Органическая химия

Способы выражения концентрации раствора. Энергия Гиббса как критерий самопроизвольности процесса. Кинетика химических реакций и кислотно-основное равновесие. Общие понятия, классификация высокомолекулярных соединений. Строение органических соединений.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 05.10.2014
Размер файла 4,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

5. Качественные реакции на альдегиды. Одной из качественных реакций для обнаружения альдегидной группы является реакция “серебряного зеркала” -- окисление альдегидов оксидом серебра (В).

Другая качественная реакция на альдегиды заключается в окислении их гидроксидом меди (II). При окислении альдегида светло-голубой гидроксид меди (II) превращается в желтый гидроксид меди (I) при комнатной температуре. Если подогреть раствор, то гидроксид меди (I) превращается в оксид меди (I) красного цвета, который плохо растворим в воде и выпадает в осадок:

CH3 - CH = O + 2Cu(OH)2 > CH3COOH + 2CuOH + H2O,

2CuOH > Cu2Ov + H2O

Растворы формальдегида (формалин) используются в кожевенной промышленности для дубления кож, для дезинфекции зерно- и овощехранилищ, теплиц, парников, для протравливания семян перед посевом, для хранения анатомических препаратов, а также в производстве некоторых лекарственных препаратов.

Уксусный альдегид является исходным сырьем для получения в промышленном масштабе уксусной кислоты, уксусного ангидрида, этилового спирта, этилацетата и других ценных продуктов, а при конденсации с аминами и фенолами - различных синтетических смол.

Наиболее широкое промышленное применение имеет простейший представитель кетонов - ацетон. Ацетон является ценным растворителем, использующимся в лакокрасочной промышленности, в производстве искусственного шелка, кинопленки, бездымного пороха.

Алифатический альдегид СН3(СН2)7С(Н)=О (тривиальное название - пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин - широко известная ароматизирующая добавка в кондитерские изделия:

Ванилин

Бензальдегид С6Н5С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Бензофенон (С6Н5)2С=О и его производные способны поглощать УФ-лучи, что определило их применение в кремах и лосьонах от загара, кроме того, некоторые производные бензофенона обладают противомикробной активностью и применяются в качестве консервантов. Бензофенон обладает приятным запахом герани, и потому его используют в парфюмерных композициях и для ароматизации мыла.

Способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

14. Карбоновые кислоты

Карбоновыми кислотами называются соединения, содержащие карбоксильную группу . Общая формула R-СООН.

По числу карбоксильных групп карбоновые кислоты делят на монокарбоновые, или одноосновные (одна группа --СООН), дикарбоновые, или двухосновные (две группы --СООН), и т. д. В зависимости от строения углеводородного радикала, с которым связана карбоксильная группа, карбоновые кислоты бывают алифатическими (например, уксусная или акриловая), алициклическими (например, циклогексанкарбоновая) или ароматическими (бензойная, фталевая). Алифатические карбоновые кислоты с числом атомов углерода больше 6 называют также жирными кислотами, поскольку в виде сложных эфиров они входят в состав природных жиров и масел.

Номенклатура. В основе названий карбоновых кислот лежат названия соответствующих углеводородов. Наличие карбоксильной группы отражается окончанием -овая кислота. Карбоновые кислоты часто имеют тривиальные названия: муравьиная, уксусная и др.

Представители карбоновых кислот.

1. Монокарбоновые кислоты:

Алифатические насыщенные кислоты СnH2n+1СООН

Формула

Тривиальное название кислоты

Систематическое название

НСООН

Муравьиная

Метановая кислота

СН3СООН

Уксусная

Этановая кислота

C2H5COOH

Пропионовая

Пропановая кислота

C3H7COOH

Масляная

Бутановая кислота

C4H9COOH

Валериановая

Пентановая кислота

C5H11COOH

Капроновая

Гексановая кислота

C6H13COOH

Энантовая

Гептановая кислота

C7H15COOH

Каприловая

Октановая кислота

C8H17COOH

Пеларгоновая

Нонановая кислота

C9H19COOH

Каприновая

Декановая кислота

Алифатические ненасыщенные кислоты СnH2n-1СООН

Формула

Тривиальное название кислоты

Систематическое название

CH2=CH-СООН

Акриловая

Пропеновая кислота

СH3 -СН=СН -СООН

Кротоновая

Бутен-2-овая кислота

Ароматические кислоты: C6H5COOH Бензойная кислота

2. Дикарбоновые кислоты:

Алифатические насыщенные кислоты

Формула

Тривиальное название кислоты

Систематическое название

НООС--СООН

Щавелевая

Этандиовая

НООС--CH2--СООН

Малоновая

пропандиовая

НООС--СН2--CH2-СООН

Янтарная

бутандиовая

НООС--(СН2)3--СООН

Глутаровая

пентандиовая

Алифатические ненасыщенные кислоты: бутендиовая кислота СООН--СН=СН--СООН существует в виде двух р-диастереомеров - цис- изомера, который называется малеиновой кислотой (I), и транс-изомера,. который называется фумаровой кислотой (II).

Фумаровая участвует в цикле Кребса. Кожа человека образует фумарат при действии солнечного света. Фумаровая кислота также является побочным продуктом цикла мочевины. Малеиновая кислота в природе не обнаружена, синтезирована в лабораторных условиях, является ядовитой.

Ароматические кислоты:

Бензол-1,2-дикарбоновая Фталевая

Бензол-1,4-дикарбоновая Терефталевая

В липидах (жирах, маслах) наиболее часто встречаются следующие жирные кислоты:

1. Насыщенные: Пальмитиновая кислота C15H31COOH

Стеариновая кислота-та C17H35COOH

2. ненасыщенные:

Олеиновая кислота содержит одну двойную связь: С17Н33СООН

Линолевая кислота содержит две двойные связи: С17Н31СООН

Линоленовая кислота содержит три двойные связи: С17Н29СООН

Арахидоновая кислота содержит четыре двойные связи: С19Н31СООН

Изомерия

Возможны следующие виды изомерии:

1. Изомерия углеродной цепи. Она начинается с бутановой кислоты (С3Н7СООН), которая существует в виде двух изомеров: масляной и изомасляной (2-метилпропановой) кислот.

2. Изомерия положения кратной связи, например:

СН2=СН--СН2--СООН СН3--СН=СН--СООН

Бутен-3-овая кислота Бутен-2-овая кислота

(винилуксусная кислота) (кротоновая кислота)

3. Цис-, транс-изомерия, например:

4. Межклассовая изомерия: например, масляной кислоте (СН3-СН2-CH2-СООН) изомерны метиловый эфир пропановой кислоты (СН3-СН2-СО-О-СН3) и этиловый эфир уксусной кислоты (СН3-СО-О-CH2-СН3).

Химические свойства

1. Диссоциация кислот. В водном растворе карбоновые кислоты диссоциируют:

Однако это равновесие диссоциации сильно сдвинуто влево, поэтому карбоновые кислоты, как правило, слабые кислоты.

Вследствие взаимного влияния атомов в молекулах дикарбоновых кислот они являются более сильными, чем одноосновные.

2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот: реагируют с активными металлами, основными оксидами, основаниями:

3. Образование функциональных производных. Для карбоновых кислот характерны реакции замещения гидроксильной группы в с образованием функциональных производных кислот, имеющие общую формулу R--СО--X; здесь R означает алкильную, арильную, амино- группы, группы галогенов.

а) Хлорангидриды получают действием хлорида фосфора (V) на кислоты:

б) При нагревании кислот с водоотнимающими средствами получаются ангидриды карбоновых кислот R--СО--О--СО--R': Ангидриды -- очень реакционноспособные соединения. Ангидриды - летучие жидкости, с резким запахом. Большое техническое значение имеет уксусный ангидрид, кроме того он применяется для синтеза фармацевтических препаратов, красителей.

в) Сложные эфиры образуются при нагревании кислоты со спиртом в присутствии серной кислоты - реакция этерификации:

г) Реакции хлорангидридов карбоновых кислот с аммиаком приводят к образованию амидов:

Амидами карбоновых кислот называются производные этих кислот, в которых гидроксилъная группа замещена на аминогруппу. Общая формула амидов RCONH2. Функциональная группа СONH2 называется амидогруппой.

К амидам кислот относится мочевина. Это конечный продукт азотистого обмена в организме человека и животных. Образуется при распаде белков и выделяется вместе с мочой. Мочевину можно рассматривать как полный амид угольной кислоты:

4. Окислительно-восстановительные реакции карбоновых кислот.

Карбоновые кислоты при действии восстановителей способны превращаться в альдегиды или спирты:

Насыщенные карбоновые кислоты устойчивы к действию концентрированных серной и азотной кислот. Исключение составляет муравьиная кислота:

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

Муравьиная кислота -- сильный восстановитель и легко окисляется до СО2. Она дает реакцию “серебряного зеркала”:

Кроме того, муравьиная кислота окисляется хлором:

Нитрил муравьиной кислоты -циноводород H-CN, или синильная кислота.

7. Для дикарбоновых кислот присущи реакции образования циклических ангидридов:

янтарная кислота ангидрид янтарной кислоты

15. Гетерофункциональные соединения

Соединения, имеющие в своем составе одну функциональную группу, называются монофункциональными. Соединения, имеющие несколько функциональных групп, называются полифункциональными. Полифункциональные соединения делятся на гомополифункциональные, т.е. содержащие несколько одинаковых функциональных групп, и гетерополифункциональные, т.е. содержащие несколько разных функциональных групп. Большинство биологически важных органических соединений (метаболиты, биорегуляторы, структурные элементы биополимеров, лекарственные средства) являются гетерофункциональными соединениями. Наиболее важные из них - гидрокси-, оксо- и аминокислоты, аминоспирты.

15.1 Аминоспирты

Аминоспиртами называют соединения, содержащие в молекуле одновременно амино- и гидроксигруппы. У одного атома углерода эти группы удерживаются непрочно - происходит отщепление аммиака с образованием карбонильного соединения или воды с образованием имина. Поэтому простейшим представителем аминоспиртов является 2-аминоэтанол -- соединение, в котором две функциональные группы расположены у соседних атомов углерода. 2-Аминоэтанол (бета-этаноламин) -- представляет собой вязкую жидкость. 2-аминоэтанол называют также коламин известным как структурный компонент сложных липидов. С сильными кислотами 2-аминоэтанол образует устойчивые соли.

Производное 2-аминоэтанола -- димедрол -- оказывает противоаллергическое и слабое снотворное действие. Обычно применяется в виде гидрохлорида.

Холин (триметил-2-гидроксиэтиламмоний) -- известен как структурный элемент сложных липидов. Имеет большое значение как витаминоподобное вещество, регулирующее жировой обмен. В организме холин может образовываться из аминокислоты серина. При этом сначала в результате декарбоксилирования серина получается 2-аминоэтанол (коламин), который затем подвергается исчерпывающему метилированию при участии 5-аденозилметионина (SАМ).

Сложный эфир холина и уксусной кислоты -- ацетилхолин -- наиболее распространенный посредник при передаче нервного возбуждения в нервных тканях (нейромедиатор). Он образуется в организме при ацетилировании холина с помощью ацетилкофермента А.

Важную роль в организме играют аминоспирты, содержащие в качестве структурного фрагмента остаток пирокатехина. Они носят общее название катехоламинов. К этой группе относятся представители биогенных аминов, т. е. аминов, образующихся в организме в результате процессов метаболизма. К катехоламинам относятся дофамин, норадреналин и адреналин, выполняющие, как и ацетилхолин, роль нейромедиаторов. Адреналин является гормоном мозгового вещества надпочечников, а норадреналин и дофамин -- её предшественниками. Адреналин участвует в регуляции сердечной деятельности, обмена углеводов. При физиологических стрессах он выделяется в кровь. Активность адреналина связана с конфигурацией хирального центра, определяющей взаимодействие с рецептором. Подобно пирокатехину, катехоламины с раствором хлорида железа(III) FеСl3 дают изумрудно-зеленое окрашивание, переходящее в вишнево-красное при добавлении раствора аммиака, что может служить качественной реакцией на эти соединения.

15.2 Гидроксикислоты

Гидроксикислоты - гетерофункциональные соединения, содержащие карбоксильную и гидроксильную группы. По взаимному расположению функциональных групп различают Ь -,в -, г - и т.д. гидроксикислоты.

К гидроксикислотам, имеющим большое биологическое значение, относятся:

Гликолиевая кислота HOCH2COOH содержится во многих растениях, например, свекле и винограде.

Молочная кислота CH3CH(OH)COOH. Соли называются лактаты. Широко распространена в природе, является продуктом молочнокислого брожения углеводов. Содержит асимметрический атом углерода и существует в виде двух энантиомеров. В природе встречаются оба энантиомера молочной кислоты. При молочнокислом брожении образуется рацемическая D,L-молочная кислота. D-молочная (мясо-молочная) кислота образуется при восстановлении пировиногралной кислоты под действием кофермента НАДН и накапливается в мышцах при интенсивной работе.

CH3COCOOH + НАДН + Н+ --> СH3CH(OH)COOH + НАД+

Пировиноградная кислота D-Молочная кислота

Яблочная кислота HOOCCH(OH)CH2COOH. Соли называются малаты.

Содержится в незрелых яблоках, рябине, фруктовых соках. Является ключевым соединением в цикле трикарбоновых кислот. В организме образуется путем гидратации фумаровой кислоты и далее окисляется коферментом НАД+ до щавелевоуксусной кислоты.

Лимонная кислота. Соли называются цитраты.

Содержится в плодах цитрусовых, винограде, крыжовнике. Является ключевым соединением в цикле трикарбоновых кислот. Образуется из щавелевоуксусной кислоты путем конденсации ее с ацетилкоферментом А и далее в результате последовательных стадий дегидратации и гидратации превращается в изолимонную кислоту.

Винная кислота (соли тартраты) HOOCCH(OH)CH(OH)COOH.

Содержит два хиральных центра и имеет 3 стереоизомера: D-винную кислоту, L-винную кислоту и оптически неактивную мезовинную кислоту. D-винная кислота содержится во многих растения, например, в винограде и рябине. При нагревании D-винной кислоты образуется рацемическая D,L-винная (виноградная) кислота.

Бета-гидроксимасляная кислота CH3-CН(ОН)-CН2-CООН как промежуточный продукт окисления жирных кислот накапливается в организме у больных сахарным диабетом, являясь, в свою очередь, предшественником ацетоуксусной кислоты.

Гамма-гидроксимасляная кислота (ГОМК) НО-CH2-CН2-CН2-CООН оказывает наркотическое действие, практически нетоксична. Применяется в виде натриевой соли как снотворное средство а также в анестезиологии в качестве наркотическою средства при операциях.

Отношение гидроксикислот к нагреванию. При нагревании Ь -гидроксикислот образуются циклические сложные эфиры -лактиды.

в -Гидроксикислоты при нагревании переходят в непредельные кислоты.

г-Гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров - лактонов.

15.3 Оксокислоты

Оксокислоты - гетерофункциональные соединения, содержащие карбоксильную и карбонильную (альдегидную или кетонную) группы. В зависимости от взаимного расположения этих групп различают Ь -, в -, г - и т.д. оксокарбоновые кислоты.

Глиоксиловая кислота. Содержится в незрелых фруктах. Является промежуточным продуктом в ферментативном глиоксилатном цикле.

Пировиноградная кислота (соли пируваты). Центральное соединение в цикле трикарбоновых кислот. Промежуточный продукт при молочнокислом и спиртовом брожении углеводов.

В организме получается в результате окисления молочной кислоты

Ацетоуксусная кислота (соли ацетоацетаты). Образуется в процессе метаболизма высших жирных кислот и как продукт окисления в-гидроксимасляной кислоты накапливается в организме больных диабетом (так называемые ацетоновые или кетоновые тела).

в-гидроксимасляная кислота ацетоуксусная кислота ацетон

Щавелевоуксусная кислота (соли оксалоацетаты). Промежуточное соединение в цикле трикарбоновых кислот. Образуется в цикле трикарбоновых кислот при окислении яблочной кислоты и превращается далее в лимонную. При переаминировании дает аспарагиновую кислоту.

Ь -Кетоглутаровая кислота (соли кетоглутараты). Участвует в цикле трикарбоновых кислот и является предшественником важных аминокислот - глутаминовой и г-аминомасляной.

15.4 Гетерофункциональные производные бензола

Сульфаниловая кислота (п-аминобензолсульфоновая кислота) легко получается при сульфировании анилина, существует она в виде биполярного иона.

Амид сульфаниловой кислоты (сульфаниламид), известный под названием стрептоцид, является родоначальником группы лекарственных средств, обладающих антибактериальной активностью и называемых сульфаниламидами или сульфонамидами.

Впервые сульфаниламид был синтезирован в 1908 г. и широко использовался в качестве промежуточного вещества в производстве красителей. Антибактериальная активность была обнаружена лишь в 1935г. Все сульфаниламиды обязательно содержат сульфамидную (сульфонамидную) группу --SО2-NН2. Замена ее на другие группы приводит к потере активности. Установлено, что аминогруппа в пара-положении всегда должна оставаться незамещенной, а в бензольное кольцо нельзя вводить дополнительные заместители, так как они снижают антибактериальную активность соединения. В поиске более эффективных антибактериальных средств было синтезировано свыше 5000 производных сульфаниламида. Однако лишь некоторые из них нашли практическое применение. Наибольшую активность проявляют те производные, у которых радикал R имеет гетероциклическую природу. Многие сульфаниламиды содержат пиримидиновый, пиридазиновый и другие гетероциклы. Антибактериальное действие сульфаниламидов основано на том, что они являются антиметаболитами по отношению к парааминобензойной кислоте, участвующей в биосинтезе фолиевой кислоты в микроорганизмах. Амид сульфаниловой кислоты имеет структурное сходство с п-аминобензойной кислотой.

Пара-аминофенол и его производные. Как гетерофункциональное соединение п-аминофенол может образовывать производные по каждой функциональной группе в отдельности и одновременно по двум функциональным группам. П-аминофенол ядовит. Интерес для медицины представляют его производные -- парацетамол и фенацетин, оказывающие анальгетическое (обезболивающее) и жаропонижающее действие. Парацетамол является N-ацетильным производным п-аминофенола. Фенацетин получается при ацетилировании этилового эфира п-аминофенола, называемого фенетидином.

Пара-аминобензойная кислота.

Эфиры пара-аминобензойной кислоты - анестезин и новокаин, способны вызвать местную анестезию.

Салициловая кислота относится к группе фенолокислот. Как соединение с орто-расположением функциональных групп, она легко декарбоксилируется при нагревании с образованием фенола. Салициловая кислота растворима в воде, дает интенсивное окрашивание с хлоридом железа(III), на чем основано качественное обнаружение фенольной гидроксильной группы.

Салициловая кислота проявляет антиревматическое, жаропонижающее и антигрибковое действие, но как сильная кислота (рКа 2,98) вызывает раздражение пищеварительного тракта и поэтому применяется только наружно. Внутрь применяют ее производные -- соли или эфиры. Салициловая кислота способна образовывать производные по каждой функциональной группе. Практическое значение имеют салицилат натрия, сложные эфиры по карбоксильной группе -- метилсалицилат, фенилсалицилат (салол), а также по гидроксильной группе -- ацетилсалициловая кислота (аспирин). Из других производных салициловой кислоты большое значение имеет п-аминосалициловая кислота (ПАСК) как противотуберкулезное средство. ПАСК является антагонистом п-аминобензойной кислоты, необходимой для нормальной жизнедеятельности микроорганизмов. Другие изомеры таким действием не обладают. м-Аминосалициловая кислота является высокотоксичным веществом.

15.5 Аминокислоты

Аминокислоты -- это органические бифункциональные соединения, в состав которых входят карбоксильная группа --СООН и аминогруппа --NH2. В зависимости от взаимного расположения обеих функциональных групп различают Ь-,в -, г -аминокислоты и т. д.:

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы. Обычно рассматривают только Ь-аминокислоты, поскольку другие аминокислоты в природе не встречаются.

В процессе биосинтеза белка в полипептидную цепь включаются 20 важнейших б-аминокислот, кодируемых генетическим кодом.

Общая формула б-аминокислот

Аминокислоты можно классифицировать по нескольким признакам:

1). По способности человека синтезировать аминокислоты из предшественников:

Незаменимые: Триптофан, Фенилаланин, Лизин, Треонин, Метионин, Лейцин, Изолейцин, Валин;

Заменимые: Тирозин, Цистеин, Гистидин, Аргинин, Глицин, Аланин, Серин, Глутамин, Глутаминовая кислота, Аспарагиновая кислота, Аспарагин, Пролин

Некоторые заменимые аминокислоты синтезируются в организме человека в недостаточных количествах и должны поступать с пищей (гистидин и аргинин).

2). Аминокислоты делятся на протеиногенные (20 б-аминокислот) и непротеиногенные (4 аминокислоты).

3). По функциональным группам:

Алифатические моноаминомонокарбоновые: аланин, валин, глицин, изолейцин, лейцин.

Оксимоноаминокарбоновые: серин, треонин.

Моноаминодикарбоновые: аспарагиновая кислота, глутаминовая кислота. Амиды моноаминодикарбоновых: аспарагин, глутамин.

Диаминомонокарбоновые: аргинин, гистидин, лизин.

Серосодержащие: цистеин (цистин), метионин.

Ароматические: фенилаланин, тирозин.

Гетероциклические: триптофан, гистидин.

Иминокислоты: пролин (также входит в группу гетероциклических).

4). По химической природе радикалов приведены в таблице 4.

Таблица 4. Важнейшие протеиногенные аминокислоты

Тривиальное название

Сокращенное название

Формула

1. Аминокислоты, имеющие неполярный радикал

Аланин

АЛА

Валин

ВАЛ

Лейцин

ЛЕЙ

Изолейцин

ИЛЕ

Триптофан

ТРИ

Пролин

ПРО

Фенилаланин

ФЕН

Метионин

МЕТ

2. Аминокислоты, имеющие полярный незаряженный радикал.

Глицин

ГЛИ

Серин

СЕР

Треонин

ТРЕ

Тирозин

ТИР

Аспарагин

АСН

Глутамин

ГЛН

Цистеин

ЦИС

3. Аминокислоты, имеющие отрицательно заряженный радикал.

Аспарагиновая кислота

АСП

Глутаминовая кислота

ГЛУ

3. Аминокислоты, имеющие положительно заряженный радикал.

Лизин

Лиз

Аргинин

Арг

Гистидин

Гис

Важнейшие непротеиногенные аминокислоты.

в - Аланин

Орнитин

Цитруллин

г - Аминомасляная кислота

Все б-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (б-атом) и могут существовать в виде оптических изомеров. Оптическая изомерия природных б-аминокислот играет важную роль в процессах биосинтеза белка. Типичные белки природного происхождения, состоят из L-аминокислот. D-аминокислоты и L-аминокислоты отличаются друг от друга по вкусу. Например, D-аспарагиновая кислота не имеет вкуса, а ее стереоизомер L-аспарагиновая кислота обладает мясным вкусом.

Химические свойства

1. Аминокислоты -- это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион, который называется цвиттер-ионом:

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп. Так, глутаминовая кислота образует кислый раствор (две группы --СООН, одна --NH2), лизин -- щелочной (одна группа --СООН, две --NH2).

2. Трансаминирование - одна из реакций метаболизма аминокислот, которая заключается в переносе аминогруппы (NH2) из аминокислоты в кетокислоты; в результате образуется другая кетокислота и аминокислота.

3. Дезаминирование - это отщепление аминогруппы (--NH2) из молекулы органического соединения.

Дезаминирование играет важную роль в процессах обмена веществ, в частности в катаболизме аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака.

4. Декарбоксилирование - это процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции - биогенные амины - оказывают сильное фармакологическое действие на множество физиологических функций человека и животных. Например, в животных тканях с высокой скоростью протекает декарбоксилирование гистидина под действием специфической декарбоксилазы.

Гистамин оказывает широкий спектр биологического действия. По механизму действия на кровеносные сосуды он резко отличается от других биогенных аминов, так как обладает сосудорасширяющим свойством. Большое количество гистамина образуется в области воспаления, что имеет определенный биологический смысл. Вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. Кроме того, гистамин участвует в секреции соляной кислоты в желудке, что широко используется в клинике при изучении секреторной деятельности желудка (гистаминовая проба). Он имеет прямое отношение к явлениям сенсибилизации и десенсибилизации. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты (санорин, димедрол и др.), оказывающие влияние на рецепторы сосудов. Гистамину приписывают также роль медиатора боли.

5. Превращения аминокислот при нагревании. б-Аминокислоты, а еще легче их эфиры, при нагревании образуют циклические пептиды -- дикетопиперазины:

в-Аминокислоты при нагревании образуют б,в-ненасыщенные кислоты с отщеплением аминогруппы и водорода от соседних атомов углерода:

г-, д- и е-Аминокислоты, как и соответствующие оксикислоты, легко отщепляют воду и циклизуются, образуя внутренние амиды -- лактамы:

6. Качественные реакции на аминокислоты. Качественные (цветные) реакции аминокислот сохранили свое важное значение до настоящего времени. Общая качественная реакция б-аминокислот - это реакция с нингидрином. Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом.

Для обнаружения пептидных связей в пептидах и белках служит биуретовая реакция. Для обнаружения ароматических и гетероциклических альфа-аминокислот используют ксантопротеиновую реакцию.________________________________________________________________________________________________ (от греч. ксантос -- желтый). При нагревании ароматических аминокислот с концентрированной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет.

15.6 Пептиды. Белки

Пептиды -- это высокомолекулярные соединения, содержащие от 2 до 100 аминокислотных остатков. Две молекулы аминокислоты могут реагировать друг с другом с отщеплением молекулы воды и образованием продукта, в котором фрагменты связаны пептидной связью --СО--NH --.

Полученное соединение называют дипептидом. Представителем самых «маленьких» пептидов являются содержащиеся в мышцах животных и человека карнозин и ансерин. Молекула дипептида, подобно аминокислотам, содержит аминогруппу и карбоксильную группу и может реагировать еще с одной молекулой аминокислоты:

Продукт реакции называется трипептидом. Один из наиболее распространенных трипептидов - глутатион - содержится во всех животных, растениях и бактериях. Глутатион участвует в ряде окислительно- восстановительных процессов. Он выполняет функцию протектора белков и защищает свободные тиольные группы от нежелательного окисления .

Процесс наращивания пептидной цепи может продолжаться в принципе неограниченно (поликонденсация) и приводить к веществам с очень высокой молекулярной массой (белкам). Некоторые пептиды способны проявлять антибактериальное действие и используются как лекарственные средства. Например, грамицидин - S - циклический декапептид, оказывающий антибактериальное действие на стрептококки, пневмококки и другие микроорганизмы.

Большое значение имеет группа пептидов, проявляющих гормональное действие. Гормоны задней доли гипофиза - окситоцин и вазопрессин являются нанопептидами и имеют близкую первичную структуру. Различие в структуре приводит к формированию специфического биологического действия каждого из этих гормонов. Так, окситоцин образуется только у женщин и вызывает сокращение гладкой мускулатуры матки и применяется в гинекологии и акушерстве для стимуляции родовой деятельности. Вазопрессин регулирует минеральный обмен и встречается и в мужском и женском организме.

Инсулин - гормон, ответственный за контроль метаболизма углеводов, жиров и белков. Его вырабатывает поджелудочная железа. С недостатком инсулина связано заболевание - сахарный диабет.

Белки -- это природные полипептиды с высокими значениями молекулярной массы (от 10 000 до десятков миллионов), состоящие более 100 аминокислотных остатков. Они входят в состав всех живых организмов и выполняют разнообразные биологические функции.

Можно выделить четыре уровня в строении полипептидной цепи. Первичная структура белка -- это конкретная последовательность аминокислот в полипептидной цепи. Пептидная цепь имеет линейную структуру только у небольшого числа белков. В большинстве белков пептидная цепь определенным образом свернута в пространстве.

Вторичная структура -- это конформация полипептидной цепи, т. е. способ скручивания цепи в пространстве за счет водородных связей между группами NH и СО. Основной способ укладки цепи -- спираль.

Третичная структура белка -- это трехмерная конфигурация закрученной спирали в пространстве. Третичная структура образуется за счет дисульфидных мостиков --S--S-- между цистеиновыми остатками, находящимися в разных местах полипептидной цепи. В образовании третичной структуры участвуют также ионные взаимодействия противоположно заряженных групп NH3+ и СОО- и гидрофобные взаимодействия, т. е. стремление молекулы белка свернуться так, чтобы гидрофобные углеводородные остатки оказались внутри структуры.

Третичная структура -- высшая форма пространственной организации белков. Однако некоторые белки (например, гемоглобин) имеют четвертичную структуру, которая образуется за счет взаимодействия нескольких полипептидных цепей.

16. Углеводы

Углеводы - это природные соединения, имеющие в подавляющем большинстве состав Cх(H2O)у. Их подразделяют на низкомолекулярные углеводы и продукты их поликонденсации. По способности к гидролизу углеводы делятся на простые -- моносахариды и сложные -- полисахариды. Моносахариды не гидролизуются с образованием более простых углеводов. Способные к гидролизу полисахариды можно рассматривать как продукты поликонденсации моносахаридов. Полисахариды являются высокомолекулярными соединениями, макромолекулы которых содержат сотни и тысячи моносахаридных остатков. Среди них выделяют группу олигосахаридов, имеющих относительно небольшую молекулярную массу и содержащих от 2 до 10 моносахаридных остатков.

16.1 Моносахариды

Моносахариды - это полигидроксикарбонильные соединения, в которых каждый атом углерода (кроме карбонильного) связан с группой ОН. Общая формула моносахаридов - Сn(H2O)n, где n =3-9.

Моносахариды -- твердые вещества, легко растворимые в воде, плохо -- в спирте и совсем нерастворимые в эфире. Большинство моносахаридов обладает сладким вкусом. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов.

По химическому строению различают:

альдозы - моносахариды, содержащие альдегидную группу;

кетозы - моносахариды, содержащие кетонную группу (как правило, у второго атома углерода).

В зависимости от длины углеродной цепи моносахариды делятся на триозы, тетрозы, пентозы, гексозы и т.д. Обычно моносахариды классифицируют с учетом сразу двух этих признаков.

Подавляющее большинство природных моносахаридов принадлежит к D-ряду. Родоначальником ряда D-альдоз является D-глицериновый альдегид. Остальные D-альдозы могут быть построены на основе D-глицеральдегида путем последовательной вставки фрагмента СНОН сразу после карбонильной группы. Стереоизомерные альдозы имеют тривиальные названия (схема 3).

Схема 3. Классификация альдоз.

Ниже приведена классификация кетоз (схема 4).

Схема 4. Классификация кетоз.

В природе широко распространены гексозы (D-глюкоза, D-галактоза, D-манноза, D-фруктоза) и пентозы (D-рибоза, D-ксилоза, D-арабиноза). Среди производных моносахаридов наиболее распространенными являются аминосахара D-глюкозамин и D-галактозамин и дезоксисахар 2-дезокси-D-рибоза.

Цикло-оксо-таутомерия

Карбонильная и гидроксильная группы моносахаридов взаимодействуют внутримолекулярно с образованием циклического полуацеталя:

При этом возникает новый хиральный центр за счет образования свободного полуацетального гидроксила - бывший карбонильный, а теперь аномерный атом углерода. Наиболее устойчивы циклические полуацетали, содержащие шестичленный (пиранозный) или пятичленный (фуранозный) циклы. Они образуются при взаимодействии альдегидной группы с гидроксильной группой в положении 5 или 4 моносахарида соответственно. На рисунке представлена схема образования циклических форм D-глюкозы:

Возникновение нового хирального центра приводит к появлению 2-х стереоизомеров для каждой из циклической форм - Ь- и в-аномеров.

Аномеры - это изомеры, которые различаются по конфигурации аномерного атома углерода.

У Ь-аномера свободный полуацетальный гидроксил находится под кольцом фуранозного или пиранозного цикла, у в-аномера - свободный полуацетальный гидроксил находится над кольцом фуранозного или пиранозного цикла.

Циклические формы моносахаридов изображают с помощью формул Хеуорса. Молекулу представляют в виде плоского цикла, перпендикулярного плоскости рисунка. Заместители, находившиеся в формуле Фишера слева, располагают над плоскостью цикла, справа - под плоскостью. Для определения положения группы СН2ОН в формуле Фишера предварительно делают две перестановки.

В кристаллическом состоянии моносахариды находятся в одной из циклических форм. При растворении образуется равновесная смесь линейной и циклических форм. Их относительное содержание определяется термодинамической стабильностью. Циклические, особенно пиранозные формы, энергетически более выгодны для большинства моносахаридов. Например, в растворе D-глюкозы преобладает в-D-глюкопираноза:

Существование равновесия между линейной и циклическими формами моносахаридов получило название цикло-оксо-таутомерии.

Химические свойства моносахаридов определяются наличием карбонильной группы (в незамкнутой форме), полуацетального гидроксила (в циклических формах) и спиртовых ОН групп.

1. Восстановление. При восстановлении карбонильной группы альдоз образуются многоатомные спирты - глициты. Эти кристаллические легко растворимые в воде вещества обладают сладким вкусом и часто используются как заменители сахара при сахарном диабете (ксилит, сорбит).

Шестиатомные спирты -- глюцит (сорбит), дульцит и маннит -- получаются при восстановлении соответственно глюкозы, галактозы и маннозы. Восстановление глюкозы в сорбит является одной из стадий промышленного синтеза аскорбиновой кислоты.

2 Окисление. Реакции окисления используют в структурных исследованиях и биохимических анализах для обнаружения моносахаридов, в частности глюкозы, в биологических жидкостях (моча, кровь). В зависимости от условий окисления образуются различные продукты.

При мягком окислении альдоз, например, под действием бромной воды, затрагивается только карбонильная группа и образуются гликоновые кислоты., например из D-глюкозы образуется D-глюконовая кислота, из D-галактозы образуется D-галактоновая кислота.

При действии сильных окислителей (разбавленной азотной кислоты) окисляется оба конца углеродного скелета альдоз и образуются гликаровые кислоты, например, D-глюкозы образуется D-глюкаровая кислота.

В результате специфического окисления, при котором окислена концевая спиртовая группа с образованием карбоксильной группы, а альдегидная группа остается неокисленной. Гликуроновые кислоты входят в состав полисахаридов (пектиновые вещества, гепарин). Биологическая роль D-глюкуроновой кислоты, образующейся из D-глюкозы, состоит в том, что многие токсичные вещества выводятся из организма с мочой в виде растворимых глюкуронидов.

Реакция фосфорилирования моносахаридов. Моносахариды, этерифицированные фосфорной кислотой, играют исключительно большую роль в обмене веществ. Первым обнаруженным в природе фосфорнокислым эфиром углевода был фруктозо-1,6-бисфосфат, который выявили при брожении Л.А. Иванов, а также А. Гарден и В. Юнг в 1905 г. Ниже приводятся формулы некоторых фосфатов сахаров, играющих важную роль в обмене веществ:

16.2 Производные моносахаридов

Дезоксисахара. У дезоксисахаров одна из гидроксильных групп (чаще всего вторая), присоединенных к кольцевой структуре, замещена на атом водорода. Они образуются при гидролизе ряда соединений, играющих важную роль в биологических процессах. Примером может служить дезоксирибоза, входящая в состав нуклеиновых кислот (ДНК):

Аминосахара. Это производные моносахаридов, гидроксильная группа которых --ОН замещена аминогруппой --NH2. В зависимости от положения аминогруппы (при атомах углерода) в молекуле аминосахара различают 2-амино-, 3-амино- и 4-аминосахара и т.д. По числу аминогрупп выделяют моноаминосахара и диаминосахара.Аминосахара обладают всеми свойствами аминов, обычных моносахаров, а также специфическими свойствами, обусловленными пространственной близостью гидроксильных и аминных групп.В организме человека и животных наиболее важными аминосахарами являются D-глюкозамин и D-галактозамин:

Аминосахара входят в состав мукополисахаридов животного, растительного и бактериального происхождения, являются углеводными компонентами различных гликопротеинов и гликолипидов. В составе этих высокомолекулярных соединений аминогруппа аминосахара чаще всего аци-лирована, а иногда сульфирована.

16.3 Дисахариды

Строение. Дисахариды состоят из двух моносахаридных остатков, связанных гликозидной связью. Возможно два варианта образования гликозидной связи:

1) за счет полуацетального гидроксила одного моносахарида и спиртового гидроксила другого моносахарида;

2) за счет полуацетального гидроксилов обоих моносахаридов.

Дисахарид, образованный первым способом, содержит свободный гликозидный гидроксил, сохраняет способность к цикло-оксо-таутомерии и обладает восстанавливающими свойствами.

В дисахариде, образованном вторым способом, нет свободного гликозидного гидроксила. Такой дисахарид не способен к цикло-оксо-таутомерии и является невосстанавливающим. В природе в свободном виде встречается незначительное число дисахаридов. Важнейшими из них являются мальтоза, целлобиоза, лактоза и сахароза.

Мальтоза содержится в солоде и образуется при неполном гидролизе крахмала. Молекула мальтозы состоит из двух остатков б-D-глюкопиранозы. Гликозидная связь между ними образована за счет полуацетального гидроксила в Ь-конфигурации одного моносахарида и гидроксильной группы в положении 4 другого моносахарида.

Мальтоза - это восстанавливающий дисахарид.

Целлобиоза - продукт неполного гидролиза целлюлозы, клетчатки. Молекула целлобиозы состоит из двух остатков в-D-глюкопиранозы, связанных в-1,4-гликозидной связью. Целлобиоза - восстанавливающий дисахарид.

Лактоза содержится в молоке (4-5%). Молекула лактозы состоит из остатков вD-галактопиранозы и б-D-глюкопиранозы, связанных в-1,4-гликозидной связью. Лактоза - восстанавливающий дисахарид.

Сахароза содержится в сахарном тростнике, сахарной свекле, соках растений и плодах. Она состоит из остатков б-D-глюкопиранозы и в-D-фруктофуранозы, которые связаны за счет полуацетальных гидроксилов. Сахароза - невосстанавливающий дисахарид.

16.4 Полисахариды

Полисахариды - полимеры, построенные из моносахаридных остатков, связанных гликозидными связями. Полисахариды могут иметь линейное или разветвленное строение. Полисахариды, состоящие их одинаковых моносахаридных остатков, называют гомополисахаридами, из остатков разных моносахаридов - гетерополисахаридами.

К гомополисахаридам относят:

Крахмал - полисахарид растительного происхождения. Крахмал представляет собой смесь двух полисахаридов - амилозы (10-20%) и амилопектина (80-90%) Крахмал набухает и растворяется в воде, образуя вязкие растворы (гели). Химические свойства крахмала аналогичны свойствам моно- и дисахаридов. Крахмал гидролизуется под действием кислот (но не щелочей) и фермента амилазы. Конечным продуктом гидролиза крахмала является D-глюкоза.

(C6H10O5)n ---> (C6H10O5)m ---> C12H22O11 ---> C6H12O6

крахмал декстрины мальтоза D-глюкоза n>m

За счет спиралеобразной конформации амилоза способна образовывать соединения включения с молекулярным иодом. Комплексы крахмала с иодом имеют интенсивную синюю окраску. Реакция используется как качественная на иод и крахмал.

Амилоза - линейный гомополисахарид, состоящий из остатков D-глюкопиранозы, связанных Ь-1,4-гликозидными связями. Структурным элементом амилозы является дисахарид мальтоза.

Амилопектин - разветвленный гомополисахарид, построенный из остатков D-глюкопиранозы, которые связаны в основной цепи Ь-1,4-гликозидными, а в местах разветвлений - Ь-1,6-гликозидными связями. Разветвления расположены через каждые 20-25 моносахаридных остатков.

Гликоген. В животных организмах этот полисахарид является структурным и функциональным аналогом растительного крахмала. По строению подобен амилопектину, но имеет еще большее разветвление цепей. Обычно между точками разветвления содержатся 10-12 глюкозных звеньев, иногда даже 6, условно можно сказать, что разветвленность макромолекулы гликогена вдвое больше, чем амилопектина. Сильное разветвление способствует выполнению гликогеном энергетической функции так как только при наличии большого числа концевых остатков можно обеспечить быстрое отщепление нужного количества глюкозы. Молекулярная масса гликогена необычайно велика, измерения у гликогена, выделенного с предосторожностями во избежание расщепления макромолекулы, показали, что она равна 100 млн. Такой размер макромолекул содействует выполнению функции резервного углевода. Так, макромолекула гликогена из-за большою размера не проходит через мембрану и остается внутри клетки, пока не возникнет потребность в энергии. Гидролиз гликогена в кислой среде протекает очень легко с количественным выходом глюкозы. Это используется в анализе тканей на содержание гликогена: горячей щелочью из тканей извлекают гликоген, осаждают его спиртом, гидролизуют в кислой среде и определяют количество образовавшейся глюкозы. Аналогично гликогену в животных организмах, в растениях такую же роль резервного полисахарида выполняет амилопектин имеющий менее разветвленное строение, это связано с тем, что в растениях значительно медленнее протекают метаболические процессы и не требуется быстрый приток энергии, как это иногда бывает необходимо животному организму (стрессовые ситуации, физическое или умственное напряжение).

Целлюлоза - самый распространенный растительный полисахарид. Выполняет функцию опорного материала растений. Структурным элементом целлюлозы является целлобиоза.

Древесина содержит 50--70% целлюлозы; хлопок представляет собой почти чистую целлюлозу. Целлюлоза является важным сырьем для ряда отраслей промышленности (целлюлозно-бумажной, текстильной и т. п.). Целлюлоза построена и остатков D--глюкопиранозы, звенья которой связаны бета-(1-4)-гликозидными связями. Макромолекулярная цепь не имеет разветвлений, в ней содержится 2500--12 000 глюкозных остатков, что соответствует молекулярной массе от 400 000 до 1--2 млн. Бета-конфигурация аномерного атома углерода приводит к тому, что макромолекула целлюлозы имеет строго линейное строение. Этому способствует образование водородных связей внутри цепи, а также между соседними целями. Такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу прекрасным материалом для построения клеточных стенок растений. Целлюлоза не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым для нормального питания балластным веществом. Большое практическое значение имеют эфирные производные целлюлозы: ацетаты (искусственный шелк), ксантогенаты (вискозное волокно, целлофан), нитраты (взрывчатые вещества, коллоксилин) и др.

Декстраны - полисахариды бактериального происхождения, построенные из остатков Ь-D-глюкопиранозы. Молекулы декстранов сильно разветвлены. Декстраны используют как заменители плазмы крови, однако большая молекулярная масса природных декстранов (несколько миллионов) делает их непригодными для приготовления инъекционных растворов вследствие плохой растворимости. В связи с этим молекулярную массу снижают до 50--100 тыс. с помощью кислотного гидролиза или ультразвука и получают клинические декстраны, например препарат полиглюкин. Декстраны обладают антигенными свойствами. Можно отметить, что декстраны, синтезируемые обитающими на поверхности зубов бактериями, являются компонентами налета на зубах.

Хитин - основной полисахарид роговых оболочек насекомых и ракообразных, встречается в грибах. Хитин - неразветвленный полисахарид, построенный их остатков N-ацетил-D-глюкозамина, связанных в-1,4-гликозидными связями.

Пектиновые вещества содержатся в ягодах, фруктах и овощах, способствуют желеобразованию Основной компонент пектиновых веществ - пектовая кислота - линейный полисахарид, построенный их остатков D-галактуроновой кислоты, связанных Ь-1,4-гликозидными связями.

Инулин. Этот полисахарид обычно накапливается в клубнях, а также содержится в водорослях. Гомополисахарид инулин состоит из остатков D-фруктопиранозы, связанных в-(2-1)-связями.

Гетерополисахариды имеют в основном животное или бактериальное происхождение. Важное значение имеют гетерополисахариды, входящие в состав соединительной ткани. Полисахариды соединительной ткани находятся в виде углевод-белковых комплексов - протеогликанов. Наиболее важные из них: хондроитинсульфаты (кожа, хрящи, сухожилия), гиалуроновая кислота (хрящи, стекловидное тело глаза, суставная жидкость), гепарин (печень, кровеносные сосуды). Для этих полисахаридов характерны общие черты в строении. Они имеют неразветвленную структуру и содержат гликуроновые кислоты и ацетилированные аминосахара. Например, гиалуроновая кислота состоит из дисахаридных фрагментов, включающих D-глюкуроновую кислоту и N-ацетил-D-глюкозамин, которые связан внутри биозного фрагмента в-1,3-гликозидной связью, между биозными фрагментами - в-1,4-гликозидной связью.

Как свидетельствует само их название, хондроитинсульфаты являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидроксильной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат.

Гепарин. В гепарине в состав повторяющихся дисахаридных единиц входят остатки D-глюкозамина и двух уроновых кислот -- D-глюкуроновой и L-идуроновой. В количественном отношении преобладает L-идуроновая кислота. Внутри дисахаридного фрагмента осуществляется Ь-(1-4)-гликозидная связь, а между дисахаридными фрагментами -- Ь-(1-4)-связь, если фрагмент оканчивается L-идуроновой кислотой, и в-(1-4)-связь, если D-глюкуроновой кислотой. Аминогруппа у большинства глюкозаминных остатков сульфатирована, а у некоторых из них -- ацетатирована. Кроме того, сульфатные группы содержатся у ряда L-идуроновых кислот при С-2, а также глюкозаминных остатков при С-6. Остатки D-глюкуроновой кислоты не сульфатированы.

Гепарин и гепаритинсульфат, подобно хондроитинсульфату, соединяются с белком через тетрасахаридный фрагмент, концевым звеном которого является D-ксилоза. Гепарин препятствует свертыванию крови, т. е. проявляет антикоагулянтные свойства.

17. Гетероциклические соединения

Гетероциклические соединения -- это органические соединения, содержащие в своих молекулах кольца (циклы), в образовании которых кроме атома углерода принимают участие и атомы других элементов.

Атомы других элементов, входящие в состав гетероцикла, называются гетероатомами. Наиболее часто встречаются в составе гетероциклов гетероатомы азота, кислорода, серы, хотя могут существовать гетероциклические соединения с самыми различными элементами, имеющими валентность не менее двух.

Гетероциклические соединения могут иметь в цикле 3, 4, 5, 6 и более атомов. Однако наибольшее значение имеют пяти- и шестичленные гетероциклы. Эти циклы, как и в ряду карбоциклических соединений, образуются наиболее легко и отличаются наибольшей прочностью. В гетероцикле может содержаться один, два и более гетероатомов.

Гетероциклы - самый многочисленный класс органических соединений, включающий около 2/3 всех известных природных и синтетических органических веществ. Гетероциклическую природу имеют многие алкалоиды, витамины, природные пигменты. Гетероциклы являются структурными фрагментами молекул нуклеиновых кислот и белков. Более 60% наиболее известных и широко употребляемых лекарственных препаратов являются гетероциклическими соединениями.

Гетероциклы классифицируют по следующим основным признакам:

по природе и числу гетероатомов; по размеру цикла; по степени ненасыщенности.

Наибольшее распространение в природе имеют пяти- и шестичленные гетероциклы, содержащие в качестве гетероатомов азот, а также кислород и серу.

По степени ненасыщенности различают насыщенные, ненасыщенные и ароматические гетероциклы. Гетероциклы неароматического характера по своим свойствам сходны с соответствующими ациклическими соединениями (аминами, амидами, простыми и сложными эфирами и т.д.). 5- и 6-членные гетероциклы, замкнутая сопряженная система которых включает (4n + 2) электрона, обладают ароматическим характером. Такие соединения по свойствам родственны бензолу и относятся к ароматическим гетероциклическим соединениям. Именно ароматические гетероциклические соединения широко распространены в природе. Для гетероциклов обычно пользуются эмпирическими названиями.

17.1 Пятичленные гетероциклические соединения c одним гетероатомом

...

Подобные документы

  • Определение свойств химических элементов и их электронных формул по положению в периодической системе. Ионно-молекулярные, окислительно-восстановительные реакции: скорость, химическое равновесие. Способы выражения концентрации и свойства растворов.

    контрольная работа [58,6 K], добавлен 30.07.2012

  • Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

    курс лекций [333,8 K], добавлен 24.06.2015

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Понижение температуры замерзания раствора электролита. Нахождение изотонического коэффициента для раствора кислоты с определенной моляльной концентрацией. Определение энергии активации и времени, необходимого для химической реакции между двумя веществами.

    курсовая работа [705,4 K], добавлен 26.10.2009

  • Классификация высокомолекулярных соединений по происхождению: синтетические и природные (неорганические и органические). Кинетика процесса поликонденсации. Концепция аморфно-кристаллической структуры полимеров. Получение и применение полимерных кислот.

    контрольная работа [90,8 K], добавлен 26.08.2014

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Составление формул соединений кальция с водородом, фтором и азотом. Определение степени окисления атома углерода и его валентности. Термохимические уравнения реакций, теплота образования. Вычисление молярной концентрации эквивалента раствора кислоты.

    контрольная работа [46,9 K], добавлен 01.11.2009

  • Классификация органических соединений по углеродному скелету и по функциональным группам. Взаимосвязь химического строения органических молекул с их реакционным центром. Влияние электронно-пространственного строения на механизмы химических превращений.

    курс лекций [1,2 M], добавлен 19.12.2013

  • Тепловые эффекты химических реакций, а также основные факторы, влияющие на их динамику. Закон Гесса: понятие и содержание, сферы практического применения. Энтропия системы и анализ уравнения Больцмана. Направления химических реакций и энергия Гиббса.

    лекция [34,1 K], добавлен 13.02.2015

  • Значение атома углерода в химическом строении органических соединений. Карбоновая кислота – представитель предельных одноосновных кислот. Циклические и ароматические углеводороды. Определение и химическое строение липидов. Виды спиртов. Получение мыла.

    учебное пособие [5,9 M], добавлен 25.04.2011

  • Роль скорости химических реакций, образования и расходования компонентов. Кинетика химических реакций. Зависимость скорости реакции от концентрации исходных веществ. Скорость расходования исходных веществ и образования продуктов. Закон действующих масс.

    реферат [275,9 K], добавлен 26.10.2008

  • Использование магнийорганических соединений и химия элементоорганических соединений. Получение соединений различных классов: спиртов, альдегидов, кетонов, эфиров. История открытия, строение, получение, реакции и применение магнийорганических соединений.

    курсовая работа [34,4 K], добавлен 12.12.2009

  • Химическая связь в органических молекулах. Классификация химических реакций. Кислотные и основные свойства органических соединений. Гетерофункциональные производные бензольного ряда. Углеводы, нуклеиновые кислоты, липиды. Гетероциклические соединения.

    учебное пособие [1,9 M], добавлен 29.11.2011

  • Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа [43,3 K], добавлен 04.04.2009

  • Сравнительная характеристика органических и неорганических химических соединений: классификация, строение молекулярной кристаллической решетки; наличие и тип химической связи между атомами; относительная молекулярная масса, распространение на планете.

    презентация [92,5 K], добавлен 11.05.2014

  • Рассмотрение реакций, основанных на образовании комплексных соединений металлов и без их участия. Понятие о функционально-аналитической и аналитико-активной группах. Использование органических соединений как индикаторов титриметрических методов.

    курсовая работа [1,5 M], добавлен 01.04.2010

  • Химическое строение - последовательность соединения атомов в молекуле, порядок их взаимосвязи и взаимного влияния. Связь атомов, входящих в состав органических соединений; зависимость свойств веществ от вида атомов, их количества и порядка чередования.

    презентация [71,8 K], добавлен 12.12.2010

  • Химический состав белков - органических высокомолекулярных азотистых соединений. Их классификация по химическим свойствам, форме молекулы, структуре. Изменения белкового состава при онтогенезе и болезнях. Наследственные и приобретенные типы протеинопатии.

    презентация [124,1 K], добавлен 24.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.