Молекулярные механизмы обеспечения метаболической толерантности в условиях действия веществ растительного и животного происхождения
Механизм взаимодействия биогенных веществ растительного и животного происхождения с системами структурно-функционального жизнеобеспечения организма. Изучение характера влияния малых молекул и силистронга на процессы антиген-антительного взаимодействия.
Рубрика | Биология и естествознание |
Вид | автореферат |
Язык | русский |
Дата добавления | 19.07.2018 |
Размер файла | 793,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Автореферат
диссертации на соискание ученой степени доктора медицинских наук
Молекулярные механизмы обеспечения метаболической толерантности в условиях действия веществ растительного и животного происхождения
03.00.04 - Биохимия
На правах рукописи
Мякишева Юлия Валерьевна
Уфа 2009
Научный консультант: заслуженный деятель науки РФ, доктор медицинских наук, профессор Гильмиярова Фрида Насыровна
Официальные оппоненты: член-корреспондент РАМН, доктор медицинских наук, профессор Терентьев Александр Александрович
доктор медицинских наук, профессор Шараев Петр Низамиевич
доктор медицинских наук, профессор Бородулин Владимир Борисович
Ведущая организация - Государственное образовательное учреждение высшего профессионального образования «Российский университет дружбы народов»
Защита состоится «____» _____________2009 г. в ___ часов на заседании диссертационного совета Д 208.006.03 при Государственном образовательном учреждении высшего профессионального образования «Башкирский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию» по адресу: 450000, г. Уфа, ул. Ленина, 3.
С диссертацией можно ознакомиться в библиотеке Государственного образовательного учреждения высшего профессионального образования «Башкирский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию» по адресу: 450000, г. Уфа, ул. Ленина, 3.
Автореферат разослан «____» ______________2009 г.
Ученый секретарь диссертационного совета доктор медицинских наук, профессор Мирсаева Г.Х.
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. В связи со снижением уровня популяционного здоровья актуальным является поиск средств, использование которых будет способствовать решению, в первую очередь, валеологических задач. Потребность, пути использования, биотрансформация с учетом особенности структуры различных нутриентов - хорошо изученный процесс, реализующийся в организме во взаимодействии базовых метаболических путей. Динамическое состояние метаболических процессов, наличие многоуровневой иерархии регуляторных механизмов определяет широкий диапазон эндогенных возможностей организма как самонастраивающейся биологической системы. Это меняющееся адекватно потребностям относительное постоянство поддерживается взаимодействием со средовыми факторами, сложившимся в процессе филогенеза поступлением в организм высоко- и низкомолекулярных соединений, служащих макро- и микронутриентами, биорегуляторами, несущими информационный, энергопластический потенциал. Растения можно рассматривать как высокоорганизованные системы, способные к самообеспечению, сохранению вида, трансформированию элементарных минеральных и органических соединений в биополимеры, а также к синтезу сложных по структуре, уникальных по регуляторным свойствам алифатических и полициклических веществ (Запрометов М.Н., 1993; Ашмарин И.П., 2003; Голубев А.Г., 2003; Плотников М.Б., Тюкавкина Н.А., Плотникова Т.М., 2005; Зенков Н.К. с соавт., 2007; Скулачев В.П., 2007). Этот готовый ассортимент биологически активных соединений приобретает эссенциальный характер для животных и человека. В то же время большое значение в обеспечении жизнедеятельности организма, поддержании постоянства его внутренней среды играют естественные интермедиаты эндогенного происхождения - малые молекулы, обладающие определенными реакционными центрами и химической структурой, определяющими их свойства, позволяющими включаться в различные биохимические процессы.
В настоящее время большой интерес представляют минорные компоненты, природные соединения растений, обладающие высокой биологической активностью (Акашкина Л.В., Российская Г.И., Лякина М.Н., 1998; Никитина В.С. с соавт., 2000; Павлюченко И.И. с соавт., 2003; Кси Л.П. с соавт., 2003; Petry J., Hadley S.K., 2001). К ним, в частности, относится немногочисленная новая группа природных соединений - силибин, силикристин, силидианин, дегидросилибин. Они синтезируются и накапливаются в плодах расторопши пятнистой. Достаточно хорошо изучена их структура (Rodak J., Grygiewski R.J., Pol J., 1996). Это - флаволигнаны, флавоноиды, содержащие в своем составе фенилпропаноидный фрагмент кониферилового спирта. Аргументирован их гепатопротекторный эффект. Выявлено антиоксидантное, иммуномодулирующее, репаративное действие расторопши пятнистой (Гильмиярова Ф.Н. с соавт., 2001; Flora K. et al., 1999; Gupta O. et al., 2000; Middlerton E., Kandaswami C., Theoharides T.C., 2000; Rice-Evans C. et al., 2000; Kang S.N. et al., 2001). Наличие целого ряда клинических эффектов препаратов, получаемых из расторопши, служит основанием для предположения о множественном влиянии флаволигнанов на процессы жизнеобеспечения, и это заслуживает самостоятельного изучения. Молекулярные механизмы, лежащие в основе терапевтических эффектов не выяснены и нуждаются в достаточном экспериментальным обосновании. Будучи экзогенными по отношению к организму человека, флаволигнаны являются ограничено чужеродными, так как по пищевым цепям поступают в организм человека.
В связи с этим актуальным является изучение молекулярных механизмов различных спектров действия, изучение терапевтических эффектов, тех превращений, которые обуславливают мобилизацию эндогенных ресурсов за счет оптимизации функциональной активности ключевых метаболических превращений, не десинхронизируя последовательность количественных фермент-субстратных взаимоотношений.
Наличие неполярных фрагментов в структуре флаволигнанов определяет растворимость и экстрагируемость этанолом, дифильная молекула которого реализует высокую химическую и биологическую активность, поступая в организм извне и синтезируясь в нем (Харченко Н.К., 2000; Пауков В.С. с соавт., 2001; Головко А.И. с соавт., 2002; Прокопьева В.Д., 2003; Гевондян К.А. с соавт., 2004; Avdulov N. et al., 2000; Li T., 2000; Horvath M.E., 2001; Ahmad A et al., 2002). Влияние на межмолекулярные процессы, выяснение органной специфики метаболических и параметаболических процессов под влиянием флаволигнанов и малых молекул, установление клеточных механизмов нейротропного действия расширит представления об участии биологически активных соединений растительного и животного происхождения в регуляции обмена, поддержании метаболического баланса и раскроет новые возможности для мягкой коррекции метаболизма, повышения жизнеспособности, оздоровления.
Настоящее исследование выполнено в рамках Федеральных программ:
· «Изучение взаимодействия биогенных веществ растительного и животного происхождения с системами жизнеобеспечения организма с учетом ферментативных и параметаболических процессов» (№ гос. регистрации 1.20.03 08339).
· «Изучение свойств, состава, биологических эффектов, регуляторного потенциала экопротекторов нового поколения и разработка мер защиты здоровья населения и профилактики заболеваний» (№ гос. регистрации 1.20.03 08339).
Цель настоящего исследования заключается в выяснении механизма взаимодействия минорных компонентов биологических объектов с системами структурно-функционального обеспечения жизнедеятельности организма, установлении естественных границ метаболических колебаний и поиске веществ, восстанавливающих физиологический уровень обмена.
Задачи:
1. На различных уровнях структурной организации (клеточном, субклеточном и молекулярном) с помощью метаболического зондирования экзогенными ферментами и интермедиантами изучить возможные диапазоны колебаний ключевых метаболических параметров, охарактеризовав потенциальную устойчивость к экстремальным воздействиям.
2. Охарактеризовать спектр биологической активности малых молекул - этанола, оксалоацетата, пирувата, ?-кетоглутарата и флаволигнанов используя программу «Prediction of Activity Spectra for substances: Complex & Training» и «Pharma Expert».
3. Визуализировать межмолекулярные взаимодействия биогенных соединений растительного и животного происхождения по физическим и морфологическим признакам, по результатам экспериментов in vivo, ex vivo, in vitro, используя методы компьютерного моделирования и математического анализа.
4. На молекулярных объектах регуляторных олигомерных ферментах - глицеральдегид-3-фосфатдегидрогеназа, лактатдегидрогеназа и ?-глицерофосфатдегидрогеназа оценить влияние силистронга и этанола на их структурно-функциональные свойства.
5. Изучить характер влияния силистронга, этанола на пейсмекерную ак-тивность дыхательного центра, процессы апоптоза клеток головного мозга экспериментальных животных, оценив нейротропное действие изучаемых биологических веществ.
6. Исследовать возможность участия малых молекул и силистронга в процессах межбелковых взаимоотношений, определив способность воздействия их на антиген-антительное взаимодействие в модельных системах с антителами к тканевой трансглутаминазе, вирусу гепатита С в сыворотке крови и ротовой жидкости пациентов; оценив влияние на показатели клеточного состава крови лиц с различной групповой принадлежностью в системе АВ0.
Научная новизна. Полученные результаты можно рассматривать как фактический материал, способствующий развитию новых направлений в медико-биологических аспектах нанотехнологий. В экспериментах с введением в организм животных-реципиентов меченых тритием экзогенных дегидрогеназ, выполняющих ключевую роль в метаболизме, аргументирована возможность их включения во внеклеточные, внутриклеточные, внутримитохондриальные обменные процессы. Инсталлированные ферменты могут являться молекулярным инструментом адресной коррекции нарушенного метаболизма, синдромной терапии при различных нозологических формах.
Впервые раскрыта роль малых молекул (этанола, оксалоацетата, пирувата, ?-кетоглутарата) в качестве посредников, регулирующих функцию макромолекул, реализующихся различными физиологическими эффектами.
Установлено, что введение экзогенных лактатдегидрогеназы и малатдегидрогеназы, а также избытка естественного метаболита - пирувата - индуцирует изменения в фонде субстратов углеводно-липидного обмена, в катализе ферментов, функционально сопряженных с малат- и лактатдегидрогеназой.
Получены новые сведения, раскрывающие широкий спектр биологической активности флаволигнанов расторопши. Использование программы «Prediction of Activity Spectra for Substances: Complex & Training» позволило установить зависимость между особенностями структуры силибина, силидианина, силикристина и характером ожидаемого действия. Так, силибин, изосилибин, изосиликристин в большей степени являются антиоксидантами, дегидросилибин, силикристин и дегидросиликристин обладают антитоксическим действием, регулируют проницаемость мембран, силидианин оказывает иммуносупрессорный, антинеопластический и цитостатический эффект.
Результаты исследования раскрывают механизм межмолекулярного взаимодействия этого класса биологически активных веществ растительного происхождения с системами жизнеобеспечения организма. На молекулярном, клеточном и организменном уровне показана протекторная роль биофлавоноидов Silibum marianum, обеспечивающая физиологическую преемственность катаболических и анаболических превращений углеводного обмена. Установлено, что флаволигнаны силистронга обладают способностью влиять на активность ключевых ферментов гликолитического распада углеводов. Показана более значительная эффективность многокомпонентной системы силистронга по сравнению с изолированными флаволигнанами, что свидетельствует о потенцирующем взаимодействии компонентов природной композиции, а также раскрывает роль силистронга как регулятора энергетической обеспеченности в клетке.
Выявлена способность силистронга влиять на процесс апоптоза в клетках головного мозга. Установлено, что препарат обеспечивает поддержание данного процесса на физиологическом уровне даже в условиях острой ишемии. На понтобульбоспинальных и бульбоспинальных препаратах ствола мозга впервые установлено значимое изменение ритмической активности дыхательного центра, повышение спонтанного генераторного процесса в дыхательной нейронной сети и в сети нейронов моста, контролирующих деятельность дыхательного центра, что очевидно обусловлено повышением функциональной активности нейронов мозга за счет мембранотропного и метаболического механизмов. Результаты данных исследований раскрывают возможные механизмы нейротропного действия силистронга.
Впервые в экспериментах in vitro выявлена способность малых молекул и силистронга влиять на процессы антиген-антительного взаимодействия. Показано, что изучаемые соединения изменяют детекцию антител к тканевой трансглутаминазе и вирусу гепатита С в сыворотке крови и ротовой жидкости. Установлен разнонаправленный характер изменений под действием кетокислот, этанола и силистронга показателей клеточного состава крови у лиц различной с групповой принадлежностью в системе АВ0, что создает дополнительные предпосылки к оценке лабораторных данных пациента, учитывая при этом индивидуальные реакции организма на введение различных лекарственных средств, характер питания.
Научно-практическая значимость работы состоит в получении новой базы данных, раскрывающих механизм участия минорных алиментарных факторов в регуляции интенсивности, характера метаболических превращений по основным и альтернативным путям. Выяснение информативно-регуляторных свойств флаволигнанов Silibum marianum на объектах разного уровня структурно-функциональной организации: олигомерных цитоплазматических и митохондриальных ферментах, однородных клеточных популяциях, субклеточных органеллах, а также органном уровне in vivo, ex vivo, расширяют наши представления об оптимизации метаболических процессов, многообразии регуляторных процессов, формирующихся в отногенезе. Получены новые данные, раскрывающие значимость макро- и микронутриентов, трансформирующихся по пищевым цепям. Это фундаментальный аспект решаемой проблемы.
В прикладном отношении результаты исследований могут служить алгоритмом для выяснения характера и механизмов повреждающего действия ксенобиотиков на системы жизнеообеспечения организма. Это ключ к выбору значимых, информативных объектов для тестирования широкого спектра соединений, обладающих биологической и фармакологической активностью. Результаты исследований обеспечивают объективные критерии выбора средств патогенетической коррекции нарушенного метаболизма с учетом индивидуального метаболического статуса.
Основные положения, выносимые на защиту:
1. Биологически активные вещества растительного и животного происхождения взаимодействуют с системами структурно-функционального жизнеобеспечения организма, вызывая изменения ключевых параметров обмена, характеризующие метаболический ответ на введение соединений эндогенной и экзогенной природы. При воздействии экзогенными дегидрогеназами, естественными интермедиатами, растительными биорегуляторами происходит интенсификация метаболизма, обусловленная суммацией эффектов эндогенного и экзогенного ферментов, повышением активности структурно и функционально сопряженных с ними других ферментных систем, обеспечивая фронтальный характер изменений.
2. Прогнозируемое многогранное действие флаволигнанов расторопши пятнистой и малых молекул, установленное с помощью компьютерной системы PASS C&T, ключевыми из которых являются цито- и органопротекторное, мембранотропное, что обуславливает антигипоксическую, антитоксическую, гемопротекторную, антиканцерогенную, гепатопротекторную, антиоксидантную, антитоксическую активность.
3. Способность малых молекул и силистронга участвовать в процессах межбелковых взаимоотношений, в частности, воздействовать на антиген-антительное взаимодействие, что проявляется разнонаправленными изменениями показателей содержания иммуноглобулинов в сыворотке крови и ротовой жидкости.
4. Группоспецифичные особенности реакции клеток крови на действие химически и физически активных соединений являются основой индивидуального ответа. Естественные интермедиаты - пируват, оксалоацетат, этанол, и растительные биологически активные соединения силистронга оказывают неферментативное параметаболическое воздействие на популяции клеток крови, результатом чего является изменение количественных показателей при детекции.
5. Нейропротектоная активность силистронга, реализующаяся в способности регулировать процесс апоптоза в условиях острой ишемии, поддерживая его на физиологическом уровне, стимулировать дыхательный ритмогенез.
Апробация работы. Результаты исследований были представлены на межрегиональной конференции биохимиков Урала, Западной Сибири и Поволжья «Биохимия: от исследования молекулярных механизмов - до внедрения в клиническую практику и производство» (Оренбург, 2003), Межрегиональной научно-практической конференции, посвященной 20-летию ИПО СамГМУ «Актуальные вопросы последипломного образования и здравоохранения» (Самара, 2003), V Международном семинаре по вопросам пожилых «Самарские лекции» (Самара, 2004), V Международной научно-практической конференции «Здоровье и образование в XXI веке» (Москва, 2004), IX Международной научной конференции «Здоровье семьи - XXI век» (Далянь, 2005), на съезде Научного общества специалистов клинической лабораторной диагностики (Москва, 2005), Межрегиональной научно-практической конференции «Новая идеология в единстве фундаментальной и клинической медицины» (Самара, 2005), VI Международной научно-практической конференции «Здоровье и образование в XXI веке» (Москва, 2005), X Международной научной конференции «Здоровье семьи - 21 век» (Бангкок-Паттайя, 2006), VII Международной научно-практической конференции «Здоровье и образование в XXI веке» (Москва, 2006), Всероссийской научно-практической конференции «Актуальные вопросы современной биохимии, посвященной 20-летию Кировской государственной медицинской академии (Киров, 2007), XI Международной научной конференции «Здоровье семьи - 21 век» (Амстердам-Стратсбург, 2007), IV съезда Российского общества биохимиков и молекулярных биологов (Новосибирск, 2008), журналах «Биомедицинская химия» (2006), «Клиническая лабораторная диагностика» (2007, 2008), «Новости клинической цитологии России» (2007), «Вестник РУДН» (2007, 2008), совместном заседании Самарского отделения Всероссийского биохимического общества, кафедр общей, бионеорганической и биоорганической химии и фундаментальной и клинической биохимии с лабораторной диагностикой ГОУ ВПО «Самарский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию» (Самара, 2009).
Внедрение результатов в практику. Результаты исследований используются в работе клинико-диагностической лаборатории Клиник Самарского государственного медицинского университета, в учебном процессе на кафедре фундаментальной и клинической биохимии с лабораторной диагностикой ГОУ ВПО «Самарский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию», на кафедре биохимии ГОУ ВПО «Курский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию», на кафедре биохимии ГОУ ВПО «Саратовский государственный медицинский университет Федерального агентства по здравоохранению и социальному развитию».
Публикации. Всего опубликовано 24 работы, в том числе 1 монография, 3 патента, 7 работ - в ведущих рецензируемых журналах, рекомендованных ВАК РФ.
Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, главы, посвященной описанию материала и методов исследования, четырех глав собственных данных, заключения, выводов, практических рекомендаций и списка литературы.
Диссертация изложена на 216 страницах, иллюстрирована 29 рисунками, содержит 16 таблиц. В работе использовано 430 источников, из них 224 отечественных и 206 зарубежных авторов.
МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ
Проведение работы включало несколько этапов:
I. Оценка влияния экзогенных дегидрогеназ и естественных интермедиатов на показатели углеводно-липидного обмена в крови экспериментальных животных
II. Исследование действия силистронга и его компонентов - этанола и силимарина на активность глицеральдегид-3-фосфатдегидрогеназы, лактатдегидрогеназы, глицерофосфатдегидрогеназы in vitro в тканях экспериментальных животных
III. Изучение влияния силистронга на процесс апоптоза и пейсмекерную активность нейронов головного мозга экспериментальных животных
IV. Оценка влияния малых молекул и силистронга на процессы антиген-антительного взаимодействия: определение содержания антител к тканевой трансглутаминазе и вирусу гепатита С, выявление особенностей клеточного состава в зависимости от групповой принадлежности крови по системе АВ0.
V. Определение вероятности наличия и вероятности отсутствия биологических эффектов пирувата, оксалоацетата, альфа-кетоглутарата, этанола и изомеров силибина с использованием компьютерной программы PASS C&T, PASS 2006.
Эксперименты проведены на 84 кроликах и 129 беспородных крысах.
Объектом наших исследований были: венозная кровь кроликов, гемолизат эритроцитов и гомогенат мышечной ткани крыс, тканевые препараты коры головного мозга крыс, понтобульбоспинальные и бульбоспинальные препараты новорожденных крыс, венозная кровь и ротовая жидкость клинически здоровых лиц и пациентов с хроническим гепатитом С.
В экспериментальных исследованиях были использованы: препараты лактатдегидрогеназы и малатдегидрогеназы, полученные из скелетных мышц норки; силистронг (ФСП 42-0211-0703-01, зарегистрирован Министерством здравоохранения Российской Федерации Р № 000605/01 от 23.08.2001); силимарин (фирмы ICN, Silymarin, чда); спирт этиловый (фирмы Sigma, Ethyl alcohol (Absolute)); пируват и оксалоацетат (фирмы Sigma).
Изучение активности ферментов и содержания метаболитов в крови и тканях экспериментальных животных поводилось на спектрофотометре Lambda 20 (Perkin Elmer, Швейцария). Препараты лактатдегидрогеназы и малатдегидрогеназы вводили в краевую вену уха кроликов в количестве 5000 Е/кг. Активность ферментов и содержание метаболитов в крови определяли через 5 и 20 минут с момента начала эксперимента. Пируват вводили внутривенно в концентрации, в 10 раз превышающей нормальное его содержание в крови. Показатели углеводно-липидного обмена исследовали до и через 60 минут после введения метаболита. Содержание лактата, пирувата, малата, оксалоацетата, ?-глицерофосфата, диоксиацетонфосфата оценивалось спектрофотометрически специфическим ферментативным методом (Bergmeyer H.U. et al., 1986). Содержание глюкозы исследовали глюкозооксидазным методом (Карпищенко А.И. с соавт., 1999).
Исследование активности глицеральдегид-3-фосфатдегидрогеназы, лактатдегидрогеназы, глицерофосфатдегидрогеназы гомолизата и гомогената мышечной ткани крыс проведено с использованием спектрофотометра Lambda 20 (Perkin Elmer, Швейцария) до и после 30-минутной инкубации при температуре 25 ?С с силистронгом в конечной концентрации 0,3 мМ по силимарину, с силимарином и этанолом в конечной концентрации 0,3 мМ.
Изотопно меченые ферменты получали - лактатдегидрогеназу и малатдегидрогеназу получали методом высокотемпературного твердофазного каталитического обмена с газообразным тритием (Zоlоtаrev Yu.А. еt аl., 1991). Метод основан на изотопном обмене между газообразным тритием и твердофазной смесью, состоящей из каталитического металла платиновой группы, неорганического носителя и твердофазного органического компонента, в качестве которого были использованы лактатдегидрогеназа из мышц свиньи и малатдегидрогеназа из мышц кролика (Reanal). Характер распределения меченых тритием лактатдегидрогеназы и малатдегидрогеназы в тканях, оценивали через 1, 24 и 48 часов после введения их в хвостовую вену крыс в дозе 7,5 Сi на кг массы животного.
Исследование влияния силистронга на процесс апоптоза проведены совместной с сотрудниками кафедры биохимии и медицинской химии Красноярской государственной медицинской академии (заведующая кафедрой доктор медицинских наук, профессор А.Б. Салмина). Крысам перитонеально вводили силистронг из расчета 100 мкл/кг массы, моделируя в последствии острую ишемию головного мозга путем окклюзии сонной артерии. Через 24, 48 часов и 7 суток с момента индукции ишемии осуществлялось взятие образцов ткани головного мозга лобной и затылочной области толщиной 3-5 мкм с последующим приготовлением тонких замороженных срезов. Для регистрации апоптоза нейронов головного мозга использовался метод TUNEL (Apoptag Direct Detection kit, Immunotech, France) согласно протоколу производителя. Количество апоптотических клеток выражалось на 100 клеток в образце при анализе не менее 10 полей зрения (Fox G.B. at al., 1998; Dirnagl U., Iadecola C., Moskowitz M.A., 1999).
Изучение влияния силистронга и этанола на процессы дыхательного ритмогенеза проводилось на изолированных понтобульбоспинальных и бульбоспинальных препаратах мозга новорожденных крыс 0-3 суток по методике T.Suzue (1984) в модификации В.Ф. Пятина. Проведены три серии экспериментов: регистрация фоновой пейсмекерной дыхательной активности в условиях перфузии препарата искусственной цереброспинальной жидкостью, перфузии препарата раствором, содержащим 0,07 мМ этанола, перфузии препарата искусственной цереброспинальной жидкостью, содержащим силистронг в конечной концентрации 0,3мМ.
Изучение характера влияния малых молекул и силистронга на процессы антиген-антительного взаимодействия проводили в сыворотке крови и ротовой жидкости 46 клинически здоровых лиц в возрасте 19-32 лет, а также 12 пациентов с хроническим гепатитом С в стадии обострения. Определение содержания антител к тканевой трансглутаминазе, вирусу гепатита С, а также изучение показателей общего анализа крови у пациентов с различной группой крови проводилось до и после добавления в исследуемые образцы пирувата, оксалоацетата, этанола и силистронга в конечной концентрации 0,006 г/мл.
Определение содержания антител к тканевой трансглутаминазе и к вирусу гепатита С в сыворотке крови и ротовой жидкости проводили методом иммуноферментного анализа и использованием ИФА-комплекса, включающего инкубатор-шейкер ELMI Sky Line (Эстония), промыватель «Проплан» («Picon», Россия), спектрофотометр Tecan («Sunrise», Австрия). Исследование концентрации иммуноглобулинов осуществляли с помощью наборов реагентов для количественного определения аутоантител класса А и класса G к тканевой трансглутаминазе (ЗАО «Вектор-Бест», Россия), а также с помощью тест-системы «Рекомби-Бест-Анти ВГС» (ЗАО «Вектор-Бест», Россия).
Определение группы крови по системе АВ0 у обследуемых проводилось перекрестным способом и с помощью цоликлонов. В результате выявлено: 29,0% пациентов имеют 0(I), 37,7%- А(II), 22,9% - В(III), 10,4% - АВ(IV) группу крови, что соответствует данным литературы о распределении групп крови в популяции (Гильмиярова Ф.Н. с соавт., 2007). Показатели общего анализа крови (18 параметров) определяли с помощью автоматического гематологического анализатора «Sysmex КХ - 21» (Япония) с помощью коммерческого набора реактивов фирмы «Roch-Diagnostics» (Япония).
Изучение спектров биологической активности силибина, изосилибина, 2,3-дегидросилибина, силикристина, изосиликристина, 2,3- дегидросиликристина, силидианина, а также этанола, пирувата, оксалоацетата, альфа-кетоглутарата в зависимости от их химической структуры проводилось с использованием компьютерной системы Prediction of Activity Spectra for Substances (PASS C&T, PASS 2006). Интерпретация полученных результатов осуществлялась с помощью программы «Pharma Expert». Данные компьютерные программы разработанной сотрудниками Лаборатории структурно-функционального конструирования лекарств НИИ Биомедицинской химии им. В.Н. Ореховича РАМН профессором В.В. Поройковым, к. ф.-м. н. Д.А. Филимоновым.
Статистическая обработка результатов исследований проводились с использованием персонального компьютера с применением программ MS Office 2003, MS Excel 2000, S-Plus 2000, Statistica 7.0. Определялись следующие статистические характеристики: средняя арифметическая (М), стандартная ошибка от средней арифметической (m), медиана (Ме). В зависимости от формы распределения совокупностей применялось два вида статистических критериев: параметрические (t - критерий Стьюдента) и непараметрические (U - критерий Уилкоксона) (Платонов А.Е., 2000; Боровиков В., 2001; Реброва, 2002; Мидлтон М.Р., 2005).
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Проведенные эксперименты с оценкой на различных уровнях структурной организации выявили особенности взаимодействия биологически активных веществ растительного и животного происхождения с системами жизнеобеспечения организма.
Одной из первых задач исследования было выяснение способности экзогенных ферментов включаться во внеклеточные, внутриклеточные, внутримитохондриальные обменные процессы. Оценить возможность проникновения введенных извне энзимов в ткани экспериментальных животных позволила визуализация конкретного фермента в организме с использованием радиоактивной метки. Выявлено, что введенные изотопно меченые лактатдегидрогеназа и малатдегидрогеназа циркулируют в крови, проникают и накапливаются в тканях в режиме, специфичном для каждого фермента. Так, тетрамерная молекула лактатдегидрогеназы в значительной степени концентрируется в крови, превышая содержание в ней малатдегидрогеназы в 6,5 раз через 1 час после введения. Подобная тенденция сохраняется в течение всего срока эксперимента. Малатдегидрогеназа достаточно быстро покидает кровяное русло и проникает в ткани. Уже через 1 час с момента начала исследования максимальный уровень радиоактивности - 67,1% - обнаруживается в скелетных мышцах (рис. 1).
А
Б
Рис. 1. Распределение э экзогенной лактатдегидрогеназы (А) и экзогенной малатдегидрогеназы (Б), меченых тритием в органах и тканях крыс после внутривенного введения в динамике
силистронг молекула биогенный растительный
Лактатдегидрогеназа также попадает в скелетные мышцы, но в меньшем количестве - 31,2% введенного фермента через 1 час после начала эксперимента оказывается в них. В печень проникают оба экзогенных фермента, достигая наибольшего уровня к 48 часам с начала исследования.
Содержание меченой тритием малатдегидрогеназы при этом превышает радиоактивность данной ткани после введения лактатдегидрогеназы в 1,8 раза. Распределение изучаемых дегидрогеназ в селезенке и почках носит разнонаправленный характер. Содержание лактатдегидрогеназы резко увеличивается к 48 часам, напротив, малатдегидрогеназа концентрируется первоначально в этих органах, а по истечению двух суток уровень ее стремительно снижается. При анализе характера распределения меченых тритием ферментов отмечается относительно низкое содержание дегидрогеназ в головном мозге. Однако к концу эксперимента содержание экзогенных лактатдегидрогеназы и малатдегидрогеназы в данной ткани резко увеличивается, что говорит об их способности проникать через гематоэнцефалический барьер.
Выявленные различия в характере распределения экзогенных дегидрогеназ в крови и тканях экспериментальных животных обусловлены, очевидно, различными структурно-функциональными и физико-химическими свойствами лактатдегидрогеназы и малатдегидрогеназы, определяющими способность избирательно захватываться, взаимодействуя с рецепторами клеток и преодолевая мембранный барьер.
Следующим этапом нашего исследования стало выяснение роли экзогенных дегидрогеназ в регуляции внутриклеточного метаболизма, изучение влияния их на активность собственных ферментов организма. Мы изучили содержание основных показателей углеводного обмена и метаболитов в крови кроликов после внутривенного введения им лактатдегидрогеназы и малатдегидрогеназы. В результате проведенных экспериментов выявлено, что экзогенные ферменты не только проникают в ткани, но и вызывают определенные сдвиги в метаболических процессах организма, визуализирующиеся в показателях в периферической крови (рис. 2). В целом, введенные извне лактатдегидрогеназа и малатдегидрогеназа способствуют интенсификации обмена.
А
Б
Рис. 2. Изменение активности ферментов и содержания метаболитов (%) в крови кроликов через 5 минут (А) и через 20 минут (Б) после введения им экзогенных лактат- и малатдегидрогеназы (за 100% приняты значения до введения)
Интересным является способность изученных экзогенных дегидрогеназ увеличивать не только скорость реакций, катализируемых ими, что в наших экспериментах нашло отражение в увеличении активности изучаемых эндогенных ферментов. Изменения также происходят и со стороны интегральных метаболитов углеводного обмена. Так, при введении лактатдегидрогеназы в периферической крови снижается содержание лактата и пирувата на 14,2 и 20,4% соответственно (р<0,01), что вероятно, объясняется суммацией эффектов собственного и экзогенного ферментов. Концентрация малата уменьшается, оксалоацетата - достоверно снижается к 20 минуте эксперимента. Данные сдвиги наблюдаются на фоне увеличения активности эндогенной малатдегидрогеназы.
Введение лактатдегидрогеназы вызывает также уменьшение содержания диоксиацетонфосфата, ?-глицерофосфата, повышение концентрации глюкозы на 56,1% (р<0,01). Под действием экзогенной малатдегидрогеназы содержание малата снижается на 44,0%; уровень оксалоацетата сразу после введения фермента повышается на 69,7% (р<0,001), однако к концу эксперимента становится равным значению в контроле. Происходит увеличение активности эндогенной малатдегидрогеназы в 2,3 раза, лактатдегидрогеназы - в 2 раза, концентрация глюкозы возрастает в 1,5 раза.
На наш взгляд, данные изменения, вероятно, обусловлены взаимодействиями макромолекул внутри клетки, которые влекут за собой образование временных надмолекулярных комплексов, обеспечивающих более совершенные механизмы регуляции различных биохимических процессов. В целом, взаимовлияние ферментов, вероятно, обусловлено их физическими свойствами, позволяющими биомолекулам реагировать на действие различных факторов изменением структуры. Важная роль, вероятно, принадлежит также микроокружению молекулы - метаболитам, биополимерам различной степени гидрофобности и гидрофильности, малым молекулам, влияющим на пространственную конформацию и каталитическую активность фермента.
Как известно, метаболиты, образующиеся в организме в результате различных биохимических процессов, являются высокоактивными соединениями. Возможно ли воздействие на метаболизм введением избытка веществ, образующихся в физиологических условиях? Изучению влияния естественных интермедиатов на ход одного из ключевых метаболических путей организма - гликолиза - был посвящен следующий этап нашей работы. Данная серия экспериментов проведена на кроликах, которым в ушную вену вводили пируват в концентрации в крови в 10 раз превышающую нормальное его содержание. Выявлено, что введение экзогенного пирувата вызывает многообразные изменения уровня основных метаболитов в периферической крови экспериментальных животных.
Таблица 1- Содержание различных метаболитов (мкмоль/мл) в периферической крови кроликов до и после введения пирувата
Показатели |
До введения |
После введения |
|
Лактат Изменение, % |
3,920,141 |
6,7290,342** +71,6 |
|
Пируват Изменение, % |
0,1370,0016 |
0,9120,043** +565,7 |
|
Малат Изменение, % |
1,430,031 |
1,660,047* +16,1 |
|
Оксалоацетат Изменение, % |
0,090,003 |
0,0630,009* -30,0 |
|
Диоксиацетонфосфат Изменение, % |
0,140,014 |
0,3370,017** +140,7 |
|
Альфа-глицерофосфат Изменение, % |
0,390,011 |
0,6060,034** +55,4 |
|
Глюкоза, ммоль/л Изменение, % |
4,720,144 |
2,7620,094** -41,5 |
|
Глицерин Изменение, % |
0,4570,023 |
0,6160,032* +34,8 |
|
Свободные жирные кислоты Изменение, % |
0,440,021 |
0,8260,052** +87,7 |
* р<0,01; ** р<0,001
Отмечается увеличение содержания лактата на 71,6%, малата - на 16,0%, альфа-глицерофосфата - на 55,4%, диоксиацетофосфата - в 2,4 раза (табл. 1). Кроме того, наблюдаются выраженные сдвиги со стороны показателей углеводно-липидного обмена: концентрация глюкозы снижается практически в 2 раза, при этом резко возрастает уровень глицерина и свободных жирных кислот. С одной стороны это говорит о повышенной утилизации глюкозы тканями организма, возможно, более интенсивно по аэробному пути. С другой - введение экзогенного пирувата, вероятно, вызывает такую перестройку метаболизма, что основным источником энергии является глюкоза, а не более энергоемкие высшие жирные кислоты и глицерин.
Таким образом, полученные результаты свидетельствуют о значительных метаболических сдвигах даже при введении одного естественного метаболита. Избыток высоко реакционноспособного пирувата вызывает изменение осмотической концентрации, проницаемости, влияет на трансмембранный перенос, что отражается на межмолекулярных взаимодействиях, каталитических и других жизненноважных процессах.
Изучив характер воздействия на обменные процессы введением веществ, образующихся в организме в физиологических условиях, извне мы попытались оценить результат влияния на ферменты суммы флаволигнанов, входящих в состав препарата силистронг. Они являются экзогенными, однако ограничено чужеродными по отношению к организму человека, так как естественно поступают по пищевым цепям. Выявлено, что в результате действия биологически активных веществ растительного происхождения, входящих в состав силистронга, а также его компонента этанола происходит изменение активности изучаемых ферментов. Выявлено, что под действием силистронга происходит увеличение активности всех ферментов (рис. 3). Активность лактатдегидрогнеазы повысилась с 0,3210,006 до 0,6230,007 Е/мг (+94,1%, р<0,001), глицерофосфатдегидрогеназы - на 86,5% (р<0,001). Наиболее выраженные изменения наблюдаются у глицеральдегид-3-фосфатдегидрогеназы. Скорость реакции, катализируемой данным ферментом увеличивается в 2 раза (+110%, р<0,001). В результате введения в лизат эритроцитов раствора силимарина наблюдаются не столь значительные сдвиги. Так, активность глицеральдегид-3-фосфатдегидрогеназы увеличилась лишь на 8,9% (р>0,05), лактатдегидрогеназы - практически не изменилась.
Рис. 3. Активность глицеральдегид-3-фосфатдегидрогеназы, глицерофосфатдегидрогеназы и лактатдегидрогеназы (Е/мг) гемолизата крыс при инкубации с силистронгом и его компонентами
Инкубация с этанолом вызвала повышение активности глицеральдегид-3-фосфатдегидрогеназы с 0,2510,003 до 0,4400,002 Е/мг (+75,3%, р<0,001), глицерофосфатдегидрогеназы - на 27,1% (р<0,05). Скорость заключительного этапа гликолиза увеличилась в 1,6 раза (+63,1%, р<0,01).
Аналогичные тенденции выявлены нами и в гомогенате мышечной ткани (табл. 2). Наибольшим изменениям подверглась глицеральдегид-3-фосфатдегидрогеназа. Активность данного фермента возрастает после инкубации с силистроногм, силимарином и этанолом на 487,4, 190,4 и 346,2% соответственно (р<0,001).
Таблица 2 - Влияние флаволигнанов и этанола на активность дегидрогеназ (Е/мг) скелетных мышц экспериментальных животных
Контроль |
Силистронг |
Силимарин |
Этанол |
||
глицеральдегид-3-фосфатдегидрогеназа |
|||||
Исходные значения |
0,5060,049 |
0,4920,061 |
0,5090,038 |
0,5110,023 |
|
Инкубация с препаратами |
2,890,24*** |
1,480,27*** |
2,280,31*** |
||
Изменение, % |
+487,4 |
+190,8 |
+346,2 |
||
глицерофосфатдегидрогеназа |
|||||
Исходные значения |
0,3050,026 |
0,3110,034 |
0,2960,026 |
0,2980,022 |
|
Инкубация с препаратами |
0,5210,056 |
0,4110,033** |
0,2780,022* |
||
Изменение, % |
+67,5 |
+38,8 |
-6,7 |
||
лактатдегидрогеназа |
|||||
Исходные значения |
2,440,26 |
2,320,21 |
2,460,28 |
2,390,23 |
|
Инкубация с препаратами |
3,280,31*** |
3,070,22** |
2,690,29* |
||
Изменение, % |
+41,4 |
+24,8 |
+12,6 |
* р>0,5; ** р<0,01; *** р<0,001
Примечательным является отсутствие влияния этанола на активность лактатдегидрогеназы и глицерофосфатдегидрогеназы мышечной ткани. Силистронг оказывает более выраженное действие, чем силимарин, что отражается в увеличении скорости реакций, катализируемых данными ферментами. Так, активность глицерофосфатдегидрогеназы при инкубации с силистронгом повышается в 1,7 раза (+67,5%, р<0,001), лактатдегидрогеназы - на 41,4% (р<0,001). В целом, ферменты гомогената мышечной ткани менее интенсивно реагируют на введение силистронга и его компонентов. Исключение составляет глицеральдегид-3-фосфатдегидрогеназа, активность которой при инкубации с каждым исследуемым компонентом увеличивается в несколько раз (табл. 2).
Следовательно, силистронг, а также его компоненты - силимарин и этанол способны выступать регуляторами активности ферментов. Возможно, это связано со способностью флаволигнанов взаимодействовать с функциональными группами энзимов, которое может привести к конформационной перестройке биомолекулы, что неизбежно приведет к изменению электронно-конформационных отношений, определяющих каталитическую способность фермента. Интересным является тот факт, что ферменты больше всего подвержены влиянию силистронга, в то время как его отдельные составляющие - силимарин и этанол изменяют их активность менее значительно.
Полученные нами в ходе проведения серии экспериментов результаты свидетельствуют о возможности влияния на обменные процессы различными факторами эндогенной и экзогенной природы, раскрывают возможные молекулярные механизмы метаболического ответа организма на подобные воздействия. Особенности химического строения ферментов определяют их полифункциональность, способность реагировать на различного рода влияния, исходя из сложившейся в данный момент ситуации. Анализируя полученные данные можно отметить, что наряду со статическими факторами реакционноспособности, включающими в себя распределение электронной плотности в молекуле и пространственную конфигурацию, большая роль принадлежит интермедиатам, вступающим, возможно, в параметаболические взаимодействия, создавая тем самым определенное микроокружение крупных молекул-регуляторов. В этом плане представляет интерес изучение полного спектра биологической активности малых молекул, принимающих участие в регуляции метаболизма в физиологических условиях, а также флаволигнанов, очевидно, способных оказывать влияние на процессы внутри- и межклеточного взаимодействия. Оценить возможность параметаболических взаимодействий соединения, реализующихся различными физиологическими эффектами, можно проанализировав его структуру. Решить поставленную задачу позволила нам компьютерная система Prediction of Activity Spectra for Substances (PASS C&T) и программа интерпретации результатов «Pharma Expert», с помощью которой возможно прогнозирование биологической активности вещества в зависимости от его химического строения. Интересным для нас явилось изучение биологической активности каждого из изомеров силибина, которое, позволило выявить зависимость установленных эффектов от специфики структуры.
При анализе полученных результатов установлено, что флаволигнаны расторопши пятнистой обладают широким спектром биологических эффектов (рис. 4). Характерно преобладание различных видов активности у разных изоформ силибина, что вероятно, связано с особенностями структуры данных соединений. Так, силибин и изосилибин, являясь одинаковыми по химической строению, незначительно отличаясь лишь по пространственной конфигурации остатка кониферилового спирта, обладают абсолютно идентичными эффектами и числовые значения вероятностей наличия их совпадают. У этих соединений выражена антиоксидантная (Ра 0,688), фибринолитическая (Ра 0,666), противогерпетическая (Ра 0,655) активность, а также способность ингибировать перекисное окисление липидов (Ра 0,586). Дегидросилибин участвует в укреплении сосудистой стенки (Ра 0,629), является агонистом апоптоза (Ра 0,792), регулятором метаболизма нуклеотидов (Ра 0,535).
Силикристин, являясь высоко реакционноспособным соединением, проявляет высочайшую способность стабилизировать клеточные мембраны (Ра 0,952), оказывает антитоксическое и гепатопротекторное действие (Ра 0,904 и 0,816). Его изомер изосиликристин в большей степени действует как «ловушка свободных радикалов» (Ра 0,762). Силидианин обладает самым выраженным противоопухолевым эффектом (Ра 0,782). Необходимо отметить также, что ни один из изомеров силибина не обладает мутагенностью, тератогенностью, канцерогенностью, кардиотоксичностью.
Рис. 4. Спектр биологических эффектов силибина и его изомеров
Рассмотрев зависимость биологической активности от особенностей химического строения флаволигнанов, соединений с достаточно сложной в химическом отношении структурой, мы попытались раскрыть возможные механизмы метаболических и параметаболических эффектов малых молекул. Последние, создавая определенное микроокружение, могут влиять на свойства и активность крупных молекул-регуляторов. Кроме того, интересными представляются данные о полном спектре биологической активности этанола, который является компонентом силистронга.
При анализе результатов, полученных с помощью компьютерной программы PASS 2006, у этанола высока вероятность наличия 36 биологических эффектов и 479 механизмов их реализации. Он обладает достаточно высокой способностью регулировать проницаемость клеточных мембран, выступать цитопротектором, оказывать антитоксическое, антигипоксическое действие. Этанол способен влиять на процессы созревания клеток крови в различных ростках костного мозга, являясь стимулятором лейко- и эритропоэза, ингибировать синтез миелобластов, реализуя в целом гемопротекторный эффект. Достаточно высока вероятность его действия как антагониста фибриногеновых рецепторов, что обуславливает фибринолитический эффект и кардиопротекторную активность (рис. 5).
Рис. 5. Спектр биологической активности этанола
Этанол может выступать антагонистом медиаторов, оказывать психостимулирующий эффект. Важными являются данные о способности этанола оказывать антиканцерогенное и антимутагенное действие, возможным механизмом реализации которого служит агонизм апоптоза. Кроме того, выявлена способность этилового спирта выступать раздражителем слизистой оболочки глаз, кожного покрова, антисептиком, антидотом, известные и используемые в медицинской практике.
На наш взгляд, многообразие эффектов этанола, который, как мы видим, вопреки уже имеющимся данным, обладает рядом положительных свойств, можно связать именно с особенностями его химического строения. Как известно, этанол представляет собой относительно индифферентное в химическом плане соединение, имеющее небольшие размеры и молекулярную массу, обладающее амфифильностью, способное конкурировать с другими схожими по структуре молекулами. Очевидно, реализация параметаболических эффектов его осуществляется благодаря наличию ОН-группы. Избыток этанола, создающийся в результате экзогенного поступления при злоупотреблении алкоголем, ведет к избыточному образованию более реакционноспособного и токсичного ацетальдегида, реализующего свое негативное влияние на организм по метаболическим и параметаболическим путям. Интересным фактом является наличие у этанола по данным компьютерной программы PASS 2006 лишь одного вида токсичности (гепатотоксичность). Учитывая эндогенное образование этанола, наличие в организме систем, регулирующих его физиологическую концентрацию, можно предположить, что его положительные свойства нивелируются при поступлении большого количества экзогенного алкоголя.
Как известно, промежуточными продуктами обмена являются карбоновые кислоты и производные, образующиеся при катаболизме углеводов, липидов и аминокислот. Изучение возможных эффектов, которые они оказывают на биомолекулы, структуры и процессы организма за счет особенностей химического строения стало следующим этапом нашей работы.
Таблица 3- Механизмы действия и возможные эффекты малых молекул по данным компьютерной программы PASS 2006
Вещество Механизм, эффект |
Пируват |
Оксалоацетат |
Альфа-кетоглутарат |
|
Ра |
Ра |
Ра |
||
I. Механизмы действия: |
||||
регулятор метаболизма липидов |
0,812 |
0,585 |
0,627 |
|
ингибитор перекисного окисления липидов |
0,725 |
0,713 |
0,749 |
|
антагонист медиаторов |
0,699 |
0,696 |
0,626 |
|
окислитель |
0,602 |
0,609 |
0,678 |
|
агонист нейротрофического фактора |
0,670 |
0,626 |
0,589 |
|
антагонист апоптоза |
0,655 |
0,649 |
0,631 |
|
ингибитор калекреина почек |
0,532 |
0,531 |
0,513 |
|
иммуномодулятор |
0,554 |
- |
0,502 |
|
ингибитор фактора транскрипции |
- |
0,672 |
0,633 |
|
антагонист простагландинов Е1 и Н2 |
- |
- |
0,535 |
|
вазоделятатор |
- |
- |
0,523 |
|
ингибитор XIIIа фактора свертывания крови |
- |
- |
0,557 |
|
активация аденилатциклазы |
- |
0,554 |
||
II. Эффекты: |
||||
цитопротектор |
0,721 |
0,684 |
0,740 |
|
стимулятор лейкопоэза |
0,724 |
0,716 |
0,702 |
|
стимулятор эритропоэза |
0,695 |
0,701 |
0,696 |
|
противовирусный |
- |
0,681 |
0,669 |
|
антигипоксический |
0,650 |
0,644 |
0,659 |
|
антитоксический |
0,742 |
0,575 |
0,588 |
|
гемопротекторный |
0,524 |
0,524 |
0,551 |
|
психостимулирующий |
- |
- |
0,520 |
|
антимутагенный |
- |
- |
0,517 |
Использование компьютерной программы PASS 2006 позволило выявить многообразие биологических эффектов и механизмов их реализации пирувата, оксалоацетата, альфа-кетоглутарата (табл. 3).
Приведенные данные свидетельствуют о том, что изученным производным карбоновых кислот присущи различные механизмы влияния на активность факторов, регулирующих внутри- и межклеточные взаимодействия.
Таким образом, полученные результаты раскрывают возможности влияния пирувата, оксалоацетата, альфа-кетоглутарата, этанола и силистронга на межмолекулярные процессы, участия их в регуляции обмена и поддержании метаболического баланса. Очевидно, малые молекулы и флаволигнаны способны выступать в качестве посредников, регулирующих функции макромолекул, реализующихся различными биологическими эффектами.
Уникальные свойства флаволигнанов расторопши пятнистой, а также регуляторная способность естественных интермедиатов - этанола, пирувата, оксалоацетата, участие данных соединений в различных процессах, направленных на поддержание физиологического уровня обмена, позволили нам предположить возможность их влияния на один из ключевых механизмов ответной реакции организма - антиген-антительное взаимодействие.
При анализе полученных результатов выявлено, что иммуноглобулины класса G к тканевой трансглутаминазе определяются в сыворотке крови всех обследуемых. Среднее значение этого показателя составило 3,00,005 ЕД/мл. Данная концентрация соответствует отрицательному результату, что исключает возможность участия в исследовании лиц, страдающих целиакией. Нами выявлено, что при инкубации сыворотки крови с пируватом и оксалоацетатом отмечается снижение при детекции показателя Ig G к тканевой трансглутаминазе на 20,8% и 68,6% соответственно (р<0,01) (рис. 6).
Рис. 6. Содержание иммуноглобулинов класса G к тканевой трансглутаминазе в сыворотке крови (ЕД/мл) при инкубации с силистронгом и малыми молекулами
При добавлении в сыворотку крови этанола и силистронга наблюдаются противоположные изменения (рис. 6). Так, этанол увеличивает показатель определяемых антител на 12,5%. Количество Ig G к тканевой трансглутаминазе под действием силистронга увеличивается до 4,190,008 ЕД/мл, достоверно превышая значения в контроле на 39,6% (р<0,01).
Исследование концентрации иммуноглобулинов класса А к тканевой трансглутаминазе также выявило наличие их в сыворотке крови у всех обследуемых лиц. Значения в контроле были выше минимального порога определения и составили в среднем 3,630,007 ЕД/мл. Наиболее выраженные изменения наблюдались при инкубации сыворотки крови с оксалоацетатом (рис. 7). Значение показателя Ig А к тканевой трансглутаминазе под действием данной кетокислоты достоверно снизилось на 91,4% (р<0,001). Отмечается тенденция к уменьшению показателя определяемых антител под действием пирувата и этанола (-12,1% и -6,7% соответственно; р<0,05). Добавление же силистронга не вызывает каких-либо сдвигов со стороны показателя иммуноглобулинов класса А в сыворотке крови обследуемых (рис. 7).
...Подобные документы
Классификация токсинов природного происхождения на химические компоненты растительного и животного происхождения. Ингибиторы ферментов пищеварения, антивитамины, гликоалкалоиды, цианогенные гликозиды, токсины растений и грибов. Клиника отравления.
реферат [20,4 K], добавлен 24.03.2009Яды растительного и животного происхождения - токсические вещества белковой и небелковой природы, способные при воздействии на живой организм вызвать острое или хроническое отравление. Исход поражения ядом, механизм токсического действия; антидоты.
контрольная работа [243,4 K], добавлен 06.08.2013Биообъекты растительного происхождения, используемые в культуре ткани для получения лекарственных веществ. Ферменты, используемые в генетической инженерии, механизм их действия. Сущность метода иммобилизации ферментов путем включения в структуру геля.
контрольная работа [617,9 K], добавлен 14.02.2013В чем содержатся белки, жиры, водорастворимые и жирорастворимые витамины, углеводы, вода и минеральные соли. Основные факторы, влияющие на удовлетворение потребностей организма человека. Баланс между продуктами животного и растительного происхождения.
презентация [5,5 M], добавлен 14.04.2016Характеристика жирных кислот — алифатических одноосновных карбоновых кислот с открытой цепью, содержащихся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Их расщепление, виды существования в организме.
презентация [305,5 K], добавлен 04.03.2014Методы изучения клетки, их зависимость от типа объектива микроскопа. Положения клеточной теории. Клетки животного и растительного происхождения. Фагоцитоз - поглощение клеткой из окружающей среды плотных частиц. Подходы к лечению наследственных болезней.
презентация [881,2 K], добавлен 12.09.2014Характер питания и мест обитания молей-кератофагов. Защита материалов и изделий от них. Основные методы борьбы с молями. Питание и размножение жуков-кожеедов. Классификация молей по месту обитания. Ветчинный кожеед как самый распространенный вид.
реферат [30,7 K], добавлен 05.12.2012Свойства живого организма, основные положения клеточной теории. Осмотические активные вещества растительной клетки. Темновая стадия фотосинтеза, роль дыхания в обмене веществ растительного организма. Химическая природа и характер действия дегидрогеназ.
контрольная работа [58,0 K], добавлен 01.12.2011Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.
курс лекций [188,8 K], добавлен 15.06.2010Антибиотики, образуемые бактериями, актиномицетами, грибами и лишайниками. Антибиотические вещества высших растений. Условия образования и биосинтеза стрептомицина и пенициллина. Антибиотики животного происхождения, механизмы их действия и применение.
реферат [1,2 M], добавлен 09.12.2015Понятие о флоре, ландшафте, о растительном сообществе и растительности. Основные этапы развития мира животных на земле. Виды и важнейшие породы домашних животных. Загрязнение природной среды и роль растений в ее защите. Охрана растительного покрова.
реферат [21,7 K], добавлен 03.07.2010Анализ белковых веществ. Определение количества белков в тканях по содержанию в них общего азота. Молекулярный вес белков. Цифры, характеризующие молекулярные вес. Форма белковых молекул, их растворимость. Первые исследования о составе белковых веществ.
реферат [86,3 K], добавлен 24.03.2009Анализ механизмов прохождения веществ через клеточную мембрану. Основные процессы, с помощью которых вещества проникают через мембрану. Свойства простой и облегченной диффузии. Типы активного транспорта. Ионные каналы, их отличие от поры, градиент.
презентация [282,3 K], добавлен 06.11.2014Изучение проблемы обмена веществ как основной функции организма человека в научной литературе. Обмен углеводов как совокупность процессов их превращения в организме, его фазы. Источник образования и поступления витаминов. Регуляция обмена веществ.
курсовая работа [415,4 K], добавлен 01.02.2014Характеристика первичных и вторичных веществ, содержащихся в лишайниках. Особенности синтеза лишайниковых веществ, который связан с деятельностью фикобионта и микобионта. Исследование влияния на ростовые процессы лишайников условий окружающей среды.
реферат [25,7 K], добавлен 26.04.2010Понятие антиоксидантов и характер их взаимодействия с радикалами. Классификация и разновидности антиоксидантов, их общее описание и механизм действия: витамины А, В, С и Е, селен, бета-каротин, их применение в пищевой промышленности, влияние на организм.
реферат [527,8 K], добавлен 14.05.2014Изучение основных представителей животного и растительного мира Антарктиды. Характеристика питания, размножения и расселения пингвинов, тюленей, белых медведей. Описания особенностей гнездования гигантского буревестника, произрастания мхов и лишайников.
презентация [2,2 M], добавлен 11.05.2011Обмен веществ и энергии как основная функция организма, его основные фазы и протекающие процессы - ассимиляции и диссимиляции. Роль белков в организме, механизм их обмена. Обмен воды, витаминов, жиров, углеводов. Регуляция теплообразования и теплоотдачи.
реферат [27,2 K], добавлен 08.08.2009Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.
реферат [35,7 K], добавлен 12.06.2011Сущность метаболизма организма человека. Постоянный обмен веществ между организмом и внешней средой. Аэробное и анаэробное расщепление продуктов. Величина основного обмена. Источник тепла в организме. Нервный механизм терморегуляции организма человека.
лекция [22,3 K], добавлен 28.04.2013