Гальванические элементы. Электролиз

Гальванический элемент Даниэля-Якоби. Значения стандартных электродных потенциалов полуреакций. Концентрационные гальванические элементы. Направление окислительно-восстановительных реакций. Электролиз CdCl2. Последовательность электродных процессов.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 14.05.2017
Размер файла 533,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Гальванические элементы. Электролиз

Если окислительно-восстановительную реакцию осуществить так, чтобы процессы окисления и восстановления были пространственно разделены, и создать возможность перехода электронов от восстановителя к окислителю по проводнику (внешней цепи), то во внешней цепи возникает направленное движение электронов электрический ток. Устройства, в которых энергия химической реакции превращается в электрическую энергию, называются химическими источниками тока или гальваническими элементами.

Всякий гальванический элемент состоит из двух электродов, соединенных между собой металлическим проводником и солевым мостиком.

При схематическом изображении гальванического элемента граница раздела межу металлом и раствором обозначается вертикальной чертой, граница между растворами электролитов - двойной вертикальной чертой. Например, схема гальванического элемента, в основе работы которого лежит реакция

Zn + 2AgNO3 > Zn(NO3)2 + 2Ag,

изображается следующим образом:

Zn | Zn(NO3)2 || AgNO3 | Ag

или

Zn | Zn2+ || Ag+ | Ag.

Рассмотрим систему, в которой два электрода находятся в растворах своих солей.Примером может служить гальванический элемент ДаниэляЯкоби.

1. Гальванический элемент Даниэля-Якоби

Гальванический элемент ДаниэляЯкоби (рис. 7.1), который состоит из медной и цинковой пластинок, опущенных в растворы своих солей. На поверхности цинковой пластинки устанавливается равновесие

ZnZn2+ + 2з,

которому соответствует потенциал Zn. На поверхности медной пластинки устанавливается равновесие

CuCu2+ + 2з,

которому соответствует равновесный потенциал Сu.

Потенциал цинкового электрода имеет более отрицательное значение, поэтому при замыкании внешней цепи электроны будут переходить от цинка (анод) к меди (катод). В результате этого процесса равновесие на аноде (Zn) сместится вправо и в раствор перейдет дополнительное количество ионов цинка (происходит растворение анода). В то же время равновесие на медном электроде сместится влево и произойдет выделение меди на катоде.На аноде образуется избыток электронов, поэтому анод в гальванических элементах заряжен отрицательно, а катод - положительно.

Рис. 1. Медно-цинковый гальванический элемент

Т.о. при замыкании внешней цепи возникают самопроизвольные процессы растворения цинка на цинковом электроде и выделения меди на медном электроде.Электроны от анода по внешней цели протекают к катоду.Электрическую цепь замыкает движение ионов в растворах.

Схема гальванического элемента, заменяющая рисунок, записывается следующим образом:

ZnZn2+¦Cu2+Cu .

(А): Zn 2з = Zn2+,(окисление)

(К): Cu2+ + = Cu0,(восстановление)

Zn + Cu2+ = Zn2+ + Cu .

Суммарная реакция, протекающая в гальваническом элементе, называется токообразующей.

Причиной возникновения и протекания электрического тока в гальваническом элементе является разность электродных потенциалов (ЭДС) двух окислительно-восстановительных систем, соединенных между собой. ЭДС (о) любого гальванического элемента определяется общей формулой:

или

Так как о может иметь только положительное значение, то , т.е. катодом является электрод с более высоким электродным потенциалом.

При таком осуществлении окислительно-восстановительной реакции ее энергия превращается в электрическую энергию, которую можно использовать, включив во внешнюю цель устройство, потребляющее электрическую энергию (например, электронагревательный прибор, электрическую лампу и т.п.).

С течением времени разность потенциалов будет снижаться, т.к. концентрация ионов цинка, а следовательно, и потенциал цинкового электрода будут увеличиваться, а концентрация ионов меди и потенциал медного электрода постепенно будут снижаться. Данные процессы будут продолжаться до тех пор, пока не выровняются потенциалы электродов () или не растворится весь цинк (высадится вся медь), т.е. пока ЭДС не станет равной нулю.

Как уже было показано, электроды, а следовательно, и гальванические элементы могут быть созданы не только для реакции окисления-восстановления металлов, но и для любых веществ и окислительно-восстановительных реакций, происходящих в растворах или расплавах. Например, для реакции в растворе

2KMnO4 + 5Na2SO3 + 3H2SO4 = 2MnSO4 + 5Na2SO4 + K2SO4 + 3H2O

процессы окисления и восстановления можно разделить в виде полуреакций :

на аноде: 5 SO32 + H20 = SO42 + 2H+ + 2з; (0,17 В),

на катоде: 2 MnO4 + 8H+ + 5e = Mn2+ + 4H2O (1,51 В).

2MnO4 + 5SO32 + 6H+ + 10з = 2Mn2+ + 5SO42 + 3H2O + 10з.

Токообразующая реакция:

2MnO4 + 5SO32 + 6H+ = 2Mn2+ + 5SO42 + 3H2O.

Для осуществления таких реакций обычно используют катализатор, который одновременно является проводником электронов, например платину (рис. 7.2).

Рис..2. Гальванический элемент на окислительно-восстановительной реакции в растворе

Схема гальванического элемента:

Pt | SO32, SO42, H+|| MnO4, Mn2+, H+| Pt .

Значения стандартных электродных потенциалов полуреакций приводятся в справочниках. ЭДС такого элемента при стандартных условиях можно определить как разность потенциалов для полуреакций восстановления (окислителя) и окисления (восстановителя).

о = 0 = 0 (MnО4/ Mn2+) 0 (SO42 / SO32) = 1,51 0,17 = 1,34 B.

Если при этом ЭДС положительна, то реакция возможна при стандартных условиях, так как G реакции и электрическая работа (ЭДС) связаны между собой соотношением:

G = n·F·о.

Таким образом, разность потенциалов на электродах можно не только непосредственно измерить, но и вычислить из чисто химических экспериментальных данных. В случае нестандартных условий потенциал электрода и ЭДС элемента рассчитывается по формуле Нернста.

2. Концентрационные гальванические элементы

Гальванический элемент может быть составлен не только из различных, но и одинаковых электродов, погруженных в растворы одного и того же электролита различной концентрации (концентрационные элементы).

Например, гальванического элемента, составленного из серебряных электродов, опущенных в 0,0001 М и 0,1 М растворы AgNO3.

Найдем электродные потенциалы по формуле Нернста (7.2):

1Ag+/Ag = 0 + 0,059·lg[Ag+] = 0,8 + 0,059·lg 0,001 = 0,62 В,

2Ag+/Ag = 0,8 + 0,059·lg0,1 = 0,74 В.

Поскольку 1 <2, электрод, опущенный в 0,001 М раствор, будет являться анодом:

о = ка= 0,74 0,62 = 0,12 В.

Схема такого гальванического элемента записывается так:

() Ag | AgNO3(0,001М) || AgNO3(0,1М) | Ag(+).

Таким образом, принцип работы гальванического элемента можно описать следующим образом:

1) реакция окисления на аноде, в результате которой образуются электроны, анод при этом заряжается отрицательно;

2) реакция восстановления на катоде, катод заряжен положительно;

3) движение электронов от анода к катоду;

4) движение ионов в растворе: отрицательных ионов от катода к аноду, положительных - от анода к катоду.

3. Направление окислительно-восстановительных реакций

По величинам окислительно-восстановительных потенциалов можно судить о направлении протекания окислительно-восстановительных реакций. Исходя из уравнения, которое связывает разность потенциалов полуреакций (о) с изменением свободной энергии Гиббса G, и помня, что возможность протекания любого химического процесса обусловлена отрицательным значением G, можно сделать следующий вывод:

окислительно-восстановительная реакция будет самопроизвольно протекать в таком направлении, при котором полуреакция с более высоким значением окислительно-восстановительного потенциала выступает в качестве окислителя по отношению к полуреакции с более низким потенциалом.

Иными словами, окислительно-восстановительная реакция может протекать в том случае, если разность потенциалов полуреакций соответствующего гальванического элемента положительна.

По мере протекания реакции концентрации окисленной и восстановленной форм в полуреакциях изменяются таким образом, что потенциал окислителя уменьшается, а восстановителя возрастает. В результате разность потенциалов уменьшается, движущая сила процесса ослабевает. Окислительно-восстановительная реакция будет протекать до тех пор, пока потенциалы полуреакций не станут равными. При равенстве потенциалов в системе устанавливается химическое равновесие.

В первом приближении уже путем сравнения стандартных потенциалов полуреакций можно решить вопрос какая из них способна выполнить функцию окислителя или восстановителя по отношению к другой. Для этого стандартные потенциалы должны существенно отличаться один от другого. Например, цинк (0 = 0,76 В) будет восстанавливать (вытеснять) медь (0 = +0,34 В) из водного раствора ее соли при любой практически осуществимой концентрации этого раствора. Но, если разность стандартных потенциалов невелика (стандартные потенциалы близки), необходимо рассчитать действительные потенциалы с учетом концентраций по уравнению Нернста и только после этого решать вопрос о направлении протекания данной окислительно-восстановительной реакции.

Пример.Установить возможность и направление протекания реакции

2KBr + PbO2 + 2H2SO4 = Br2 + PbSO4 + K2SO4 + 2H2O.

Решение. Чтобы ответить на вопрос, запишем реакцию в ионном виде, разделив ее на полуреакции, и запишем стандартные потенциалы полуреакций :

2Br - + PbO2 + 4H+ = Pb2+ + Br2 + 2H2O.

Br2 + 2з = 2Br; 0 = 1,09 B,

PbO2 + 4H+ + 2з = Pb2+ + 2H2O ; 0 = 1,46 B.

о = ок-лявосст-ля = 1,46 1,09 = 0,37 В > 0.

Следовательно, G 0, т.е. реакция будет протекать слева направо. Из сопоставления потенциалов видно, что PbO2 в кислой среде имеет больший потенциал, следовательно, он может окислить ионы Br, которые образуют при этом Br2.

4. Электролиз

Если электрический ток может вырабатываться за счет химических реакций, то и за счет внешнего источника электрической энергии эти реакции могут быть проведены.

Окислительно-восстановительные процессы, протекающие на электродах при пропускании электрического тока через раствор или расплав электролита, называются электролизом. При этом на катоде происходит процесс восстановления, а на аноде процесс окисления.

При электролизе могут быть использованы два типа анодных электродов: активные (расходуемые) и инертные (нерасходуемые). Активный анод окисляется, переходя в раствор в виде ионов, а инертный является только электродом, через который в раствор (или расплав) передаются электроны. Инертные электроды обычно изготовляют из графита или платины.

Рассмотрим, например, электролиз расплава соли CdCl2. При плавлении происходит электролитическая диссоциация соли:

CdCl2Cd2+ + 2Cl .

Если теперь в сосуд, содержащий это вещество, опустить два инертных электрода из графита и подключить их к полюсам внешнего источника тока, то в электролите начнется направленное движение ионов (рис. 7.3). При этом на катоде будет происходить восстановление ионов кадмия, а на аноде окисление ионов хлора:

катод: Cd2+ + 2з >Cd0 ;

анод: 2Cl 2з >Cl2 .

токообразующая реакция:Cd2+ + 2Cl = Cd0 + Cl2

Рис.3. Электролиз расплава CdCl2

Через короткое время на инертных электродах осядут металлический кадмий и газообразный хлор (в виде пузырьков) и инертные электроды превратятся в активные в кадмиевый и хлорный, соответственно, имеющие следующие стандартные электродные потенциалы:

Cd2+ + 2з = Cd0 ; 0 = 0,4 В,

Cl2 .+2з = 2Cl ; 0 = +1,36 В.

Возникшему гальваническому элементу будет соответствовать токообразующая реакция, обратная электролизу:

Сd + Cl2 = CdCl2 .

Как видно из величин и знаков этих потенциалов, возникшая ЭДС направлена навстречу внешнему источнику напряжения при электролизе. Следовательно, минимальное напряжение (напряжение разложения), которое необходимо приложить для электролиза, определяется ЭДС гальванического элемента (ГЭ), возникающего в этом процессе. В данном случае

ЭДС0 = 1,36 (0,4) = 1,76 В.

Эта величина, однако, найдена для стандартных условий, которые часто не выполняются (нарушаются) при электролизе. Отклонение напряжения электролиза (и ЭДС ГЭ) от стандартного значения называется поляризацией. Имеется несколько причин поляризации электродов:

концентрационная поляризация изменение концентрации ионов у электрода в результате протекания реакции (тока);

катодное и анодное перенапряжение замедленное протекание реакций на электродах;

пассивация электродов (образование на поверхностях труднора-створимых, плохопроводящих пленок).

Для предотвращения поляризации в растворы или электроды добавляют специальные вещества деполяризаторы.Величина поляризации может быть порядка 0,5 В, что существенно как для электролиза, так и для ГЭ.

Последовательность электродных процессов

В рассмотренном выше примере электролиза расплава CdCl2 в электролите имелись только один вид катионов и анионов. Однако часто на практике в электролите присутствуют несколько видов ионов или недиссоциированных молекул.

В тех случаях, когда на одном и том же электроде возможно протекание двух (или большего числа) процессов, наиболее вероятен тот, осуществление которого требует меньшей затраты энергии. Это правило вытекает из законов термодинамики.

В частности, порядок разрядки ионов на электродах из смеси (раствора) при ее электролизе определяется потенциалом соответствующего электрода с учетом поляризации: первым на катоде выделяется (разряжается) тот ион, потенциал которого больше; на аноде в первую очередь разряжаются (окисляются) ионы, потенциал которых меньше.

Так как существует поляризация, то определять порядок разрядки ионов на электродах по стандартным значениям потенциалов нельзя, нужно знать экспериментальные значения потенциалов при определенных условиях. Установлено, что перенапряжение при разрядке ионов металлов на катоде наименьшее, поэтому они ведут себя при электролизе приблизительно в соответствии с их стандартными потенциалами. Наибольшее перенапряжение имеет место при разрядке сложных ионов (NO3, SO42 и др.), а также на газовых электродах (водородном, кислородном).

В соответствии с экспериментальными данными сформулированы качественныеправила для электролиза разбавленных растворов солей, которые учитывают тот факт, что в растворе соли, кроме ее собственных ионов, имеются ионы и молекулы самой воды (Н2О. Н+, ОН), которые также могут участвовать в электролизе.

Катодные процессы:

1. Катионы металлов, стоящих в ряду напряжений до Аl, и сам Аl не разряжаются на катоде; в этом случае на катоде восстанавливаются молекулы воды по уравнению

2О + 2з = Н2 + 2ОН.

2. Катионы металлов, находящихся в ряду напряжений после Al до Н, разряжаются параллельно с водородом:

Zn2+ + 2з = Zn0,

2О + 2з = Н2 + 2ОН.

3.Ионы благородных и малоактивных металлов, потенциал которых больше, чем потенциал водородного электрода, разряжаются в первую очередь, и разряд ионов водорода или молекул воды не происходит:

Cu2+ + 2з = Сu0.

Анодные процессы:

Анионы также можно расположить в ряд по возрастанию восстановительной активности:

F, NO3, SO42, OH, Cl, Br, I, S2.

Однако, порядок разрядки также не полностью подчиняется этому ряду. Поэтому сформулированы следующие правила:

1.Простые анионы Cl, Br, S2 и др. (кроме F) на аноде разряжаются сами:

2Cl2з = Cl2.

2. Сложные анионы (SO42, NO3 и т.д.) и F на аноде не разряжаются, происходит окисление воды:

2О 4з = O2 + 4Н+.

Пример. В какой последовательности будут восстанавливаться ионы металлов K+, Cu2+, Zn2+, Ag+, имеющихся в растворе при пропускании через них тока?

Решение. Разряд катионов металлов на катоде при электролизе сопровождается присоединением электронов, следовательно, катионы металлов при этом проявляют окислительную способность. Поэтому в первую очередь будут восстанавливаться катионы металлов, имеющих наибольший потенциал:

1) Ag+ + з = Ag0(0= +0, 8 В);

2) Cu2+ + 2з = Cu0(0= +0,34 В);

3) Zn2+ + 2з = Zn0(0= 0,76 В);

4) K+ + з = K0(0= 2,9 В).

5) 2H2O + 2з = H2 + 2OH (0 = 0,83 В).

Таким образом, в растворе последовательность восстановления следующая:

1) Ag+ + з = Ag0,

2) Cu2+ + 2з = Cu0,

3) Zn2+ + 2з = Zn0;

4) 2H2O + 2з = H2 + 2OH,

5) К+ + з = К0.

Пример. Написать уравнения процессов, происходящих при электролизе водного раствора Na2SO4 на угольных (инертных) электродах.

Решение. Поскольку для процесса Na+ + з = Na0 ; 0 = 2,71 В, то на катоде будет происходить восстановление воды :

2H2O + 2з = H2 + 2OH.

На аноде при электролизе солей функцию восстановителей выполняют кислотные остатки. Если кислотный остаток не содержит кислорода, то окисляется сам кислотный остаток, если же в состав кислотного остатка входит кислород, то легче окисляется вода по схеме: 2H2O 4з = O2 + 4H+.

В этом случае соль не участвует в электродных процессах, а происходит электролиз воды. Массовая доля соли в растворе при этом увеличивается.

Такой метод получения Н2 и O2 лучше, чем электролиз чистой воды, так как добавление соли (или щелочи) приводит к увеличению электропроводности на несколько порядков, что увеличивает производительность установок.

Все вышесказанное верно для разбавленных растворов солей. В концентрированных растворах и расплавах на электродах происходит разрядка сложных анионов и активных катионов с последующими реакциями. Например, в концентрированном растворе H2SO4 на аноде:

SO42з = SO4,

2SO4S2О82.

Для азотнокислых солей в концентрированных растворах и расплавах возможны реакции:

NO3 з > ·NO3,

·NO3 > ·NO2 + O,

2O > O2

Отметим, что электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как для расплавления необходимо нагревание до высоких температур.

Все рассмотренные выше примеры описывали процессы, происходящие при электролизе с использованием инертных электродов. Однако анод может быть активным, то есть участвовать в процессе окисления. В этом случае говорят, что протекает электролиз с растворимым анодом. При этом в качестве электролита берется соединение элемента, входящего в состав анода. На катоде и аноде происходит одна реакция в разных (противоположных) направлениях. Поэтому 0 = 0.

К одному из многих интересных применений этого метода относится рафинирование (очистка) металлической меди. Электролиз с растворимым анодом используется также для нанесения покрытий с целью защиты от коррозии или для декоративных целей.

Пример. Какие процессы будут проходить на электродах при электролизе раствора сульфата меди и хлорида кадмия в случае использования активного анода?

Решение. При прохождении электрического тока через раствор CuSO4 на катоде протекает процесс восстановления:

Cu2+ + 2e = Cu0,

а на аноде (Cu) процесс окисления самого медного анода:

Сu0 2з = Cu2+.

Таким образом, 0 = 0к0а = 0.

В растворе CdCl2 с анодом из Cd :

катод: Сd2+ +2з = Сd0,

анод:Сd0 2з = Сd2+

Количественные законы электролиза

Реакции электролиза являются такими же химическими реакциями, как и все остальные, т.е. по ним можно производить стехиометрические расчеты. Но для них существуют специфичные количественные соотношения, названные в честь ученого, установившего эти законы, законами Фарадея.

Таких законов два.

1. Масса электролита, подвергшаяся превращению при электролизе, а также массы образующихся на электродах веществ прямо пропорциональны количеству электричества, прошедшего через раствор или расплав электролита:

2. При прохождении одного и того же количества электричества через раствор или расплав электролита массы (объемы) веществ, выделившихся на электродах, прямо пропорциональны их химическим эквивалентам.

где m масса выделившегося или подвергшегося превращению вещества, Мэкв эквивалентая масса вещества (г/моль экв), I сила тока (а),

t время (с), F постоянная Фарадея (96500 Кл /моль экв), т. е. количество электричества, необходимое для выделения или превращения одного моля эквивалента вещества. Или

Пример. Ток силой 6 А проходил в течение 1,5 часа через разбавленный раствор H2SO4. Вычислить массу разложившейся воды и объемы H2 и O2, выделившихся на электродах (00C и 760 мм рт. ст.).

Решение. В растворе кислота диссоциирует по уравнению

H2SO4 = 2Н+ + SO42.

Катод (): 2Н+ + 2з = Н2·2

Анод (+): 2H2O 4з = O2 + 4H+. ·1

Токообразующаяреакция: 2H2O = 2Н2 + О2 .

Процессы электролиза подчиняются закону Фарадея:

При вычислении объемов выделившихся газов представим уравнение в следующей форме:

где V объем выделившегося газа, VМ его молярный объем.

5. Химические источники тока (ХИТ)

Первый химический источник тока был изобретён итальянским учёным Алессандро Вольта в 1800 году. Это былэлемент Вольта сосуд с солёной водой с опущенными в него цинковой и медной пластинками, соединенных проволокой. Затем учёный собрал батарею из этих элементов, которая в последствии была названа Вольтовым столбом. Это изобретение в последствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный в раствор серной кислоты. Эта конструкция стала называется «элементом Даниэля». В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах. В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств. В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

В настоящее время основной долей энергии, используемой человечеством, является химическая энергия реакции горения природного топлива:

топливо + кислород = продукты окисления топлива.

Химическая энергия этой реакции затем превращается либо в механическую (двигатели внутреннего сгорания), либо в электрическую (тепловые электростанции) по схеме:

Химическая энергия теплота механическая энергия

> электрическая энергия.

В двигателях внутреннего сгорания процесс идет до генерации механической энергии, на тепловых электростанциях - до электрической.

Недостатком существующих методов преобразования энергии является малый КПД. Особенно большие потери энергии происходят на стадии превращения теплоты в механическую работу. В силу специфической особенности теплоты она может лишь частично превращаться в работу, основная часть теплоты бесполезно рассеивается в окружающем пространстве. Поэтому фактический КПД электростанций составляет 30-40%, а транспортных установок в городских условиях 10-15%. Таким образом, 60-90% химической энергии топлива бесполезно рассеивается в окружающее пространство. Поэтому особый интерес представляет прямой путь превращения энергии окисления топлива в электрическую энергию:

Химическая энергия электрическая энергия.

Это электрохимический путь, осуществляемый с помощью топливных элементов.

К преимуществам химических источников тока относится универсальность их применения. Источником питания многих бытовых устройств, а также приборов, используемых в научных лабораториях или на производстве, являются именно химические источники питания. Востребованность химических источников тока в обеспечении функционирования аппаратуры связи или портативной электронной аппаратуры заслуживает особого внимания, так как в этом случае они являются незаменимыми.

Главное, эти элементы намного более эффективны по сравнению с любыми другими способами генерации электрической энергии, особенно с двигателями внутреннего сгорания. Эффективность уже существующих элементов составляет 50%, что в два раза выше ДВС (берущих начало с цикла Карно).Электроэнергия в элементах вырабатывается непосредственно из химических реакций, в этом случае не требуется промежуточных механических звеньев, используемых в большинстве электростанций (атомных, угольных, газовых) и также снижающих эффективность.

Кроме того, следует отметить экологическую чистоту и удобство топливных элементов. Портативные батареи вообще не имеют движущихся частей. Они не выделяют токсичных веществ и работают практически бесшумно.

Тем не менее, топливные элементы производят два типа выделений: тепловые и химические. Реакция окисления, происходящая внутри топливного элемента, похожа на реакцию горения. Таким образом, эта реакция, как и реакция горения, экзотермическая, то есть выделяет тепло. Во время работы топливные батарейки нагреваются. Элементы в батарее могут нагреваться до 50-100 градусов.

Вдобавок ко всему, топливные элементы выделяют химические вещества отработанное (окисленное) топливо. В отличие от отходов при других способах получения электроэнергии, эти химические отходы безвредны. В основном, экологически чистые элементы в качестве топлива используют чистый водород, который в паре с кислородом (в качестве естественного окислителя) выделяет в качестве отходов обыкновенную воду.Элементы, использующие углеводородное топливо, такое как метанол, выделяют воду и углекислый газ, который затем попадёт в атмосферу.

Так как технологии по созданию топливных элементов появились сравнительно недавно, цена у топливных элементов выше, чем у других источников электроэнергии. Поэтому в массовую эксплуатацию они вводятся в основном из-за своих преимуществ они экологически чистые и бесшумные.

Высокая цена обуславливается зародышевым состоянием технологии производства этих элементов. Но благодаря интенсивному развитию технологий, в недалеком будущем цена на топливные элементы будет сопоставима с ценой на традиционные источники питания. В дальнейшем, быть может, они станут наиболее экономичным способом получения электроэнергии.

Одна часть химических источников тока может повторно использоваться, а другая нет. Этот принцип взят за основу их классификации.

Электродвижущая сила гальванических элементов, в зависимости от конструкции, достигает 1,2ч1,5 вольта. Для получения больших значений их объединяют в батареи, соединяя последовательно.

В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические источники тока подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы.

Источники тока, действие которых основано на использовании энергии необратимых химических систем, называют первичными, одноразовыми элементами. Такие гальванические элементы и их комбинации в обиходе называют батарейками, хотя в технической литературе этот термин относится к батарее из нескольких элементов.Принято считать, что первичные химические источники тока не поддерживают повторную зарядку, хотя более точно это положение можно сформулировать по-другому: ее проведение экономически не целесообразно.

Вторичные источники тока(отдельные аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.

Резервные источники тока допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных источниках тока электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных источников тока ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные источники тока применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных И. т. превышает 10--15 лет.

Электрохимические генераторы (топливные элементы) представляют собой разновидность химических источников тока. Электрохимические генераторы способны длительное время непрерывно генерировать электрический ток в результате преобразования энергии химических реагентов (газообразных или жидких), поступающих в генератор извне.

Устройство марганцево-цинковыхпервичных элементов

Солевые батарейки

До недавнего времени элементы этой электрохимической системы являлись наиболее распространенными несмотря на то, что появились они одними из первых и сохранились практически в неизмененном виде благодаря своим характеристикам:

дешевизна и доступность сырья;

простота технологии производства;

низкая конечная стоимость, определенная низкими затратами производителя;

удобство использования;

удовлетворительные для большинства областей применения электрические параметры.

Именно соотношение цены и качества дало возможность им почти полтора века удерживать пальму первенства. Но все-таки в последнее время многие производители неуклонно сокращают их производство или полностью отказываются от их выпуска, что объясняется повышением требований производителей современного электронного оборудования к электрическим параметрам источников питания.

К числу недостатков солевых батареек относятся:

резкое падение напряжения в течение разряда;

значительное снижение отдаваемой емкости при увеличении разрядных токов до значений, необходимых для современных устройств;

резкое ухудшение характеристик при отрицательных температурах;

маленький срок хранения (порядка двух лет).

Понятие «номинальная емкость» редко употребляется для характеристики марганцево-цинковых батареек, так как их емкость сильно зависит от режимов и условий эксплуатации.

Основными недостатками этих элементов являются значительная скорость снижения напряжения на всем протяжении разряда и значительное уменьшение отдаваемой емкости при увеличении тока разряда. Конечное разрядное напряжение устанавливают в зависимости от нагрузки в интервале 0,71,0 В.

Важна не только величина тока разряда, но и временной график нагрузки. При прерывистом разряде большими и средними токами работоспособность батареек заметно увеличивается по сравнению с непрерывным режимом работы.Однако при малых разрядных токах и многомесячных перерывах в работе емкость их может снижаться вследствие саморазряда.

Элементы работоспособны в интервале температур от 20 до +60 °С. При длительном воздействии высокой температуры увеличивается саморазряд элементов. А при низкой температуре заметно уменьшается отдаваемая емкость. Но при корректировке рецептуры электролита выпускается серия хладостойких батареек, работоспособных в диапазоне температур от 40 до +40 °С.

На работоспособность солевых марганцево-цинковых элементов существенно сказывается время их хранения с момента изготовления. Саморазряд их определяется, главным образом, коррозией цинкового электрода, а также взаимодействием активных масс положительного электрода с загустителями электролита. В зависимости от рецептур активных масс и электролита, конструктивного исполнения и размеров элементов их сохранность колеблется от 1 года до 3 лет. К концу гарантированного срока утрата емкости может составлять 3040 %.

При использовании в устройствах, у элементов на последней стадии разряда и по его окончании может произойти течь электролита, что связано с повышением объема активной массы положительного электрода и выдавливанием электролита из его пор. Особенно сильно этот эффект проявляется после разряда большими токами или короткого замыкания. В конце разряда в результате медленного разложения диоксида марганца может также выделяться кислород, а в результате коррозии цинка водород, что тоже способствует увеличению внутреннего объема батарейки.

Электроды и электролит.Активная масса положительного электрода (называющаяся «агломерат») состоит из смеси диоксида марганца с чешуйчатым графитом либо ацетиленовой сажей и электролитом. При этом технология изготовления MnO2заметно сказывается на электрических характеристиках элементов. Графит и сажа увеличивают электрическую проводимость активной смеси. Их массовая доля составляет 820% в зависимости от назначения источника тока. Чем выше разрядные токи, на которые рассчитан марганцево-цинковый элемент, тем выше содержание токопроводящих добавок. Для повышения степени использования окислителя активную массу пропитывают раствором электролита.

Отрицательный электрод изготовляется из коррозионно-стойкого цинка высокой степени чистоты (массовая доля цинка 99,94% и более). Цинк содержит маленькое количество свинца, галлия или кадмия (десятые или сотые доли процента), которые являются ингибиторами коррозии цинка.

Электролитом в элементах этой системы ранее был раствор хлорида аммония (классические элементы Лекланше). Хлорид аммония принимает участие в токообразующих реакциях, обеспечивает ионную проводимость электролита и стабилизирует pH электролита при незначительных токах разряда. Но образование малорастворимых комплексных соединений, выпадающих в объеме катодной массы, приводит, с одной стороны, к росту внутреннего сопротивления элемента, а с другой к избыточному выведению электролита из области реакции. Поэтому позднее электролит из раствора хлорида аммония был заменен на раствор хлорида цинка, иногда с добавкой хлорида кальция. Такие марганцево-цинковые батарейки могут разряжаться длительное время с относительно высокими плотностями тока и имеют более пологую разрядную кривую. Хлорид цинка ускоряет загустевание электролита, обладает буферными и антигнилостными свойствами. Работоспособность таких элементов при пониженных температурах значительно выше, чем классических. Для снижения температуры замерзания электролита в его состав вводят хлорид кальция. Кроме упомянутых ранее ингибиторов коррозии цинка, иногда дополнительно вводят бихромат калия и сульфат хрома, являющийся дубителем, предотвращающим разжижение электролита при увеличении температуры.

При использовании хлорида аммония электродные процессы описываются следующим уравнением токообразующей реакции:

2MnO2+ 2NH4Cl + Zn > ZnCl2· 2NH3+ H2O + Mn2O3

При использовании хлорида цинка уравнение имеет вид:

8MnO2+ 4Zn + 2ZnCl2+ 9H2O > 8MnOOH + ZnCl2 · 4ZnO · 5H2O

Энергетические показатели элементов с хлоридно-цинковым электролитом существенно выше: при средних и повышенных токах нагрузки они могут обеспечить в 1,52 раза большую длительность работы. Работоспособность их при пониженных температурах тоже выше.

Конструкция солевых батареек

В солевых элементах корпус, сделанный из цинка, является отрицательным электродом. Положительный электрод представляет из себя брикет из спрессованной активной массы, увлажненный электролитом, в центре которой расположен токоотвод угольный стержень, пропитанный составами на основе парафина для снижения потери воды из электролита. Сверху токоотвод обжат металлическим колпачком. Электролит в сепараторе загущенный. В элементах есть газовая камера, в которую поступают газы, выделяющиеся при разряде и саморазряде. Сверху размещают прокладку. Для уменьшения вероятности течи в результате питтинговой коррозии тонкостенного цинкового стакана элемент помещают в футляр, картонный или полимерный, иногда дополнительно применяется футляр из белой жести. В этом случае дно и верх элемента также закрывают белой жестью.

Рис. 4. Марганцево-цинковый солевой гальванический элемент

Щелочные (алкалиновые) батарейки

Щелочные марганцево-цинковые батарейки начали производить в середине 20 века. Одной из первых их промышленный выпуск освоила компания Duracell (США).

Окислителем является диоксид марганца, а восстановителем цинк в виде порошка, что позволяет значительно развить поверхность и тем самым уменьшить вероятность пассивации поверхности цинка при больших токах разряда.Для замедления коррозии раньше использовалось амальгамирование (растворение в ртути) как объемное, так и поверхностное. После введения ограничений на применение ртути, применяются цинковые порошки высокой степени чистоты, легированные определенными металлами, а также органические ингибиторы коррозии.

Компоненты щелочных батареек.Активным материалом анода является порошкообразный цинк высокой степени чистоты. Для уменьшения скорости коррозии цинк может быть легирован небольшими добавками свинца, индия, висмута и алюминия. Скорость коррозии цинка существенно возрастает при увеличении содержания в нем железа, поэтому очень важно снижать долю железа до минимального уровня. Средний диаметр частиц цинка в границах 155255 мкм, удельная поверхность составляет около 0,02 м2/г.

Активная масса анода содержит цинк (объемная доля 18-33 %), загуститель (гель-компонент), раствор электролита, оксид цинка и ингибитор коррозии (см. таблицу). В качестве гель-компонента используют производные целлюлозы, полиакрилаты, поливиниловый спирт и другие полимеры.

Типичный состав анодной массы щелочной батарейки

Компонент

Содержание (масс. %)

Порошок цинка

55-75

Раствор KOH (32-55%)

25-45

Оксид цинка

до 2

Загуститель

0,4-2

Ингибитор коррозии

до 0,05

Активная масса катода содержит кроме диоксида марганца, графит либо ацетиленовую сажу, раствор KOH и связующее (см. таблицу). Содержание компонентов в активной массе катода у различных изготовителей может колебаться в широком диапазоне. Например, содержание углеродистых материалов может достигать 15 % и выше.

Типичный состав катодной массы щелочной батарейки

Компонент

Содержание (масс. %)

Диоксид марганца

79-85

Углерод

7-10

Раствор KOH (35-55%)

7-10

Связующее

0-1

В качестве электролита применяются концентрированные растворы KOH (иногда NaOH) с добавками ZnO, а иногда и LiOH. Электролит загущен природными или синтетическими полимерными соединениями, содержащими OH-группы.

В начале процесса разряда происходит окисление цинка с образованием цинката ZnO22(или Zn(OH)42). После насыщения раствора электролита цинкатом, начинается вторичный процесс:

Zn + 2OH> Zn(OH)2+ 2

с последующим разложением гидроксида цинка на ZnO и Н2О. На второй стадии в элементе наступает баланс выделения и поглощения ионов ОНи щелочь не расходуется, благодаря этому для его работы хватает малого количества электролита, который заполняет только поры электродов и межэлектродное пространство.

Порошковый цинковый электрод обеспечивает существенное увеличение коэффициента использования активного материала в сравнении с солевыми элементами.При беспрерывном разряде средними и повышенными токами щелочные элементы обеспечивают емкость большую (до 710 раз), чем солевые элементы тех же габаритов.Щелочные элементы лучше функционируют и при низких температурах: при 20 єС отдают такую же емкость, как солевые в режиме беспрерывного разряда при комнатной температуре. Скорость саморазряда щелочных марганцево-цинковых элементов меньше: после 1 года хранения при +20 °С или 3 месяцев при +50 °С потери емкости составляют примерно 10 % начальной емкости.Гарантийный срок хранения щелочных элементов составляет 57 лет, иногда он достигает 10 лет.

Итак, при одинаковых размерах солевых и щелочных батареек продолжительность работы последних при одинаковых малых токах в 1,52 раза больше, а при больших в 410 раз больше.

Конструкция щелочных батареек

Размеры цилиндрических элементов совпадают с размерами элементов марганцево-цинковой системы с солевым электролитом. В то же время, устройство щелочных батареек отличается от устройства солевых аналогов: щелочные элементы имеют как бы вывернутую конструкцию (рис. 7.5).

Рис..5. Марганцево-цинковый щелочной гальванический элемент

В элементах со щелочным электролитом цинк всегда находится в виде порошка, поэтому вместо цинкового стаканчика применяют стальной никелированный цилиндрический корпус, служащий токоотводом положительного электрода. Активная масса положительного электрода подпрессовывается к внутренней стенке корпуса. В щелочном элементе можно расположить больше активной массы положительного электрода, чем в солевом элементе того же объема. Например, в щелочной элемент типоразмера D можно поместить 3741 г диоксида марганца, тогда как в солевой элемент помещается только 2228 г. Во внутреннюю полость, образованную активной массой положительного электрода, вставляется сепаратор, пропитанный электролитом. В качестве сепарационных материалов применяются гидратцеллюлозные пленки (целлофан) либо нетканые полимерные материалы. По оси элемента размещен латунный токоотвод отрицательного электрода, а все пространство между этим токоотводом и сепаратором плотно забивается анодной пастой, состоящей из цинкового порошка, пропитанного загущенным электролитом. Часто уже при изготовлении элементов в качестве электролита применяется щелочь, предварительно насыщенная цинкатами, что позволяет избежать расходования щелочи в начале эксплуатации. Кроме того, присутствие цинкатов в электролите замедляет скорость коррозии цинка.Из-за более плотной активной массы и применения стального корпуса щелочные батарейки при тех же размерах обычно тяжелее солевых на 2550 %.

Емкость и энергия щелочных батареек.Как и у всех химических источников тока, емкость батареек со щелочным электролитом уменьшается при увеличении тока разряда и снижении температуры, но менее резко, чем у элементов с солевым электролитом. Удельная емкость элементов со щелочным электролитом при разряде малыми токами приблизительно в 1,5 раза превышает удельную емкость элементов с солевым электролитом. При разряде большими токами это различие достигает 410-кратного.Емкость источника тока при прерывистом разряде средними и большими нормированными токами выше, чем при непрерывном разряде. Но при прерывистом разряде малыми токами емкость источника тока меньше емкости при непрерывном разряде вследствие саморазряда.

Во всем мире в производстве наблюдается стабильная тенденция по росту доли более энергоемких щелочных марганцево-цинковых элементов.Следует еще раз особо подчеркнуть, что для уменьшения саморазряда элементов в настоящее время используются не ртуть и кадмий, а другие ингибиторы коррозии цинка, которые менее токсичны.

Основные рабочие характеристики химических источников тока

1. Величина напряжения на разомкнутых клеммах. В зависимости от конструкции единичный источник может создавать только определенную разность потенциалов. Для использования в электрических устройствах их объединяют в батареи.

2. Удельная емкость. За определенное время (в часах) один химический источник тока может выработать ограниченное количество тока (в амперах), которые относят к единице веса либо объема.

3. Удельная мощность. Характеризует способность единицы веса или объема химического источника тока вырабатывать мощность, образованную произведением напряжения на силу тока.

4. Продолжительность эксплуатации. Еще этот параметр называют сроком годности.

5. Значение токов саморазряда. Эти побочные процессы электрохимических реакций приводят к расходу активной массы элементов, вызывают коррозию, снижают удельную емкость.

6. Цена на изделие.Зависит от конструкции, применяемых материалов и ряда других факторов.

Лучшими химическими источниками тока считаются те, у которых высокие значения первых четырех параметров, а саморазряд и стоимость низкие.

Аккумуляторы

Аккумулятор (лат. accumulator -- собиратель, от accumulo -- собираю, накопляю), устройство для накопления энергии с целью её последующего использования. В зависимости от вида накапливаемой энергии различают аккумуляторы: электрические, гидравлические, тепловые, инерционные.

Электрический аккумулятор служит для накопления электрической энергии путём превращения её в химическую с обратным преобразованием по мере надобности; химический источник электрического тока многоразового пользования, работоспособность которого может быть восстановлена путём заряда, т. е. пропусканием тока в направлении, обратном направлению тока при разряде. Первые опыты по созданию электричества аккумулятора были проведены в начале 19 в. В. В. Петровым и И. Риттером. Особенно большой вклад в изучение свойств, разработку и совершенствование конструкций аккумулятора внесли русские учёные Э. Х. Ленц, Д. А. Лачинов, Е. П. Тверитинов, Н. Н. Бенардос, П. Н. Яблочков, М. П. Авенариус, английский физик У. Гров, француз Г. Планте и многие др. (в мировой практике только по свинцовому аккумулятору к 1937 зарегистрировано 20 000 патентов). В 1900 Т. А. Эдисон изобрёл аккумулятор щелочного типа, получивший широкое распространение. Электрический аккумулятор состоит из двух электродов, погруженных в раствор электролита; разность потенциалов электродов ЭДС аккумулятора. Преобразование химической энергии в электрическую происходит при наличии замкнутой электрической цепи на основе химической (токообразующей) реакции.

Аккумулятор характеризуется сроком службы, т. е. числом возможных циклов заряд-разряд, допустимым без значительного падения характеристик; электрическим зарядом (распространён термин «ёмкость»), т. е. количеством электричества в кулонах или ампер-часах, которое он может отдать при разряде; средним напряжением, во время заряда и разряда; удельной энергией, КПД.

Принцип действия.Аккумуляторомназывается химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от постороннего источника (рис. 7.6, а). Этот процесс, называемыйзарядом аккумулятора, сопровождается превращением электрической энергии в химическую, в результате чего аккумулятор сам становится источником тока. При разряде аккумулятора (рис. 7.6, б) происходит обратное превращение химической энергии в электрическую. Аккумулятор обладает большим преимуществом по сравнению с гальваническим элементом. Если элемент разрядился, то он приходит в полную негодность; аккумулятор жепосле разряда может быть вновь заряжен и будет служить источником электрической энергии. В зависимости от рода электролита аккумуляторы разделяют на кислотные и щелочные.

...

Подобные документы

  • Составление уравнении окислительно-восстановительных реакций, расчет их эквивалентных масс. Методы измерения электродвижущих сил гальванических элементов. Характеристика электролиза на основе закона Фарадея. Изучение процессов коррозии металлов.

    методичка [245,6 K], добавлен 07.11.2011

  • Скорость и стадии гетерогенной реакции. Принцип действия ферментов. Химическое равновесие, обратимость химических реакций. Растворы и их природа. Электролитическая диссоциация. Возникновение электродного потенциала. Гальванические элементы и электролиз.

    методичка [1,8 M], добавлен 26.12.2012

  • Понятие электролиза, его практическое применение. Электролизные и гальванические ванны, их электроснабжение для получения алюминия. Применение электрохимических процессов в различных областях современной техники, в аналитической химии и биохимии веществ.

    презентация [772,0 K], добавлен 25.07.2015

  • Закономерности, связанные с превращением химической и электрической энергии, как предмет изучения электрохимии. Основные разделы дисциплины: электропроводность, электролиз, электродвижущие силы гальванических элементов. Особенности проведения электролиза.

    методичка [927,3 K], добавлен 18.09.2012

  • Характеристика окислительных и восстановительных процессов. Правила определения степени окисления атомов химических элементов, терминология и правила определения функции соединения в ОВР. Методы составления уравнений: электронного баланса, полуреакций.

    презентация [63,2 K], добавлен 20.03.2011

  • Термодинамика электрохимических систем и электродных процессов. Условная водородная шкала. Правило знаков ЭДС и электродных потенциалов. Электрохимический потенциал и равновесие. Механизм и скорость электродной реакции. Использование диаграмм Пурбе.

    курсовая работа [559,7 K], добавлен 13.03.2011

  • Поляризация электродов и замедленность электродных процессов. Возникновение гальванического элемента вследствие выделения на электродах продуктов электролиза. Максимумы на полярограммах. Преимущество твердых вращающихся электродов и сдвиг потенциала.

    реферат [1,2 M], добавлен 02.08.2009

  • Проблема строения вещества. Обобщение процессов, происходящих в химических системах. Понятие растворения и растворимости. Способы выражения концентрации растворов. Электролитическая диссоциация. Устойчивость коллоидных систем. Гальванические элементы.

    курс лекций [3,1 M], добавлен 06.12.2010

  • Положения теории окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Кислородсодержащие соли элементов. Гидриды металлов. Метод электронного баланса. Особенности метода полуреакций. Частное уравнение восстановления ионов.

    презентация [219,3 K], добавлен 20.11.2013

  • Условия осаждения меди из щелочных и кислых электролитов. Расчет размеров ванны гальванического меднения, количества анодов, напряжения на ванне. Разность равновесных электродных потенциалов анодной и катодной реакции. Выбор выпрямительного агрегата.

    курсовая работа [301,6 K], добавлен 22.04.2014

  • Электролиз расплавленных хлоридов как способ очистки платиновых металлов от металлических и неметаллических примесей. Электролиз в водных электролитах. Схема переработки палладиевых катализаторов. Пирометаллургическое рафинирование платиновых сплавов.

    контрольная работа [163,9 K], добавлен 11.10.2010

  • Понятие титраметрического анализа. Окислительно-восстановительное титрование, его виды и условия проведения реакций. Расчет точек кривой титрования, потенциалов, построение кривой титрования. Подборка индикатора, расчет индикаторных ошибок титрования.

    курсовая работа [399,3 K], добавлен 10.06.2012

  • Важнейшие окислители и восстановители. Cоставление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание реакций. Окислительно-восстановительный эквивалент, сущность закона.

    лекция [72,5 K], добавлен 22.04.2013

  • Общая характеристика хлора как химического элемента, его хранение, транспортировка хлора и стандарты качества. Основные примеры применения и использования хлора. Электролиз: понятие и сущность процесса. Техника безопасности в хлорном производстве.

    реферат [617,6 K], добавлен 10.02.2015

  • Термодинамическая возможность электрохимической коррозии металлов. Катодные процессы. Гомогенный и гетерогенный пути протекания электрохимической коррозии металлов. Коррозионные гальванические элементы и причины их возникновения. Методы защиты металлов.

    курсовая работа [635,9 K], добавлен 14.04.2016

  • Окислительно-восстановительные реакции, при которых происходит процесс переноса электронов от одних атомов к другим. Направление самопроизвольного протекания реакций. Виды потенциалов и механизмы их возникновения, а также ряд напряжений металлов.

    презентация [104,9 K], добавлен 18.05.2014

  • Сущность и виды окисления - химических реакций присоединения кислорода или отнятия водорода. Ознакомление с методами восстановления металлов в водных и соляных растворах. Изучение основных положений теории окислительно-восстановительных реакций.

    реферат [130,1 K], добавлен 03.10.2011

  • Гальванический элемент Даниэль-Якоби. Стандартный водородный потенциал. Распространенные типы гальванических элементов. Никель-металлогидридные аккумуляторные батареи и свинцовые аккумуляторы. Сравнительная характеристика литиевых источников тока.

    курсовая работа [2,8 M], добавлен 27.11.2010

  • Описание принципа действия гальванического элемента как устройства превращения энергии химической реакции в электрическую энергию. Электродный потенциал растворов и электрохимический ряд напряжения металлов. Электролиз растворов, аккумуляторы и батареи.

    презентация [1,1 M], добавлен 16.01.2015

  • Отличительные признаки окислительно-восстановительных реакций. Схема стандартного водородного электрода. Уравнение Нернста. Теоретические кривые титрования. Определение точки эквивалентности. Окислительно-восстановительные индикаторы, перманганатометрия.

    курсовая работа [319,6 K], добавлен 06.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.