Генно-модифіковані організми: за і проти

Геном - сукупність носіїв спадкової інформації, що міститься в клітковому матеріалі. Отримання трансгенних тварин - процес, який здійснюється за допомогою перенесення клонованих генів в ядра запліднених яйцеклітин чи ембріональних стовбурових клітин.

Рубрика Биология и естествознание
Вид учебное пособие
Язык русский
Дата добавления 03.10.2018
Размер файла 202,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Вступ

За прогнозами демографів населення Землі до 2025 р. повинне досягти 8,3 млрд. чоловік. Як усунути навислу над світом і ще не цілком усвідомлену нами погрозу голоду? Розширювати посівні площі, будувати нові ферми? Але адже Земля й так забудована й розорана уздовж і поперек. Підвищувати врожайність зернових і виробництво м'яса традиційними способами? Ні, так теж проблему не вирішити. Адже врожайність основних світових культур - пшениці й рису досягла межі. А нескінченні "м'ясні скандали" - те з коров'ячим сказом, то з малайзійськими свинями, то з бельгійськими курми - показують, що виробляти якісну яловичину, свинину й птицю стає усе сутужніше.

Що ж являє собою генетично модифікована їжа й наскільки обґрунтовані викликані нею побоювання? Що ж таке генна інженерія і який механізм її дії? У загальному поданні генна інженерія - це нова, революційна технологія, за допомогою якої вчені можуть витягати гени з одного організму й впроваджувати їх у будь-який іншій. Пересадження генів змінює програму організму-одержувача, і його клітини починають робити різні речовини, які, у свою чергу, створюють нові характеристики усередині цього організму. За допомогою цього методу дослідники можуть міняти особливі властивості й характеристики в потрібному їм напрямку: наприклад, вони можуть вивести сорт соєвих бобів, стійких до впливу гербіцидів.

Дослідники з дуже більшою наснагою узялися використати генну інженерію для створення більше поживних продуктів харчування ліквідації певних хвороб, у тому числі й у свійських тварин, сподіваючись у такий спосіб поліпшити життя людини на Землі. Але в дійсності, незважаючи на те що гени можуть бути витягнуті й правильно схрещені, у житті дуже важко прогнозувати наслідки вживляння генів у чужий організм. Такі операції можуть стати причиною мутацій, у результаті яких придушується діяльність природних генів організму. Впроваджені гени можуть також викликати несподівані побічні ефекти: генетично модифікована їжа може, приміром, містити токсини й алергени або мати знижену поживність, і в результаті споживачі занедужують або навіть, як уже траплялося, умирають. Крім того, організми, виведені за допомогою генної інженерії, здатні самостійно розмножуватися й схрещуватися із природними, що не перетерпіли генне втручання, популяціями, викликаючи при цьому необоротні біологічні зміни у всієї екосистеми Землі.

Чи відрізняються генетично модифіковані культури по смаку й зовнішньому вигляді від звичайних? Анітрошки. Їхня відмінність розпізнається лише на рівні ДНК. Принцип генно-інженерного методу полягає в тому, що із клітини-донора виділяють гени, відповідальні за ту або іншу властивість, і вводять у клітини сільськогосподарських культур або тварин. Модифікована клітина потім стає основою для створення нового виду рослини або тварини, що володіє бажаними властивостями.

Так, наприклад, генетично змінена соя має імунітет до хімічних гербіцидів. Вражаючи бур'яни, вони не заподіюють ніякої шкоди самій корисній рослині. В Азії, наприклад, виростає мутованой рис, що добре переносить посуху й засолені ґрунти. Швейцарський концерн «Новартис» почав вирощувати кукурудзу, що виділяє власну отруту проти польових шкідників. В Америці виведена картопля, що при прожарюванні усмоктує менше жиру. А голландська картопля з «досадженим» геном дуже стійка до вірусних захворювань. У цей час створений ряд трансгенних культур: соя, кукурудза, бавовна, рапс, томати, картопля. Список сортів трансгенних рослин, що пройшли польові випробування й уже оброблюваних у Європі й Америці, росте так само стрімко, як і пов'язані із цією галуззю науки слухи, страхи й надії людства.

Правда, уряди й громадськість у різних країнах ставляться до проблеми трансгенеза по-різному. Якщо, наприклад, у США розширюються рамки законопроектів, що допускають включення продуктів трансгенного сільського господарства в комерційний оборот, а самі вирощують такі рослини на більших площах, то в країнах Європейського союзу поки тільки визнають необхідність науково обґрунтованої оцінки безпеки рослин і тварин, одержуваних у результаті трансгенеза.

Уже сьогодні трансгенні продукти в значній мірі становлять харчування американців (сир, м'ясо, ті ж гамбургери, не говорячи про сою, кукурудзу, томати, картоплі). Поля трансгенних кукурудзи й картоплі займають у США і Канаді не 30 % посівних площ.

Більше того, у тих же Сполучених Штатах дозволено не вказувати на етикетці походження харчової сировини, оскільки творці глибоко впевнені (і змогли це довести своєму Міністерству охорони здоров'я) у безпеці трансгенної їжі.

Трохи інший - більше критичний - підхід у європейців. Він викликаний рядом факторів. Перший - чисто економічний, пов'язаний з конкуренцією й захистом ринку від американців, що лідирують у біотехнологіях. Інші фактори пов'язані з так званими протестами різних громадських організацій проти виробництва трансгенних продуктів. Неформальним світовим лідером у боротьбі з генетично зміненою продукцією стала Великобританія, що після історії з «коров'ячим сказом» проявляє особливу розбірливість у відношенні того, що надходить на її обідній стіл.

У цілому супротивники генетично модифікованих продуктів в Beликобританії поки беруть гору над її прихильниками. Компанії «Нестле», «Макс енд Спенсер», «Уайтроуз» заявили, що починають шукати постачальників «чистих» продуктів. А найбільші мережі супермаркетів «Теско», «Юнілевер», «Дж.Сайнсбери Плс» оголосили про те, що забирають зі своїх полиць будь-яку продукцію, де є хоч один компонент, створений генною інженерією.

Тим часом на Заході найбільш затяті супротивники біотехнології активно пручаються вторгненню генетики в сферу споживання: по ночах, проникнувши на експериментальні поля, ріжуть під корінь урожай або топчуть посіви. А західні союзи споживачів домагаються того, щоб продавці постачали їстівних мутантів спеціальними етикетками: «нехай покупець сам вирішує, які продукти купувати - звичайні або генетичні».

В європейському підході до трансгенезу велике значення надається роз'яснювальній роботі. Стурбованому населенню втолковуєтся, зокрема, що в трансгенні рослини ніколи не вводили й не збираються вводити ген людини або тварин. При цьому основні страхи самих медиків і біологів із приводу трансгенеза зв'язані, по-перше, з непередбаченими ефектами прояву гена - іншими словами, з можливостями зміни хімічного складу, зниження харчової цінності продукту й інших його споживчих властивостей.

Крім того, у результаті генної модифікації можуть синтезуватися певні компоненти, що викликають алергійні реакції або з'являться небезпечні з'єднання, що володіють мутагенним, канцерогенним або токсичним ефектом,

У багатьох закордонних і вітчизняних лабораторіях отриманий ряд трансгенних тварин з новими біологічними й технологічними властивостями. При цьому вивчається вплив генної модифікації на безпеку таких тварин і їхня можлива комерціалізація. Ці широкі дослідження активно ведуться на вівцях і великій рогатій худобі в Австралії, США, Англії.

Введення системи контролю й всебічної експертизи харчової продукції з генетично модифікованих джерел викликано в першу чергу турботою про безпеку людей. Убудовані в генетичний код мікроорганізмів, рослин і тварин генно-інженерні конструкції теоретично можуть бути небезпечними. Важко сказати, у яких саме формах це може виявитися. Приміром, людина, що вживала продукти або ліки на основі такої сировини, може перестати адекватно реагувати на певні ліки, тобто придбати лікарську стійкість. Тому всі подібні продукти повинні проходити всебічну експертизу. Дуже важливо, що проблема поставлена саме зараз, поки суспільство ще не зіштовхнулося на практиці з теоретично можливими труднощами.

Варто підтримувати декларацію Громадської організації «лікарі й учені проти модифікованих за допомогою генної інженерії продуктів харчування», у якій звернене увага громадськості на наступне:

· неправильно експлуатувати технологію, що може непередбачено викликати появу небезпечних для здоров'я речовин, перш ніж не буде ретельно вивчена можливість такого ризику.

· неправильно експлуатувати технологію, що може зробити необоротний вплив на навколишнє середовище, перш ніж не буде доведено, що дана технологія не заподіє серйозного збитку навколишньому середовищу.

· неправильно піддавати людей і навколишнє середовище навіть найменшії небезпеці, зважаючи на те, що в цей час наявні продукти харчування, модифіковані за допомогою генної інженерії, не представляють цінності або вона незначна.

· неправильно сьогодні виправдувати експлуатацію потенційно небезпечної технології, приводячи в обґрунтування науково недоведену думку, що ця технологія може дати корисні продукти в майбутньому.

Однак це не означає, що дослідження в цій області й дослідній перевірці їхніх результатів повинні бути припинені.

Застосування продуктів харчування, отриманих за допомогою генної інженерії, настільки серйозно, що навіть при наявності всіх розв'язних документів, необхідна певна законодавча база, що дозволяє у випадках появи негативних наслідків з юридичної точки зору вирішити проблему, що створилася.

1. Теоретичні основи генно-модифікованих продуктів

Генетична інженерія - це нова галузь молекулярної біології, яка розробляє методи перенесення генетичного матеріалу від одного живого організму до іншого з метою одержання нової генетичної інформації та управління спадковістю. Розвиток генетичної інженерії пов'язаний з досягненнями сучасної генетики, мікробіології, біохімії та інших наук. Початок генетичної інженерії покладений П.Бергом в 1972 р., який здержав перші гібридні (рекомбінантні) ДНК.

Спори про роль генетики почалися задовго до сучасного розквіту генної інженерії. Ще в 1970-х роках не тільки вчені, але і широка публіка почали обговорювати питання, пов'язані з суперечливими перспективами нових біологічних технологій. У чому ж полягало основне питання? Основною темою суперечок була рекомбінантна ДНК, яку називали також химерною ДНК. У лабораторних умовах стало можливим створювати штучну ДНК, комбінуючи між собою гени різних видів і отримуючи такі поєднання, які б ніколи не зустрілися в природі. Більшість штучної ДНК синтезуються в наукових цілях. Це контрольовані експерименти, на основі яких учені прагнуть отримати нові відомості про біологічні системи. Проте в деяких випадках дослідникам просто цікаво «подивитися, що вийде». Часто виходять очікувані результати, але інколи відбувається щось несподіване. І це цілком з'ясовно з наукової точки зору: адже ніколи не можливо заздалегідь все знати і все передбачити. Тому учені ніколи не можуть обіцяти, що отримані ними клітини з рекомбінантними ДНК будуть абсолютно безпечними. Саме така невпевненість і послужила початком для дискусій з приводу небезпек сучасної генетики.

З такою проблемою зіткнулися молекулярні біологи, що вивчали в 1970-х роках гени вірусів, що викликають виникнення раку, і введення їх в бактерії Е. coli. При цьому вони керувалися благими намірами: вивчити функції ракових генів на прикладі простих біологічних систем. Але за допомогою даної технології можна було б створити і шкідливі канцерогенні бактерії, що заражають людей. У міру розвитку технології учені все більш приходили до думки про небезпечний напрям своєї роботи і замислювалися про її глобальні наслідки. Врешті-решт, 11 відомих молекулярних біологів опублікували відкритий лист в престижних журналах «Nature» і «Science», призвавши своїх колег накласти мораторій на певні види експериментів і з більшою обережністю відноситися до решти дослідів. Зокрема, вони пропонували ввести заборону на експерименти з генами стійкості до антибіотиків, генами токсинів і генами канцерогенних вірусів; закликали організувати дискусію на цю тему; просили Національний інститут здоров'я США розробити правила і принципи проведення подібних експериментів.

Для науковців це був крок величезної важливості: перед лицем невідомої і не цілком визначеної небезпеки учені усвідомлено утримувалися від проведення експериментів. Ті, що підписалися під цим листом, видно, не чекали, який резонанс викличе їх заява у всьому світі.

Як тільки про лист стало відомо засобам масової інформації, широка публіка сприйняла потенційну небезпеку, як цілком реальну. До часу проведення дискусій багато хто з них вже прагнув не стільки обговорити можливі етичні проблеми, скільки переконати публіку в безпеці своїх робіт. Те, що починалося як відповідальний вчинок, перетворилося на небажання допускати в свої плани необізнаних.

З 24 по 27 лютого 1975 року ряд відомих у всьому світі молекулярних біологів зібралися поблизу міста Монтерей в штаті Каліфорнія. Деякі з присутніх заявили, що етичні побоювання перебільшені і зажадали продовження важливих досліджень. Інші були стурбовані можливими законодавчими ухвалами або судовими переслідуваннями, якщо буде доведено, що дослідження представляють небезпеку для здоров'я. Багато хто ж просто вважав, що вони даремно витрачають час. На конференції було прийнято ухвалу продовжувати дослідження і замінити мараторій на ряд принципів, яких слід дотримуватися при проведенні експериментів з різним ступенем ризику. Були висловлені наступні пропозиції:

збільшити число рівнів безпеки для експериментів, що представляють високий ступінь потенційного ризику;

використовувати ослаблені різновиди генетично змінених мікроорганізмів в спеціальних лабораторних умовах.

Головна трудність тоді (втім, як і зараз) полягала в тому, щоб оцінити ступінь ризику таких обставин, про які ще мало що відоме. Національний інститут здоров'я, що фінансує велику частку біологічних проектів, узяв ініціативу в свої руки і розробив ряд положень, запропонувавши їх для відкритого обговорення. Для визначення правил проведення досліджень був утворений Комітет з рекомбінантної ДНК, що складався з експертів різних областей біології, а також з представників приватних компаній, що використовують нові технології. Подальші дискусії також розгорталися в основному навколо можливих небезпек. І хоча від представників промислових компаній варто було чекати того, що вони ратуватимуть за практично вільне експериментування, багато хто з них проявив відповідальність і висловився за регулювання досліджень. Вони теж побоювалися можливих негативних наслідків і судових позовів у разі нанесення збитку з їх боку, а тому також запропонували розробити основні принципи. Інші ж учені стверджували, що їм не дають працювати, хоча дослідження в області рекомбінантної ДНК допомогли б вирішити такі глобальні проблеми, як голод і інфекційні хвороби.

23 червня 1976 року Дональд Фредеріксон, директор Національного інституту здоров'я, утвердив ряд формальних правил досліджень в області рекомбінантної ДНК, дотримуватися яких повинні були всі, хто отримує гранди від цього інституту. У них були визначені чотири рівні фізичної безпеки досліджень згідно оціненого ступеня їх риски. Перший рівень -- нешкідливі експерименти з використанням стандартних біологічних технологій. З кожним подальшим рівнем кількість обмежень і застережень зростала настільки, що для експериментів четвертого рівня відповідних лабораторій не існувало аж до 1978 року. Крім того, три штами Е. coli були розподілені по трьом рівням біологічної безпеки. Стандартні лабораторні штами позначили як Ек1. Штами Ек2 були визначені як що характеризуються навмисно викликаною мутацією, здатні вижити поза лабораторією з вірогідністю 1 х 10-8. ЕКЗ -- ті ж штами, тільки абсолютно не здатні вижити в організмах тварин і рослин або поза лабораторією. Для того, щоб виростити ослаблений штам Е. coli, в який можна було б упровадити рекомбінантну ДНК, Рой Кертіс, член комітету при Національному інституті здоров'я, розробив штам хі-1776, що містить 15 окремих блоків для нормального розмноження. Роль, яку освічена публіка може зіграти при вирішенні питань, пов'язаних з регулюванням потенційно небезпечних наукових досліджень, прояснилася в ході одного з обговорень в Кембріджі.

У нас використовують два терміни -- генетична інженерія та генна інженерія. Слід зазначити, що назву «генетична інженерія» використовують в більш широкому понятті, тобто зона включає і генну інженерію. При цьому до генної інженерії не відносять перебудову генома звичайними генетичними методами, тобто мутаціями, рекомбінаціями.

Раніш для переносу генів використовували в основному метод статевої гібридизації. Генетична інженерія дозволяє, на відміну від статевої гібридизації, вводити в геном організму тільки конкретний ген будь-якого походження поза зв'язку зі статевою сумісністю донора та реципієнта, виключає необхідність довгострокових беккросів та відборів для видалення непотрібних ознак та, в кінцевому рахунку, розширює можливості, прискорює та значно полегшує проблему покращення сортів та порід.

За останні роки генетична інженерія досягла істотного прогресу. Центр досліджень перейшов з прокаріотичних на еукаріотичні системи. Інтенсивно досліджуються структура та функція генів, які визначають економічно важливі ознаки сільськогосподарських рослин та тварин.

Зараз вже виділено та детально охарактеризовано біля сотні різних структурних генів. Досліжуються оптимальні шляхи перенесення в організм чужорідної генетичної інформації, її експресія в новому генетичному середовищі, а також засоби виявлення та відбору трансформованих генотипів.

Перенесення генів здійснюється у багатьох видів рослин шляхом використання як технології рекомбінантної ДНК, так і соматичної гібридизації.

Сформувалися два альтернативних напрямки у використанні технології рекомбінантної ДНК: введення генів шляхом векторних систем та пряме введення ДНК до рослинних клітин. Ці технології знаходяться на стадії модельних експериментів, однак ряд розробок вже мають практичне використання в селекції. Найбільш тріумфальні успіхи генетичної інженерії пов'язані з мікробіологічним синтезом просто організованих білків тваринного (людського) походження (гормони, ферменти, інтерферон та ін.).

З точки зору операційної технології рекомбінантні ДНК можна поділити на декілька головних компонентів: індивідуальні гени, регуляторні елементи, векторні та селекційні системи.

Перенесення та експресія індивідуальних добре охарактеризованих генів, власне, і складає кінцеву мету будь яких генно-модифікованих маніпуляцій. Регуляторні елементи у представників різних родів, не кажучи вже про більш значні таксономічні одиниці, можуть значно розрізнятися. Тому перед перенесенням гену (наприклад, бактеріального) в чужорідне генетичне оточення (наприклад, в рослинну клітину) в гені необхідно замінити бактеріальні регуляторні елементи на рослинні, так як в іншому випадку перенесений ген не буде експресуватися. Подібній модифікації необхідно в ряді випадків піддавати також і структурну частину гену, оскільки у рослин та тварин вона в типовому випадку складається з так званих інтронів та екзонів, при цьому тільки останні ділянки гена кодують поліпептидний ланцюг білку, а перші -- вирізаються (видаляються) в процесі дозрівання ДНК. Імовірно, що ген з невидаленими інтронами, що належить до оукаріотичної клітини, не може кодувати синтез відповідного білку в клітині бактерії. Третім істотним елементом генно-модифікованих маніпуляцій є спеціальні векторні системи, які забезпечують високоефективне перенесення чужорідного гену в реципієнтну клітину та має стабільне закріплення або шляхом інтеграції з клітинною ДНК, або шляхом набуття статусу автономного ядерного або цитоплазматичного елементу. Та, нарешті, четвертим важливим фактором технології рекомбінантної ДНК є система селекції або детекції тих химерних клітин або організмів, в які включився та функціонує чужорідний ген.

Для вирішення головних завдань біотехнології необхідно сконцентрувати увагу на питанні використання індивідуальних генів, молекулярних механізмів формування основних селекційно-вагомих показників та регуляторних елементів, так як вони визначають експресію генів в онтогенезі еукаріот.

Особливу увагу слід приділити розробці складових технології рекомбінантної ДНК, в першу чергу різноманітних векторних систем та систем селекції, при цьому не допустити розриву між фундаментальними та прикладними розробками; для цього необхідно забезпечити пріоритетність науковим працям в галузі мікробіології та вірусології. Тоді можна очікувати, що генетична інженерія стане лідируючою наукою, яка буде використовуватися в технологічних процесах отримання нових біологічно активних речовин, сироваток, різноманітних ліків.

При обговоренні переваг методів клітинної та генетичної інженерії для створення на їх базі сучасних напрямків біотехнології неодноразово висловлювалась думка, що клітинна інженерія по ряду причин забезпечує більш швидке отримання практично вагомих результатів. Це висловлювання, яке є правильним у загальній формі, потребує істотних доробок. Дійсно, строки реалізації ряду вагомих біотехнологічних розробок на базі методів клітинної інженерії знаходяться в межах початку та кінця 90-х років, а деякі з них впроваджуються в практику вже зараз. Так, наприклад, безвірусне насінництво ряду сільськогосподарських культур або трансплантація ембріонів сільськогосподарських тварин. Технологія рекомбінантної ДНК, в протилежність напівемпіричним підходам клітинної інженерії, спроможна реалізовувати свій вагомий науковий потенціал тільки при детальній молекулярно-біологічній та генетичній вивченості об'єктів та господарсько-вагомих ознак, які є предметом генно-інженерного експерименту.

Однак, існує можливість (і вона частково використується) для значного прискорення результатів генетичної інженерії. Джерелом цього прискорення можуть стати інтенсивні дослідження мікроорганізмів та вірусів, які мають практичне значення, а також стабільний пошук простих моногенних ознак рослин та тварин, за якими просто вести селекцію. У цьому випадку мова не йде про мікробіологічний синтез фізіологічно активних речовин на основі технології рекомбінатної ДНК типу гормонів, антибіотиків та ферментів, які використовуються у виробництві. У загальній формі віруси та мікроби відіграють дуже важливу роль у життєдіяльності тварин та рослин, виступаючи в ролі симбіонтів або паразитів. Тому, маніпулюючи з просто організованим генетичним матеріалом вірусів та мікробів, можливо в значних масштабах впливати на життєдіяльність та продуктивність цих об'єктів, обходячи обмеження, які віддаляють строки реалізації розробок генетичної інженерії при безпосередніх маніпуляціях з генетичним матеріалом рослин та тварин.

На порозі польових випробувань знаходиться проект, націлений, на створення «біологічних пестицидів» - рекомбінантних клітин Pseodomonas fluorescens, які входять до асоційованої сапрофітної мікрофлори ряду культурних рослин, куди вбудований ген ентомопатогенного токсину Васіllus thiringiensis. Можна вказати також на успішні спроби боротьби з ранніми заморозками шляхом генетичної модифікації клітин Pseodomonas syringae, які являють собою сапрофітну мікрофлору багатьох рослин, яка відповідає за уражуючий ефект ранніх заморозків. Особливий білок, що секретується цими бактеріями, служить центрами кристалізації льоду, в результаті чого вода на поверхні рослини замерзає, як звичайно, не при -4° С, а при температурі 0°С. Рекомбінантні клітини Рs. syringae, які загубили здатність секретувати білок-кристалізатор льоду, будуть першими химерними організмами, які вийдуть з лабораторії у довкілля.

Значну практичну вагу для інтенсивних біотехнологій має стійкість культурних рослин до гербіцидів, яка може досягатися двома шляхами: або за рахунок значного руйнування гербіциду в клітині, або за рахунок непроникненності клітин для конкретного гербіциду. Зараз гербіцидостійкість може бути досягнена шляхом перенесення в культурні рослини або бактеріального гену, або мутантного рослинного гену, що руйнують такі розповсюджені гербіциди, як гліфосат та сульфоніл-сечовина, У процесі розробок знаходяться і рекомбінантні плазміди, які спроможні попереджувати утворення корончатих галів у рослин. Строки реалізації інших генно-модифікованих проектів, так чи інакше пов'язаних з мікроорганізмами, відносяться до початку третього тисячоліття.

Що стосується генів виших еукаріот, то відносно швидко можуть бути реалізовані інтерфероновий та гормональний проекти, як у формі продуктів мікробного синтезу, так і у формі генів, що переносяться до організму. У випадку інтерферону продукт мікробного синтезу в ряді експериментів підвищував стійкість рослинних клітин до фітовірусних інфекцій, і можна розраховувати, що подібний ефект забезпечить безпосереднє введення інтерферонового гену до рослин. Препарати типу гормону росту при введенні тваринам стимулюють їх ріст. Отримання гігантських форм може бути досягнено, як це продемонстровано в експериментах на лабораторних тваринах, також при введенні гена гормону росту, який забезпечує посилений синтез цього регулятора в організмі.

1.1 Ген як елементарна одиниця спадковості

Раніше вважалося, що гени являють собою частину хромосом і є неподільною одиницею з такими ознаками: здатністю визначати ознаки організму, здатністю до рекомбінації, тобто до переміщення з однієї гомологічної хромосоми в іншу при кросинговері, та здатністю до мутації з утворенням нових алельних генів. Надалі виявилося, що ген -- це складна система, в якій зазначені особливості неподільні.

Ген складається з окремих ніби сходинок, що блискуче підтвердилося новими дослідженнями. Ген являє собою частину молекули ДНК і складається з сотень пар нуклеотидів. Ген як функціональну одиницю американський генетик С. Бензер запропонував назвати цистроном. Саме цистрон визначає послідовність амінокислот у коленому специфічному білку.

Цистрон у свою чергу підрозділяється на гранично малі в лінійному вимірі одиниці - рекони, які здатні до рекомбінації при кросинговері. Виділяють, крім того, поняття мутон - це найменша частина гена, здатна до мінливості (мутації). Розміри рекону та мутону можуть становити одну або кілька пар нуклеотидів, цистрону -сотні і тисячі пар нуклеотидів.

Виявляється, що різні функції гена пов'язані з відрізками ланцюга ДНК різного розміру. Ген має складну структуру, в середині якої можуть відбуватися процеси мутації та рекомбінації. Виявлені також гени, які не контролюють синтез визначених білкіп, але регулюють цей процес. Таким чином, виникла необхідність роз'єднати гени на дві категорії: структурні та функціональні.

Структурні гени визначають послідовність амінокислот у поліпептидному ланцюзі (тобто, колінеарність). У тих бактерій, де вони вивчені, структурні гени, як правило, розміщені в хромосомі в послідовності відповідно до кодованих реакцій.

Функціональні гени, мабуть, не утворюють специфічних продуктів, які можна виявити в цитоплазмі. Ці гени контролюють функцію інших генів. Один з функціональних генів одержав назву гена-оператора.

За уявленнями, введеними в науку Ф. Жакобом та Ж. Моно, ген-оператор і ряд структурних генів, розміщених поряд у лінійній послідовності, складають оперон. Оперон -- це одиниця зчитування генетичної інформації, тобто з кожного оперона знімається своя молекула ІРНК. Функція гена-оператора, в свою чергу, регулюється геном-регулятором. Він кодує синтез білка-репресора. Наявність чи вісутність цього білка, який приєднується до гена-оператора, визначає початок або припинення зчитування інформації.

Колінеарність -- властивість, зумовлена відповідністю між послідовностями кодонів нуклеїнових кислот та амінокислот поліпептидних ланцюгів. Тобто колінеарність -- це властивість, яка створює таку саму послідовність амінокислот у білку, в якій відповідні кодони розміщуються в гені. Це значить, що положення кожної амінокислоти у поліпептидному ланцюзі залежить від особливої ділянки гена. Генетичний код вважається колінеарним, якщо кодони нуклеїнових кислот та відповідні їм амінокислоти в білку розміщені в однаковому лінійному порядку.

Явище колінеарності доведено експериментально. Так, встановлено, що серповидноклітинна анемія, при якій пошкоджується будова молекули гемоглобіну, зумовлюється зміною розміщення нуклеотидів у гені, який відповідає за синтез гемоглобіну.

Завдяки концепції колінеарності можна визначити приблизний порядок нуклеотидів всередині гена та в ІРНК, якщо відомий склад поліпептидів. Навпаки, визначивши склад нуклеотидів ДНК, можна прогнозувати амінокислотний склад білка. Виходячи з цього, зміна порядку нуклеотидів у гені (його мутація) веде до зміни амінокислотного складу білків.

Під впливом різних фізичних та хімічних агентів, а також при нормальному біосинтезі білка в клітині можуть виникати пошкодження. Виявилося, що клітини мають механізми виправлення пошкоджень у нитках ДНК. Така їх здатність одержала назву репарації.

Вперше здатність до репарації була виявлена у бактерій, на які впливали ультрафіолетовими променями. Внаслідок опромінювання цілісність молекул ДНК порушується, оскільки в ній виникають димери, тобто з'єднані між собою сусідні піримідинові основи. Ці димери виникають між: двома тимінами, тиміном та цитозином, двома цитозинами, тиміном та урацилом, цитозином та урацилом, двома урацилами. Проте опромінені клітини на світлі виживають набагато краще, ніж у темряві. Після ретельного аналізу причин цього встановили, що в опромінених клітинах на світлі відбувається репарація (явище світлової репарації). Вона здійснюється спеціальним ферментом, який активується квантами видимого світла. Фермент з'єднується з пошкодженою ДНК, роз'єднує зв'язки, що виникли у димерах, та відновлює цілісність ДНК.

Пізніше була виявлена темнова репарація, тобто властивість клітин ліквідувати пошкодження ДНК без участі видимого світла. Темнова репарація здійснюється комплексом із п'яти ферментів: який "впізнає" хімічні зміни на ділянці в ланцюзі ДНК; здійснює "вирізування" пошкодженої ділянки; видаляє цю ділянку; синтезує нову за принципом комплементарності та з'єднує кінці старого ланцюга і відновленої ділянки.

Під час світлової репарації виправляються тільки ті пошкодження, які виникають під впливом ультрафіолетових променів, при темповій - такі, що виникають під дією іонізуючої радіації, хімічних речовин та інших факторів. Темнова репарація виявлена як у прокаріотів, так і в клітинах еукаріотів (тварин та людей), у яких вона вивчається в культурах тканин. Питання про те, чому одні пошкодження репаруються, а інші ні, залишається відкритим. Якщо репарація не відбувається, то клітина гине або виникає мутація.

1.2 Генетичний код

З моделі структури ДНК, запропонованої Уотсоном і Кріком, відомо, що генетична інформація передається за допомогою якоїсь специфічної послідовності нуклеотидів її молекули. Вперше питання про код було поставлене Гамовим у 1953 р.

Початок прямого генетико-біохімічного аналізу кодонів було покладено в 1961 р. Ніренбергом та Маттеї, які створили найпростіші синтетичні полімери й замінили ними нативні молекули іРНК в системі компонентів клітин бактерій та суміші амінокислот. У суміші кожного типу одна з амінокислот була помічена радіоактивним вуглецем С14, інші дев'ятнадцять не мали позначення. Було встановлено, що синтетичний полірибонуклеотид, складений тільки з урацилу, визначає синтез білка, в якому кожна амінокислоти була фенілаланіном.

У наступних подібних експериментах було визначено, що поліаденінова кислота містить код для лізину, а поліцитидинова -- для проліну. Наступні досліди, де як штучні іРНК виступали полінуклеотиди змішаного складу, виявили зв'язок між рядом інших поєднань нуклеотидів та конкретними амінокислотами.

Синтетичні полінуклеотиди створюють з використанням ферменту полінуклеотидфосфорилази, який зв'язує нуклеотиди у випадковому порядку. Для перших експериментів цього було достатньо, оскільки в них використовували синтетичні полінуклеотиди, складені з одного типу нуклеотидів. Потім були знайдені шляхи складніших синтезів молекул з різних нуклеотидів із різними положеннями.

Нову методику широко використав Очоа із співробітниками, що дало їм можливість визначити триплети для всіх 20 амінокислот. При цьому було зазначено, що код має вироджений характер, який означає здатність для однієї й тієї ж кислоти бути кодованою кількома різними триплетами. Наприклад, є амінокислоти, які мають по шість кодонів; п'ять амінокислот, кожна з яких кодується чотирма різними кодонами. Так, аланін кодується триплетами ГЦУ, ГЦЦ, ГЦА, ГЦГ, куди в усіх випадках входять нуклеотиди цитозину та гуаніну. Поряд з тим є амінокислоти, що кодуються трьома, двома і тільки дві - одним триплетом азотистих основ.

Крім того, триплети УАА, УАГ, УГА не кодують амінокислоти, а є своєрідними «крапками» в процесі зчитування інформації. Якщо процес синтезу наближається до такої «крапки» в молекулі ДНК, синтез даного поліпептидного ланцюга припиняється. Після «крапки» починає синтезуватися нова молекула білка. Процес зчитування інформації відбувається в одному і тому ж напрямі. Так, якщо в молекулах азотисті основи розміщені в такому порядку: ААА, ЦЦЦ, УГУ, УЦУ, то це значить, що закодовані такі послідовно розміщені амінокислоти: лізин (ААА), пролін (ЦЦЦ), цистин (УГУ), серін (УЦУ). Саме в цій послідовності вони повинні розміщуватися в поліпептидному ланцюзі при синтезі білка. Якщо в першому триплеті іРНК буде втрачено один аденін, то порядок основ набуває вигляду ААЦЦЦУГУУЦУ. Внаслідок цього склад всіх триплетів змінюється. Так, перший стане не ААА, а ААЦ. Подібний триплет кодує амінокислоту аспарагін, а не лізин, як було раніше. Другий стане вже не ЦЦЦ, а ЦЦГ і так далі. У деяких умовах іn vitro код може бути двозначним, тобто один триплет може кодувати кілька амінокислот. Кодон УУУ в звичайних умовах кодує амінокислоту фенілаланін. Проте якщо рибосоми обробити стрептоміцином, то цей кодон починає також кодувати ізолейцин і серин. Знижена температура та висока концентрація іонів Мg++ також зумовлюють двозначність у дії кодонів.

Генетичний код характеризується неперекритістю. Цей принцип був доведений дослідженням мутацій, які порушують синтез білків. У випадку перекриття коду зміна в одній парі нуклеотидів неминуче повинна спричинити порушення в трансляції трьох амінокислот, бо у коді, що перехрещується, кожний з нуклеотидів входить до трьох кодонів. Насправді експериментами доведено, що мутації змінюють транслювання тільки однієї амінокислоти, що чітко вказує на неперекритість коду. Для поняття принципів генетичного коду значний інтерес являють дані по заміщенню амінокислот внаслідок зміни всередині триплетів.

У Е. соlі (кишкової палички, яка є в кишечнику всіх організмів) були одержані шість мутантів, що мали різні дефекти у триптофансинтетазі, причиною яких стали заміщення гліцину в специфічній точці поліпептидного ланцюга. Ці мутації відрізняються від попереднього стану зміною одного нуклеотиду. Якщо ця гіпотеза правильна, то вона може бути перевірена в дослідах по рекомбінації, оскільки кросинговер всередині триплетів повинен змінювати його код. Наприклад, схрещування між мутацією В, кодуючою аргінін, та мутацією С, кодуючою валін, повинні дати рекомбінантні триплети, які будуть кодувати серин та гліцин: мутант В - УГЦ -аргінін; мутант С - УУГ - гліцин.

У випадку кросинговеру на іншій ділянці (ГЦ і УГ) повинні з'явитися рекомбінанти - перший блок кросинговеру: ЦГГ - дикий тип - гліцин; другий -додатковий кросинговер: УУЦ - мутант - серин. У наступних дослідах ці рекомбінанти були виявлені і повністю відповідали передбаченням.

У випадках серповидноклітинності гемоглобіну у людини серед 300 амінокислот, які входять до складу гемоглобіну, тільки одна замінена мутацією. У гемоглобіні С в цьому місці з'являється інша амінокислота - лізин.

Численними дослідженнями встановлена дивовижна універсальність генетичного коду. Він однаково проявляє себе в системах, одержаних з вірусів, бактерій, водоростей та ссавців. Очевидно, він єдиний для всього органічного світу, що є одним з найпереконливіших доказів загального походження всієї живої природи.

1.3 Структурна організація генома

Під геномом розуміють сукупність носіїв спадкової інформації, що міститься в клітині. ДНК прокаріот оточена слабо зв'язаним з нею основним білком і ніяк структурно не організована. Характерна морфологія еукаріотичних хромосом свідчить, що вони організовані значно складніше, ніж: геноми прокаріотичних клітин. У еукаріотів більша частина ДНК знаходиться у міцному комплексі з білками та утворює нуклеопротеїдні волокна, які називаються хроматином. У переважній більшості клітин хроматинові білки представлені гістонів. Гістони -- це невеликі за розміром (50-200 амінокислотних залишків) основні білки з позитивним зарядом (зумовлений наявністю трьох амінокислот: аргініну, лізину, гістидину). Утворення комплексу з ДНК (що має негативний заряд) відбувається за рахунок іонних зв'язків між фосфатною групою полінуклеотидного ланцюга та аміногрупою поліпептиду. Гістони розділяють на п'ять типів: Н1, Н2А, Н2В, НЗ, Н4, які відрізняються один від одного кількістю амінокислот та відношенням лізин : аргінін. Цікаво, що структура гістонів НЗ та Н4 з проростків гороху і з тімусу телят, як довели Сміт та Де Ланж, дуже подібні, тобто послідовність амінокислот збереглася протягом приблизно 3-6*108 років з часу розділення всього живого на рослини та тварини. Ця консервативність свідчить, що зазначені гістони виконують дуже важливу функцію, яка виникла на початку еволюції еукаріот і збереглася до нашого часу. Білкам властива здатність до зміни заряду, форми молекул, до утворення водневих зв'язків, що може мати важливе значення у регуляції доступності ДНК до реплікації та транскрипції.

Слід зазначити, що, на відміну від ядерної ДНК, ДНК мітохондрій та хлоропластів не зв'язана з гістонами (як ДНК прокаріот), що підтверджує гіпотезу симбіотичного походження цих органоїдів.

Виходячи з даних, одержаних різними методами, Корнберг висловив припущення, що хроматин складається з повторюваних субодиниць, кожна з яких містить 200 пар нуклеотидів та по дві молекули гістонів Н2А, Н2В, НЗ, Н4. Повторювані одиниці називають нуклеосомами. Більша частина ДНК намотана на гістонову серцевину, решта, так звана міжнуклеосомна ДНК, з'єднує сусідні нуклеосоми та забезпечує гнучкість гістонів нитки. Таким чином, хроматинова нитка являє собою гнучкий ланцюг гістонів, що нагадує намистини на нитці.

В 60-х роках цього століття почались інтенсивні дослідження по локалізації конкретних генів на хромосомах для побудови хромосомних карт. Як встановлено, в геномі людини нараховується близько 500 тис. різних структурних генів, тобто генів, в яких закодована інформація про амінокислотну послідовність білків; кількість ДНК в ядрі клітини така, що відповідає числу генів, яка в 50-100 раз більша.

Значна кількість ДНК приходиться на повторювані послідовності нулеотидів, які можуть грати в хромосомі регуляторну, структурну або функціональну роль.

Реєструючи порушення, які викликаються мутаціями генів, вдалося виявити більше 900 генних локусів із загального числа 500 тис. структурних генів (геном людини), до якого входять гени, які кодують всі ферменти внутрішнього метаболізму, всі структурні білки та всі білки, яким властиві спеціальні функції, такі як гемоглобіни та імуноглобуліни, а також ферменти, які беруть участь в утворенні фібрил колагену (її роколагенпептидаза, глюкозилтрансфераза, лізинлоксидаза) та в утворенні нуклеїнових кислот (ДНК- та РНК-полімераза).

Істотна частина постульованої кількості генів приходиться на регуляторні гени.

Положення генних локусів на хромосомах людини визначали на основі аналізу гетерозигот та вивчення родин (варіації в межах виду), а пізніше - за допомогою гібридних клітин, які утворюються в результаті злиття соматичних клітин. Зручним інструментом досліджень був також метод гібридизації нуклеїнових кислот.

Клонування нуклеїнових кислот та наступна гібридизація їх з фрагментами хромосом також можуть бути корисними для точної локалізації генів та побудови докладної карти геному.

Результати подібних досліджень будуть досить важливими для прогресу медицини, який буде залежати від повного розуміння функціонування геному. Дійсно, ряд хвороб пов'язані з наявністю дефектів певних генів. Лікування або попередження генетичних порушень потребує загальних знань структури, функціонування та регуляції роботи генів.

1.4 Клонування генів

Основою проведення генно-модифікованих досліджень є молекула ДНК. При цьому роботи виконують в певній послідовності: спочатку виділяють гени з окремих клітин або синтезують їх поза організмом, потім включають нові гени у вектор, поєднують ДНК гена і вектора і одержують рекомбінантну ДНК; далі переносять визначені гени в геном клітини-хазяїна, проводять копіювання і розмноження виділених або синтезованих генів у складі вектора (клонування генів) і одержують генний продукт шляхом експериментальної експресії чужорідного гена в реципієнтній клітині. Відомо два шляхи виділення генів та створення рекомбінантної ДНК.

Перший - за допомогою хімічного синтезу, а другий, більш поширений, грунтується на використанні особливих ферментів (рестриктаз), які мають властивість розпізнавати чужорідну ДНК, що проникла в організм, і розщеплювати її у відповідних ділянках. В результаті утворюються фрагменти різноманітних розмірів, які різняться між собою за довжиною. Відомо близько 500 ферментів рестриктаз і кожний розщеплює ДНК специфічно. Хоча багато з них за специфічністю подібні, проте кількість сайтів (ділянок) розщеплення становить близько 120. Зазначені ферменти позбавлені видової специфічності. Завдяки цьому можна поєднувати в одне ціле фрагменти ДНК будь-якого походження і подолати природний видовий бар'єр.

Частини й розриви ниток ДНК склеюють за допомогою ферменту лігази. Особливістю виділених ділянок нуклеотидів (генів) є так звані липкі кінці, через що їх можна приєднати до ділянок ДНК плазмід (для рослин і бактерій) або фагів (тварин). Таким чином створюється вектор для перенесення виділених генів у клітину-реципієнт.

Відомо інший шлях одержання фрагментів ДНК з липкими кінцями. Для цього виділені або штучно синтезовані ділянки ДНК обробляють ендонуклеазою, яка укорочує її з обох боків. Потім за допомогою ферменту полінуклеотидтрансферази добудовують до цих кінців ділянки аденінових і тимідинових нуклеотидів. Одержану молекулу рекомбінантної ДНК використовують для перенесення чужорідного гена в бактеріальну клітину. Така схема була використана для генів інсуліну, інтерферону, імуноглобуліну.

Молекули ДНК, які мають власний апарат реплікації і здатні доставляти в клітину потрібні гени, реплікувати їх, були названі векторами. Найбільш поширені вектори - це різноманітні плазміди, які часто спостерігаються у бактерій. Вектори для клітин ссавців будуються на основі вірусів, адено- та ретровірусів.

Потрібно враховувати, що наявність навіть введення гена у хромосому організма-хазяїна ще не дає можливості одержувати продукти його синтезу.

Для того, щоб ген міг функціонувати, він повинен поряд з частиною, де закодована інформація, мати ще регуляторну ділянку. Це, так звані промотор та термінатор. З промотора починається зчитування інформації (транскрипція), а в термінаторі закодовано закінченння транскрипції з даного гена. Нині створено цілий «арсенал» клонованих промоторів, які дають можливість забезпечити проявлення генів у різних типах клітині.

Слід враховувати також, що не всі молекули плазмідної ДНК можуть мати вставки чужої ДНК і відповідно не будуть рекомбінантними. Більшість плазмід відновлює вихідну кільцеву структуру. Тому, перш за все необхідно відібрати бактерії, що містять рекомбінантні плазміди.

Для відбору рекомбінантних ДНК найбільш поширеною є система, при якій чужорідну ДНК вбудовують в частину плазмідного гена, що кодує стійкість проти певного антибіотика, наприклад, ампіциліну. У випадку вбудовування чужорідної ДНК цей ген перестає нормально функціонувати, що свідчить про наявність рекомбінантної ДНК.

Молекули рекомбінантної плазміди розмножуються в клітині. В процесі ділення бактеріальної клітини вони розподіляються між дочірними клітинами і в кожній з них знову відновлюють свою кількість. В результаті створюються колонії бактерій, кожна з яких містить багато копій рекомбінантної ДНК. У кожному такому клоні міститься лише один відрізок ДНК тварини або рослини, який випадково потрапив у вихідну бактерію.

При цьому такий клон містить 1-2 гени, а якщо врахувати, що клонів значна кількість, то вони теоретично представляють всі гени, що є в геномі тварини.

Отже, для створення банку генів кроля, що характеризує всю молекулу ДНК або весь геном, необхідно 920000 клонів, для банку класичного об'єкта генетичної інженерії - кишкової палички - 1300. Для генома ссавців потрібен банк генів з фрагментами ДНК 0,8-1 млн. клонів).

Перший банк генів було створено для Е. соlі у 1976 р; потім -- для інших видів, в тому числі і для великої рогатої худоби. Також було створено бібліотеки клонів ДНК гіпофіза і гормона росту.

Велике значення мало одержання за допомогою генетичної інженерії інтерферону для людини. Відомо, що інтерферон -- це білок, який характеризується універсальною антивірусною дією. Але до останнього часу не була відома амінокислотна послідовність цього білка та не розроблена методика одержання його у чистому вигляді. Тому на першому етапі в крові людини виділили інтерферонову інформаційну РНК, на якій за допомогою ревертази синтезували ген інтерферону. На другому етапі зазначений ген ввели в плазміду і одержали високопродуктивний у-штам бактерій, що виробляв штучний інтерферон. Після того, як була визначена його амінокислотна послідовність та склад нуклеотидів, цей ген було синтезовано хімічним шляхом.

2. Розвиток сучасної біотехнології

Основи біотехнології були закладені людиною в давнину і пов'язані з використанням мікроорганізмів у хлібопекарстві, виноробстві, пивоварінні, приготуванні кисломолочних продуктів, солінні і копченні продуктів, виробленні шкір і таке інше.

Тисячоліттями людство прагнуло поліпшити сорти рослин і породи домашніх тварин за допомогою селективного схрещування. Лише в другій половині 20 століття виник новий напрямок у науці - біотехнологія. Вона дозволяє створювати та перебудовувати екологічні системи, створювати їх з певних елементів, що визначають потрібні людині властивості.

Біотехнологія базується як на традиційних наукових дисциплінах (фізіологія, біохімія, мікробіологія, медицина, агробіологія), так і на народжених минулим століттям молекулярній біології і генетиці, клітинній та генетичній інженерії, кібернетиці та інформатиці. Біотехнологія -- галузь знання, що дозволяє отримувати шляхом керованого культивування організмів і (або) їх фрагментів (тканин, клітин) корисні для людини продукти -- їжу, корми, медичні препарати, різноманітну сировину, доступні рослинам форми азоту, засоби захисту рослин і тварин, а також утилізувати (конверсувати) різні органічні відходи (промислові, сільськогосподарські та комунальні).

Біотехнологія -- це нова, яка порівняно недавно отримала широкий розвиток наука про практичне використання різних біологічних (генів, клітин, тканин, мікроорганізмів, рослин і тварин) з метою отримання антибіотиків, ферментів, кормових білків, біодобрив, безвірусних рослин, нових сортів рослин і тварин, переробки сировини, промислових і сільськогосподарських відходів, очищення стічних вод і газоповітряних викидів і так далі. Успіхи, досягнуті в галузі біотехнології, стали можливими завдяки бурхливому розвитку таких наук, як біохімія, генетика, цитологія, мікробіологія, молекулярна біологія та інші.

Історія виникнення і розвитку біотехнології включає три етапи.

1 етап -- зародження біотехнології з давніх часів до кінця XVIII ст. Археологічні розкопки показують, що ряд біотехнологічних процесів зародилися в давнину. На території найдавніших вогнищ в Месопотамії, Єгипті збереглися залишки пекарень, пивоварних заводів, споруджених 4-6 тисячоліть тому. У 3 тисячолітті до н. е. шумери виготовляли до двох десятків сортів пива. У Стародавній Греції і Римі широке розповсюдження отримали виноробство та виготовлення сиру. В основі пивоваріння і виноробства лежить діяльність дріжджових грибків, сироваріння -- молочнокислих бактерій, сичужного ферменту Отримання льняного волокна відбувається з руйнуванням пектинових речовин мікроскопічними грибами і бактеріями. Іншими словами, зародження біотехнології тісно пов'язане з сільським господарством, переробкою рослинницької і тваринницької продукції.

2 етап (XIX -- перша половина XX ст.). Становлення біотехнології як науки. Цей етап пов'язаний з початком бурхливого розвитку біологічних наук: генетики, мікробіології, вірусології, цитології, фізіології, ембріології. На рубежі XIX і XX ст. в ряді країн створюються перші біогазові установки, в яких відходи тваринництва та рослинництва під дією мікроорганізмів перетворювалися на біогаз (метан) і добриво. В кінці 40-х років XX століття з організацією великомасштабного виробництва антибіотиків стала розвиватися мікробіологічна промисловість. Антибіотики знайшли широке застосування не тільки в медицині, а й у сільському господарстві для лікування тварин і рослин, в якості біодобавок до корму. Були створені високоефективні форми за допомогою мутацій. Виникли підприємства, на яких за допомогою мікроорганізмів виготовлялися амінокислоти, вітаміни, органічні кислоти, ферменти. В кінці 60-х років отримала розвиток технологія іммобілізованих ферментів.

3 етап (з середини 70-х років XX століття) -- ознаменувався розвитком біотехнології в різних напрямках за допомогою методів генної та клітинної інженерії. Формальною датою народження сучасної біотехнології вважається 1972 р., коли була створена перша рекомбінативна (гібридна) ДНК, шляхом вбудовування в неї чужорідних генів. До цього моменту використовувалися, головним чином, фізичні і хімічні мутагени з метою створення форм мікроорганізмів, які синтезують цінні для людини речовини в 5-10 разів інтенсивніше, порівняно з вихідними штамами.

Науковий фундамент біотехнології був закладений у працях засновника сучасної мікробіології, французького вченого Луї Пастера, який у 1857 році не тільки визначив, що всі процеси бродіння є результатом життєдіяльності мікроорганізмів, а і вперше запропонував у 1861 році промислові методи запобігання псуванню вина (пастеризацію), використання бактерій вражаючих комах для боротьби з філоксерою і передбачив можливість промислового отримання та використання антибіотиків як лікарських засобів.

У 1865 році Грегор Мендель оприлюднив результати досліджень щодо спадковості ознак при схрещуванні бобових рослин. Він відкрив гени, які передають ознаки від покоління до покоління та сформулював основні правила спадковості, що пізніше отримали назву законів Менделя. Протягом 1870-1890 років були отримані перші гібриди кукурудзи і бавовника з новими властивостями та розроблені перші зразки добрив з бактеріями, які фіксували азот для підвищення врожайності.

...

Подобные документы

  • Зміст поняття "клон". Вдале клонування соматичних клітин. Реагрегація бластерометрів, трансплантація ядер ембріонів. Перенесення ядра соматичної клітини в яйцеклітину. Відхилення, порушення розвитку клонованих тварин різних видів. Трансгенні риби.

    лекция [2,4 M], добавлен 28.12.2013

  • ГМО — організми, генетичний матеріал яких був змінений штучно, на відміну від селекції або природної рекомбінації. Історія виникнення генетично модифікованих організмів, методи отримання, екологічні ризики. Вплив трансгенів на стан здоров'я людства.

    реферат [22,4 K], добавлен 19.11.2010

  • Вивчення геному людини в рамках міжнародної програми "Геном людини". Особливості гібридизації клітин у культурі, картування внутрішньо хромосомного і картування за допомогою ДНК-зондів. Можливості використання знань про структуру геному людини в медицині.

    курсовая работа [354,6 K], добавлен 21.09.2010

  • Основні етапи створення генетично модифікованих організмів. Експресія генів у трансформованій клітині. Селекція трансформованого біологічного матеріалу (клону) від нетрансформованого. Перспективні методи рішення проблеми промислових забруднювачів.

    презентация [5,1 M], добавлен 05.03.2014

  • Основна структурно-функціональна одиниця всіх живих організмів. Основні типи клітин. Будова, розмноження клітин та утворення білка. Колоніальні та багатоклітинні організми. Заміщення відмерлих та пошкоджених тканин організму. Способи поділу клітин.

    презентация [5,6 M], добавлен 18.12.2011

  • Біотехнологія в рослинництві. Людина та генетично модифіковані організми. Навколишнє середовище та ГМО. Досягнення та недоліки в генетично модифікованому рослинництві. Міжнародні відносини в вирощуванні генетично модифікованих рослин.

    реферат [259,1 K], добавлен 26.03.2007

  • Розгляд загальних положень механізму трансформації бактерій, рослин та тварин. Дослідження трансформації листових дисків тютюну шляхом мікроін’єкцій. Методика отримання трансформованих пагонів, їх підтримання і розмноження за допомогою брунькових пазух.

    курсовая работа [349,3 K], добавлен 15.10.2014

  • Основні процеси, за допомогою якого окремі клітини прокаріотів і еукаріотів штучно вирощуються в контрольованих умовах. Здатність перещеплених клітин до нескінченного розмноженню. Культивування клітин поза організмом. Основні види культур клітин.

    презентация [1,3 M], добавлен 16.10.2015

  • Об'єкти і методи онтогенетики. Загальні закономірності і стадії індивідуального розвитку. Генетична детермінація і диференціація клітин. Диференційна активність генів і її регуляція в процесі розвитку. Летальна диференціація клітин за розвитку еукаріотів.

    презентация [631,0 K], добавлен 04.10.2013

  • Історія відкриття та основні гіпотези походження клітинного ядра. Типи клітин та їх схематичне зображення. Форми, типи, будова, компоненти (хроматин, ядерце) ядра еукаріоти, його функції та загальна роль. Ядерний білковий скелет: каріоплазма та матрикс.

    презентация [1,1 M], добавлен 30.03.2014

  • Особливості та основні способи іммобілізації. Характеристика носіїв іммобілізованих ферментів та клітин мікроорганізмів, сфери їх застосування. Принципи роботи ферментних і клітинних біосенсорів, їх використання для визначення концентрації різних сполук.

    реферат [398,4 K], добавлен 02.10.2013

  • Ультраструктура та механізм регенерації клітин. Просвічуюча та скануюча електронна мікроскопія. Об'ємне зображення клітин. Електронограма інтерфазного ядра. Проведення складних морфометричних вимірювань у клітини завдяки використанню цитоаналізаторів.

    презентация [13,3 M], добавлен 24.02.2013

  • Вивчення механізмів зміни, розмноження та реплікації генетичної інформації. Особливості організації, будови та функції клітин. Забезпечення редуплікації ДНК, синтезу РНК і білка. Характеристика еукаріотів та прокаріотів. Кінцеві продукти обміну речовин.

    реферат [1,0 M], добавлен 19.10.2017

  • Технології одержання рекомбінантних молекул ДНК і клонування (розмноження) генів. Створення гербіцидостійких рослин. Ауткросінг як спонтанна міграція трансгена на інші види, підвиди або сорти. Недоліки використання гербіцид-стійких трансгенних рослин.

    реферат [17,5 K], добавлен 27.02.2013

  • Закономірності успадкування при моногібридному схрещуванні, відкриті Менделем. Закони Менделя, основні позначення. Використання решітки Пеннета для спрощення аналізу результатів. Закон чистоти гамет. Різні стани генів (алелі). Взаємодія алельних генів.

    презентация [4,0 M], добавлен 28.12.2013

  • Три покоління генетично модифікованих рослин. Виникнення ГМО. Польові випробування насінної генетично модифікованої картоплі на Україні. Регуляторна система України. Органи влади, що регулюють питання ГМО в Україні. Основні продукти, що містять ГМО.

    реферат [40,9 K], добавлен 10.05.2012

  • Мобільні елементи у геномі людини. Характеристика ендогенних ретровірусів. Приклади позитивного впливу ендогенних ретровірусів на геном тварин і людини. Ендогенні ретровіруси у геномі людини. Інструменти лікування різних генетичних захворювань.

    реферат [19,8 K], добавлен 18.03.2014

  • Поняття і рівні регуляції експресії генів. Їх склад і будова, механізм формування і трансформування. Транскрипційний рівень регуляції. Приклад індукції і репресії. Регуляція експресії генів прокаріот, будова оперону. Огляд цього процесу у еукаріот.

    презентация [1,7 M], добавлен 28.12.2013

  • Закон Гомологічних рядів Вавілова. Сутність спадкової мінливості. Характер зміни генотипу. Генні, хромосомні та геномні мутації. Копіювання помилок в генетичному матеріалі. Аналіз мозаїчної структури еукаріот. Вивчення факторів, що викликають мутації.

    презентация [38,5 M], добавлен 06.12.2012

  • Геном как совокупность наследственного материала, заключенного в клетке организма, оценка его роли и значение в жизнедеятельности человеческого организма, история исследований. Регуляторные последовательности. Организация геномов, структурные элементы.

    презентация [772,9 K], добавлен 23.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.