lett 587: 1929-1941

127. Rotin, D., Bar-Sagi, D., O'Brodovich, H., Merilainen, J., Lehto, V.P., Canessa, C.M., Rossier, B.C., Downey, G.P., 1994. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane// EMBO J. 13, 4440-4450.

128. Sahay M,Narayen G, Anuradha Sodium Transporters in Kidney Role in Health and Disease// JAPI VOL. 55 FEBRUARY 2007

129. Sakai H, Lingueglia E, Champigny G, Mattei MG, Lazdunski M. Cloning and functional expression of a novel degenerin-like Na+ channel gene in mammals// J Physiol. 1999;519:323-33. doi: 10.1111/j.1469-7793.1999.0323m.x.

130. Sasaki, S., Yui, N., Noda, Y., 2014. Actin directly interacts with different membrane channel proteins and influences channel activities: AQP2 as a model// Biochim. Biophys. Acta 1838, 514-520

131. Saxena A, Hanukoglu I, Saxena D, Thompson RJ, Gardiner RM, Hanukoglu A. Novel mutations responsible for autosomal recessive multisystem pseudohypoaldosteronism and sequence variants in epithelial sodium channel alpha-, beta-, and gamma-subunit genes// J Clin Endocrinol Metab. 2002;87:3344-3350.

132. Schaefer L, Sakai H, Mattei M, Lazdunski M, Lingueglia E. Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine// FEBS Lett. 2000;471:205-10. doi: 10.1016/S0014-5793(00)01403-4.

133. Scherrer U, Sartori C, Lepori M, Allemann Y, Duplain H, Trueb L, Nicod P. High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport// Adv Exp Med Biol 474: 93-107, 1999.

134. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome// EMBO Journal. 1996;15:2381-2387.

135. Schild L, Schneeberger E, Gautschi I, Firsov D. Identification of amino acid residues in the б, в, and г subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation// J Gen Physiol 109: 15-26, 1997.

136. Schild, L., Canessa, C.M., Shimkets, R.A., Gautschi, I., Lifton, R.P., and Rossier, B.C. A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system// Proc. Natl. Acad. Sci. USA. 1995; 92: 5699-5703

137. Sheng, S., McNulty, K.A., Harvey, J.M., Kleyman, T.R., 2001b. Second transmembrane domains of ENaC subunits contribute to ion permeation and selectivity// J. Biol. Chem. 276, 44091-44098.

138. Shi, H., Asher, C., Chigaev, A., Yung, Y., Reuveny, E., Seger, R., Garty, H., 2002. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK-mediated phosphorylation// J. Biol. Chem. 277, 13539-13547.

139. Shigemura N, Ohkuri T, Sadamitsu C, Yasumatsu K, Yoshida R, Beauchamp GK, Bachmanov AA, Ninomiya Y. Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC alpha-subunit in mice// Am J Physiol Regul Integr Comp Physiol. 2008;294:R66-R75.

140. Shimkets, R.A., Warnock, D.G., Bositis, C.M., Nelson-Williams, C., Hansson, J.H., Schambelan, M., Gill, J.R. Jr., Ulick, S., Milora, R.V., Findling, J.W. et al. Liddle's syndrome (heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel)// Cell. 1994; 79: 407-414

141. Snyder P.M., Olson D.R., Bucher D.B. A pore segment in DEG/ENaC Na+ channels// J. Biol. Chem. 1999;274:28484-28490.

142. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits// J Biol Chem 273: 681-684, 1998

143. Snyder, P.M., Olson, D.R., Bucher, D.B., 1999. A pore segment in DEG/ENaC Na+ channels// J. Biol. Chem. 274, 28484-28490.

144. Staruschenko A, Adams E, Booth RE, Stockand JD. Epithelial Na+ channel subunit stoichiometry// Biophys J 88: 3966-3975, 2005

145. Staub O, Dho S, Henry PD, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome// EMBO Journal. 1996;15:2371-2380.

146. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination// EMBO Journal. 1997;16:6325-6336.

147. Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure// IUBMB Life 60: 620-628, 2008

148. Tavernarakis N., Driscoll M. 2000. Caenorhabditis elegans degenerins and vertebrate ENaC ion channels contain an extracellular domain related to venom neurotoxins// J. Neurogenet. 13 : 257-- 264.

149. Hannila-Handelberg T, Kontula K, Common variants of the beta and gamma subunits of the epithelial sodium channel and their relation to plasma renin and aldosterone levels in essential hypertension// BMC Med Genet. 2005; 6: 4.doi: 10.1186/1471-2350-6-4

150. Volk K.A., Sigmund R.D., Snyder P.M., McDonald J., Welsh M.J., Stokes J.B. (1995) rENaC is the predominant Na+ channel in the apical membrane of the rat renal inner medullary collecting duct// J. Clin. Invest.-1995.-V.96.-P.2748-2757.

151. Volk K.A., Husted R.F., Snyder P.M., Stokes J.B. Kinase regulation of hENaC mediated through a region in the COOH-terminal portion of the alpha-subunit// Am. J. Physiol. Cell Physiol.-2000.-V.278.-P.1047-1054.

152. von Heijne G. Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule// J. Mol. Biol.-1992.-V.225.-P.487-494.

153. Waldmann R., Bassilana F., Deweille J., Champigny G., Heurteaux C., Lazdunski M. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons// J. Biol. Chem.-1997.-V.272.-P.20975-20978.

154. Waldmann R., Lazdunski M. H+-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels// Curr. Opin. Neurobiol.-1998.-V.8.-P.418-424.

155. Waldmann R.1., Champigny G., Bassilana F., Voilley N., Lazdunski M. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel// J. Biol. Chem.-1995.-V.270(46)-P.27411-4.

156. Wang J., Yu T., Yin L., Li J., Yu L., Shen Y., Yu Y., Shen Y., Fu Q. Novel mutations in the SCNN1A gene causing Pseudohypoaldosteronism type 1// PLoS One.-2013.-V.8.-P.65676.

157. Wemmie J.A., Taugher R.J., Kreple C.J. Acid-sensing ion channels in pain and disease// Nat Rev Neurosci.-2013.-V.14.-P.461-471.

158. Wichmann L.,Perniss A., Althaus M. Comparative characterization of the ?- and б-subunit of the epithelial sodium channel in Xenopus laevis// FASEB J.-2016.-V.30.-P.1223.6

159. Wiemuth D., Assmann M., Grьnder S. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC Channels// Austin.-2014.-V.8(1).-P.29-34.

160. Wong H.K., Bauer P.O., Kurosawa M., Goswami A., Washizu C., Machida Y., Tosaki A., Yamada M., Knopfel T., Nakamura T., Nukina N. Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism// Hum. Mol. Genet.-2008.-V.17.-P.3223-3235.

161. Zha X.-M. Acid-sensing ion channels: trafficking and synaptic function// Mol. Brain.-2013.-V.6.-P.1.

162. Xiong Z.G., Zhu X.M., Chu X.P., Minami M., Hey J., Wei W.L., MacDonald J.F., Wemmie J.A., Price M.P., Welsh M.J., Simon R.P. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels// Cell.-2004.-V.118.-P.687-698.

163. Yang H.Y., Charles R.P., Hummler E., Baines D.L., Isseroff R.R. The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes// J. Cell Sci.-2013.-V.126.-P.1942-1951.

164. Yang K.-Q., Xiao Y., Tian T., Gao L.-G., Zhou X.-L. Molecular genetics of Liddle's syndrome// Clin. Chim. Acta.-2014.-V.436.-P.202-206.

165. Yang L.-M., Rinke R., Korbmacher C. Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel's beta- and gamma-subunit// J. Biol. Chem.-2006.-V.281.-P.9859-9868

166. Yu D., Thelin W.R., Rogers T.D., Stutts M.J., Randell S.H., Grubb B.R. et al. . Regional differences in rat conjunctival ion transport activities// Am. J. Physiol. Cell Physiol.-201.-V.303.-P.767-780.

167. Zhu K., Zhou X., Xu S., Sun D., Zhou K., Yang G. The loss of taste genes in cetaceans// BMC Evol. Biol.-2014.-V.14.-P.218.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности пассивного и активного транспорта веществ через мембрану, явления эндо- и экзоцитоза. Характеристика ионных каналов: ацетилхолиновый, натриевый, кальциевый. Функции поровых комплексов и поринов, молекулы используемые в качестве их моделей.

    курсовая работа [341,0 K], добавлен 13.04.2009

  • Класификация тканей, виды эпителиальных тканей, их строение и функции. Опорная, трофическая и защитная функция соединительных тканей. Функции нервной и мышечной тканей. Понятие об органах и системах органов, их индивидуальные, половые, возрастные отличия.

    реферат [6,0 M], добавлен 11.09.2009

  • Классификация транспортных белков, основанная на механизме их действия и энергетике. Функции ионных каналов и переносчиков. Сравнение скоростей транспорта для систем. Кинетическая теория переходного состояния Эйринга. Константа связывания ингибитора.

    курсовая работа [3,4 M], добавлен 31.07.2009

  • История исследования потенциал-активируемых хлорных каналов, проблемы их трансмембранной топологии. Структура и назначение калиевых каналов внутреннего выпрямления. Действие глутамата на центральную нервную систему. Изоформы субъединиц ионных каналов.

    реферат [18,9 K], добавлен 24.10.2009

  • Изучение строения и определение биологических функций клеточных мембран. Разнообразие функций каналов и переносчиков ионов через мембрану. Роль (Na)-насоса в поддержании допустимого осмотического давления в клетке. Электрические характеристики мембран.

    презентация [1,5 M], добавлен 05.03.2015

  • Рассмотрение семейства клеточных toll-like-рецепторов. Функциональные состояния ионных каналов: открытое, закрытое, активированное, инактивированное, блокированное, модулированное. Типы рецепторных каналов: лиганд-управляемые и потенциал-регулируемые.

    презентация [827,3 K], добавлен 02.11.2014

  • Понятие о мембране клетки, ее строение и функция. Строение хлоропластов и митохондрий. Типы листьев по форме листовой пластинки, края и основания. Ветвление и кущение побегов. Строение сложных и простых соцветий, цветков ячменя, ржи, пшеницы, кукурузы.

    контрольная работа [24,2 K], добавлен 27.11.2011

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Строение ионных каналов - специализированных белков клеточной мембраны, образующих гидрофильный проход, по которому заряженные ионы могут пересекать клеточную мембрану по электрохимическому градиенту. Свойства активного транспорта, его потенциал.

    презентация [1,3 M], добавлен 30.10.2016

  • Понятие, строение и функции сенсорной системы, кодирование информации. Структурно-функциональная организация анализаторов. Свойства и особенности рецепторного и генераторного потенциалов. Цветовое зрение, зрительные контрасты и последовательные образы.

    контрольная работа [838,6 K], добавлен 05.01.2015

  • Исследование отличительных свойств эпителиальных тканей. Изучение особенностей развития, строения и жизнедеятельности тканей организмов животных и человека. Анализ основных видов однослойного эпителия. Защитная и всасывающая функции эпителиальной ткани.

    презентация [721,1 K], добавлен 23.02.2013

  • Распространение потенциала действия, скорость его проведения. Миелинизированные нервы и сальтаторная проводимость, скорость проведения в миелинизированных волокнах, распределение каналов. Каналы в демиелинизированных аксонах, строение, блок проводимости.

    реферат [13,6 K], добавлен 26.10.2009

  • Изобилие и сложность строения внутренних мембран как одна из основных особенностей всех эукариотических клеток. Понятие, свойства и функции мембран: барьерная, транспортная. Сущность и назначение ионных и кальциевых каналов, способы из исследования.

    реферат [207,1 K], добавлен 19.10.2014

  • Характерные черты строения и основные элементы ионных каналов. Отличительные признаки и функциональное назначение потенциал-активируемых каналов, разновидности. Методика определения количества субъединиц в калиевом канале, анализ его содержания.

    реферат [20,8 K], добавлен 24.10.2009

  • Кожа - наружный покров организма животного и человека, защищающий тело от широкого спектра внешних воздействий. Участие кожи в дыхании, терморегуляции, обменных и других процессах. Строение и основные функции кожи. Опасные факторы, воздействующие на кожу.

    презентация [2,9 M], добавлен 26.02.2010

  • Клетка как структурно-функциональная единица развития живых организмов. Мембранные и немембранные компоненты: лизосомы, митохондрия, пластиды, вакуоли и рибосомы. Эндоплазматическая сеть и комплекс Гольджи. Строение животной клетки. Функции органоидов.

    презентация [3,5 M], добавлен 07.11.2014

  • Основные факты о строении клеточной мембраны. Общие представления о проницаемости. Перенос молекул через мембрану. Облегченная диффузия, пассивный и активный транспорт. Уравнение Фика. Сущность понятия "селективность". Строение и функции ионных каналов.

    презентация [323,1 K], добавлен 19.10.2014

  • Клеточные стенки и клеточные мембраны. Состав мембранных липидов. Структура и функции органелл. Природа жирных кислот в мембранных липидах. Особенности строения клеточной стенки у разных организмов. Соотношение различных классов фосфолипидов в мембране.

    контрольная работа [642,7 K], добавлен 26.07.2009

  • Научное определение жизни по Ф. Энгельсу. Молекулярно-генетический, организменный, популяционно-видовой уровень организации жизни. Прокариоты как одноклеточные доядерные организмы. Строение метафазной хромосомы. Уровни упаковки генетического материала.

    реферат [30,3 K], добавлен 29.05.2013

  • Оценка мутагенного воздействия на организм пестицидов, нитросоединений и антибиотических средств. Применение теории удваивания дозы и прямого метода с целью выявления степени генетического облучения человека. Выявление причин митохондриальных патологий.

    курсовая работа [27,8 K], добавлен 02.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.