Электрохимические процессы

Окислительно-восстановительные реакции или реакции с переносом электрона. Степень окисления и правила ее вычисления. Изменение степени окисления атомов. Классификация окислительно-восстановительных реакций. Электрохимические устройства и процессы.

Рубрика Химия
Вид лекция
Язык русский
Дата добавления 14.05.2017
Размер файла 312,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рассмотрим кислородный электрод:

O2, Pt | OH

O2 + 2H2O +4 > 4OH

[Ox] = [O2]·[H2O]2= p(O2)·[H2O]2, [Red] = [OH]4

Т.к. концентрация воды в реакции практически не меняется, то ее считают величиной постоянной, ее влияние вносят в значение стандартного потенциала:

Потенциал кислородного электрода принимает положительные значения с увеличением давления кислорода и уменьшением pH.

3. Окислительно-восстановительные электроды (Red-Ox электроды).

Любая электродная реакция является окислительно-восстановительной, Red-Ox электродами относят только те электроды, в реакциях которых не принимают участия металлы и газы. Такие электроды состоят из проводника первого рода, контактирующего с раствором, содержащим окислители и восстановители. К проводникам первого рода предъявляются те же требования, что и в газовых электродов. В качестве примера окислительно-восстановительного электрода можно привести систему

Fe3+ + > Fe2+.

[Ox] = [Fe3+], [Red] = [Fe2+]

В более сложных окислительно-восстановительных процессах могут принимать участие ионы ОН и Н+. В этих случаях потенциал электрода также будет зависеть от рН раствора. Например, для системы

MnO4 + 8H+ + 5 Mn2+ + 4H2O

4.Электроды II рода состоят из проводника первого рода (металла) покрытого тонким слоем труднорастворимой соли этого металла, погруженного в раствор электролита с одноименным анионом.

Рис. 6.5. Схема хлор-серебряного электрода

На данном (рис 6.5) электроде проходит процесс:

AgCl + > Ag0 + Cl

[Ox] = [AgCl], [Red] = [Ag]·[Cl]

Диаграмма электрохимической устойчивости воды.

Металл, растворяющийся в воде, растворе кислоты или основания, является восстановителем, он окисляется. Это растворение может быть целенаправленным (химическое фрезерование) и нежелательным (коррозия). Необходимым условием протекания окислительно-восстановительного процесса является наличие окислителя. С учетом протекания окислительно-восстановительной реакции в воде необходимо рассмотреть роль воды в них. Напомним, что в воде имеются Н+, OH- и растворенный О2.

В кислотной среде (0рН7) в качестве окислителя могут выступать ионы водорода Н+ или «сложный» окислитель Н+2; в нейтральной (рН=7) и в щелочной среде (7рН14) окислителем являются молекулы H2O или смесь воды и кислорода (H2O+O2), а также OH-.

Металл, контактирующий одновременно с газом и раствором, содержащим ионы этого газа, называется газовым электродом (водородным, кислородным и др.). Потенциалы водородного и кислородного электродов не зависят от формы разряжающихся частиц (молекул воды или ионов, на которые она диссоциирует), но зависят от рН среды и парциального давления водорода (рH2) и кислорода (рO2):

++2=Н2 или 2H2O+2=2ОН-+Н2

+2+4=2H2O или 2H2O+О2+4=4ОН-.

Зависимость Н+2 и О2/ОН- от рН при рH2 = рO2 = 1атм представлена уравнениями и графически - в виде диаграммы электрохимической устойчивости воды (рис. 6.6).

Н+2=-0,059·рН, О2/ОН- = 1,23-0,059·рН

Рис. 6.6. Диаграмма электрохимической устойчивости воды.

По диаграмме (рис. 6.6) можно установить химическую стойкость металлов в растворах с различным значением рН. Отметим, что известный ряд напряжений Men+/Me, B, изначально был известен как ряд способности замещения металлов друг другом в водных растворах («вытеснительный» ряд Бекетова). Когда же были установлены потенциалы Red/Ox пар металлов и катионов, он с точностью совпал с рядом Бекетова и получил количественную характеристику. С учетом электрохимической диаграммы воды он справедлив только при рН=0 (не учитывает влияние кислорода).

Если стандартный потенциал металла (Меn+/Me) положительнее потенциала кислорода (О2/ОН-)(область I, выше линии ab), то растворение металла с процессами восстановления по уравнениям невозможно. Все точки в области I соответствуют состоянию когда молекулы воды (или ионы гидроксила) могут выступать лишь как восстановители.

В этих реакциях молекулы воды и ионы гидроксила выступают как восстановители. Если потенциал металла положительнее потенциала водорода и отрицательнее потенциала кислорода (все точки между линиями ab и cd, область II), то растворение металла возможно, когда окислителем является (H++O2) или (H2O+O2), а не ионы водорода или молекулы воды. Все точки в области II соответствуют электрохимической устойчивости воды. В этой области в химических реакциях и при электролизе вода не может выступать ни окислителем, ни восстановителем.

Все точки ниже линии cd (область III) отвечают состоянию системы, когда молекулы H2O или Н+ в реакциях с металлами выступают как окислители. В области III при наличии в растворе газообразного кислорода в качестве окислителя в реакции с металлами могут также выступать сложные окислители (H2O + O2) или (H+ + O2). Этот случай условно называется «коррозией с кислородной деполяризацией». Таким образом, в области III могут выступать четыре окислителя, т.е. имеется возможность протекания четырех реакций восстановления.

В общем случае, при наличии в растворе нескольких видов ионов или недиссоциированных молекул электрохимически активных веществ последовательность протекания реакций восстановления определяется величиной их стандартного потенциала. В первую очередь, окислителем выступают те ионы, молекулы или их сочетания, которые характеризуются наиболее положительным потенциалом. Это, в частности, имеет место при растворении металлов в кислородсодержащих кислотах (HNO3, H2SO4 и др.), когда в качестве окислителя могут выступать анионы кислотного остатка.

Исходя из изложенного видно, что металлы находящиеся ниже линии водородного электрода встречаются, как правило, в соединениях в катионной форме; металлы находящиеся выше линии кислородного электрода встречаются в природе в форме самородков (золото).

Кинетика электрохимических процессов

Равновесные состояния процессов внутри электролитов (электролитическая диссоциация, гидролиз, сольватация и др.) и процессов на электродах (электрохимические реакции и характеризующие их обратимые электродные потенциалы) не зависят от времени, к ним применимы оба закона термодинамики. Поэтому соответствующие закономерности называются термодинамическими, а посвященный им раздел электрохимии -термодинамикой электрохимических процессов.Для электродных процессов равновесие характеризуется отсутствием электрического тока.

Процесс прохождения электрического тока конечной силы не является равновесным, и явления, связанные с прохождением тока, зависят от времени и от силы тока, величина которого может быть регулируема извне. Раздел электрохимии, рассматривающий неравновесные, главным образом стационарные процессы, протекающие на электродах во времени, называетсякинетикой электрохимических (электродных) процессовили простоэлектрохимической кинетикой.

Электрический ток может протекать в результате замыкания электрохимического элемента, образуемого электродами и электролитом, или под влиянием приложенной к системе электроды - электролит внешней разности потенциалов. В последнем случае явления, происходящие на границах электрод - электролит, называютсяэлектролизоми состоят в выделении веществ (металлы, газы) из электролита на электроде, в растворении вещества электрода и в изменении состава электролита.

Электрохимическая кинетика основывается как на общих положениях химической кинетики, так и на частных закономерностях, характерных только для электрохимических процессов. Так, для электрохимии справедливы основной постулат химической кинетики, применимость понятия энергии активации для многих электрохимических процессов, положительное влияние температуры на скорость электролиза и т.п.

Достаточно отчетливо выражена испецифичность электрохимических процессов:

1. Электрохимическим путем можно проводить и такие реакции, которые химическим путем при обычной температуре не идут (например, реакция разложения воды при обычной температуре не идет, а электролизом вода легко разлагается). Самопроизвольные реакции всегда сопровождаются уменьшением свободной энергии; электрохимическим же путем можно проводить реакции, сопровождающиеся увеличением свободной энергии, т.е. возможности электросинтеза шире, чем возможности обычного химического синтеза. Необходимая свободная энергия доставляется системе извне в виде энергии электрического тока.

2. Суммарную скорость электрохимического процесса можно не только легко определить по величине силы тока, протекающего в цепи, но и регулировать путем изменения силы тока.

3. Скорость электрохимического процесса зависит от ЭДС и существенно зависит от условий диффузии ионов. Диффузия ионов часто оказывает определяющее влияние на скорость электродного процесса.

4. Энергия активации электрохимического процесса часто связана с падением потенциала в двойном электрическом слое.

Равновесие между раствором и электродом, имеющим определенный потенциал, является динамическим: происходит непрерывный обмен заряженными частицами между электродом и раствором. При равновесии скорости перехода частиц в противоположных направлениях одинаковы. Количество электричества, переходящее в этих условиях в единицу времени от электрода к раствору и обратно, называетсятоком обмена.

При прохождении электрического тока через границу электрод - раствор двухсторонний ток обмена имеется, но на него накладывается, как правило, несравненно больший односторонний ток, определяемый ЭДС элемента или приложенной внешней разностью потенциалов.

Электрический ток вызывает изменения на поверхности электродов, зависящие от многих факторов и прежде всего от силы тока. Изменение электрического состояния электрода (его потенциала, плотности заряда двойного электрического слоя) под влиянием проходящего через границу раздела электрического тока называетсяполяризацией электрода. При поляризации потенциал электрода изменяется по сравнению с тем «равновесным» значением, которое он имел в данном растворе при отсутствии тока

= i - p

-электродная поляризация;i- потенциал электрода «под током»;p- равновесный электродный потенциал. Т.к. при наложении катодного тока потенциал смещается в отрицательную сторону, а при наложении анодного - в положительную, токатодная электродная поляризация всегда отрицательна, а анодная всегда положительна:

к = i - p 0;

а = i - p 0

Любой электродный процесс представляет собой сложную гетерогенную реакцию, состоящую из ряда последовательных стадий. По крайней мере, на некоторых из них она может протекать по двум или нескольким параллельным путям. Природа и число стадий каждой электрохимической реакции зависят от ее характера.

Из химической кинетики известно, что скорость последовательной реакции определяется скоростью наиболее медленной из ее последовательных стадий, а из ряда параллельных путей наиболее вероятен путь с наименьшими торможениями. Эти же представления справедливы и в случае электрохимических процессов. Стадия, определяющая скорость всего электродного процесса, называетсязамедленнойилилимитирующей стадией.Замедленность той или иной стадии является непосредственной причиной поляризации электрода. Если известна природа замедленной стадии, т.е. ясна причина, обусловливающая появление поляризации, то вместо термина «поляризация» употребляют термин(электродное) перенапряжение(). Т.о., перенапряжение - это поляризация электрода, обусловленная замедленным протеканием вполне определенной стадии суммарного электродного процесса.

В зависимости от природы замедленной стадии можно говорить о различных видах перенапряжения. Одной из обязательных стадий любого электродного процесса является транспортировка участников реакции - доставка (или отвод) к границе раздела электрод - электролит. Поляризацию, вызванную торможением на стадии транспортировки, называют концентрационной поляризацией, перенапряжением транспортировки или диффузионным перенапряжениемд.

Замедленное протекание чисто химической стадии - реакции, предшествующей или следующей за актом разряда - вызывает появление химического или реакционного перенапряжениях(р).

Любой электродный процесс включает в себя хотя бы одну стадию, связанную с переходом электронов через границу раздела электрод - электролит. Электродную поляризацию, вызванную замедленным протеканием этой стадии, называют электрохимическим перенапряжениемэ, поскольку именно стадия перехода электронов является собственно электрохимическим актом. Для описания этого вида перенапряжения широко используют также термины перенапряжение замедленного разряда, перенапряжение переноса заряда, перенапряжение (электронного) перехода.

Наконец, замедленность стадии построения или разрушения кристаллической решетки, а также замедленность перехода от одной модификации к другой соответствуют фазовому перенапряжениюф.

В общем случае смещение потенциала электрода под током от равновесного значения представляет собой результат наложения всех видов перенапряжения:

=д р э ф

Однако можно найти такие электродные процессы и создать такие условия, при которых преобладающее значение будет иметь какой-либо один вид перенапряжения.

оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г. Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода под током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А.Н.Фрумкиным (1933), который впервые учел влияние строения ДЭС на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние.

Вопросы для самоконтроля

1. Напишите определение и примеры окислительно-восстановительных реакций. Приведите примеры типичных окислителей и восстановителей.

2. Чем отличаются окислительно-восстановительные реакции в растворах электролитов?

3. Назовите наиболее распространенные окислители и восстановители, вещества, обладающие двойственной функцией.

4. Какие типы ОВР вам известны?

5. Каким параметром - кинетическим или термодинамическим - является окислительно-восстановительный потенциал полуреакций?

6. Приведите формулу, связывающую разность потенциалов с константой равновесия.

7. Какие условия являются стандартными для определения потенциалов полуреакций?

Размещено на Allbest.ru

...

Подобные документы

  • Определение водородного и гидроксильного показателей. Составление окислительно-восстановительных реакций и электронного баланса. Изменение степени окисления атомов реагирующих веществ. Качественные реакции на катионы различных аналитических групп.

    практическая работа [88,2 K], добавлен 05.02.2012

  • Составление уравнений окислительно-восстановительных реакций методом электронного баланса. Степень окисления как условный заряд атома элемента. Распространённые восстановители. Свободные неметаллы, переходящие в отрицательные ионы. Влияние концентрации.

    презентация [498,5 K], добавлен 17.05.2014

  • Классификация окислительно-восстановительных реакций в органической и неорганической химии. Химические процессы, результат которых - образование веществ. Восстановление альдегидов в соответствующие спирты. Процессы термической диссоциации водного пара.

    реферат [55,9 K], добавлен 04.11.2011

  • Окислительно-восстановительные реакции, при которых происходит процесс переноса электронов от одних атомов к другим. Направление самопроизвольного протекания реакций. Виды потенциалов и механизмы их возникновения, а также ряд напряжений металлов.

    презентация [104,9 K], добавлен 18.05.2014

  • Важнейшие окислители и восстановители. Cоставление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание реакций. Окислительно-восстановительный эквивалент, сущность закона.

    лекция [72,5 K], добавлен 22.04.2013

  • Характеристика окислительных и восстановительных процессов. Правила определения степени окисления атомов химических элементов, терминология и правила определения функции соединения в ОВР. Методы составления уравнений: электронного баланса, полуреакций.

    презентация [63,2 K], добавлен 20.03.2011

  • Понятие окисления и восстановления. Типичные восстановители и окислители. Методы электронного и электронно-ионного баланса. Восстановление металлов из оксидов. Химические источники тока. Окислительно-восстановительные и стандартные электродные потенциалы.

    лекция [589,6 K], добавлен 18.10.2013

  • Важнейшие окислители и восстановители. Правила определения CO. Составление уравнений окислительно-восстановительных реакций и подбор стехиометрических коэффициентов. Влияние различных факторов на протекание ОВР. Электрохимический ряд напряжений металлов.

    презентация [72,4 K], добавлен 11.08.2013

  • Положения теории окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Кислородсодержащие соли элементов. Гидриды металлов. Метод электронного баланса. Особенности метода полуреакций. Частное уравнение восстановления ионов.

    презентация [219,3 K], добавлен 20.11.2013

  • Методы окислительно-восстановительного титрования. Основные окислители и восстановители. Факторы, влияющие на окислительно-восстановительные реакции. Применение реакции окисления-восстановления в анализе лекарственных веществ. Растворы тиосульфата натрия.

    презентация [1,0 M], добавлен 21.10.2013

  • Сущность и виды окисления - химических реакций присоединения кислорода или отнятия водорода. Ознакомление с методами восстановления металлов в водных и соляных растворах. Изучение основных положений теории окислительно-восстановительных реакций.

    реферат [130,1 K], добавлен 03.10.2011

  • Проведение качественных опытов, раскрывающих окислительные и восстановительные свойства отдельных веществ. Приобретение навыков составления окислительно-восстановительных уравнений методом электронного баланса. Техника безопасности при проведении опытов.

    методичка [29,8 K], добавлен 09.03.2009

  • Отличительные признаки окислительно-восстановительных реакций. Схема стандартного водородного электрода. Уравнение Нернста. Теоретические кривые титрования. Определение точки эквивалентности. Окислительно-восстановительные индикаторы, перманганатометрия.

    курсовая работа [319,6 K], добавлен 06.05.2011

  • Классификация реакций окисления. Изучение особенностей теплового эффекта реакций окисления. Гомогенное окисление по насыщенному атому углерода. Гомогенное окисление ароматических и нафтеновых углеводородов. Процессы конденсации по карбонильной группе.

    презентация [3,5 M], добавлен 05.12.2023

  • Изменение в группе величины радиусов атомов и ионов, потенциала ионизации. Окислительно-восстановительные реакции, реакции комплексообразования и образования малорастворимых соединений. Биологическое значение и применение титана и тантала в медицине.

    реферат [153,0 K], добавлен 09.11.2014

  • Окислительно-восстановительные реакции. Колебательные химические реакции, история их открытия. Исследования концентрационных колебаний до открытия реакции Б.П. Белоусова. Математическая модель А.Лоткой. Изучение механизма колебательных реакций.

    курсовая работа [35,4 K], добавлен 01.02.2008

  • Материалы для выполнения лабораторных работ по курсу общей химии. Описание экспериментального выполнения работ по разделам: "Окислительно-восстановительные и электрохимические процессы", "Дисперсные системы", "Химия воды", "Коррозия и защита металлов".

    методичка [1,0 M], добавлен 27.05.2012

  • Окисление органических соединений и органический синтез. Превращение, протекающее с увеличением степени окисления атома. Соединения переходных металлов. Реакции окисления алкенов с сохранением углеродного скелета. Окисление циклических соединений.

    лекция [2,2 M], добавлен 01.06.2012

  • Физические и химические свойства и электронное строение атома олова и его соединений с водородом, галогеном, серой, азотом, углеродом и кислородом. Оксиды и гидроксиды олова. Окислительно-восстановительные процессы. Электрохимические свойства металла.

    курсовая работа [149,5 K], добавлен 06.07.2015

  • Уравнение состояния идеального газа. Электронные формулы атомов и элементов. Валентные электроны для циркония. Последовательное изменение окислительной способности свободных галогенов и восстановительной способности галогенид-ионов от фтора к йоду.

    контрольная работа [451,5 K], добавлен 02.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.