Производство метилового спирта

Анализ возможности использования избытка реагента для регулирования технологических параметров в процессе синтеза метанола. Повышение давления в процессах изготовления метилового спирта. Создание производств, не имеющих вредных выбросов в атмосферу.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 03.08.2017
Размер файла 402,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 1 Технологическая схема производства метанола при низком давлении: Высшие спирты1 -- турбокомпрессор, 2 -- циркуляционный компрессор, 3, 7 --холодильники, 4 -- сепаратор, 5 -- адсорбер, 6 -- реактор адиабатического действия, б -- теплообменник, 9 -- котел-утилизатор, 10 -- сепаратор, 1 1 -- дроссель, 12 -- сборник метанола-сырца, 13, 14 -- ректификационные колонны

Циркуляционый газ 5, где очищается от пентакарбонила железа, образовавшегося при взаимодействии оксида углерода (II) с материалом аппаратуры, и разделяется на два потока. Один поток подогревают в теплообменнике 8 и подают в верхнюю часть реактора 6, а другой поток вводят в реактор между слоями катализатора для отвода тепла и регулирования температуры процесса. Пройдя реактор, реакционная смесь при температуре около 300°С также делится на два потока. Один поток поступает в теплообменник 8, где подогревает исходный синтез-газ, другой поток проходит через котел-утилизатор 9, вырабатывающий пар высокого давления. Затем,потоки объединяются, охлаждаются в холодильнике 7 и поступают в сепаратор высокого давления 10, в котором от циркуляционного газа отделяется спиртовой конденсат. Циркуляционный газ дожимается в компрессоре 2 и возвращается на синтез. Конденсат метанола-сырца дросселируется в дросселе 11 до давления близкого к атмосферному и через сборник 12 поступает на ректификацию. В ректификационной колонне 13 от метанола отгоняются газы и. диметиловый эфир, которые также сжигаются. Полученный товарный метанол с выходом 95% имеет чистоту 99,95%.

На рис. 2. приведена технологическая схема производства метанола по трехфазному методу на медь-цинковом катализаторе из синтез-газа, полученного газификацией каменного угля, производительностью 650 тыс. т в год.

Очищенный от соединений серы синтез-газ сжимается в компрессоре 1 до давления 3--10 МПа, подогревается в теплообменнике 5 продуктами синтеза до 200-- 280°С, смешивается с циркуляционным газом и поступает в нижнюю часть реактора 4.' Образовавшаяся в реакторе парогазовая смесь, содержащая до 15% метанола, выходит из верхней части реактора, охлаждается последовательно в теплообменниках 5 и б и через холодильник-конденсатор 7 поступает в сепаратор 8, в котором от жидкости отделяется циркуляционный газ. Жидкая фаза разделяется в сепараторе на два слоя: углеводородный и метанольный. Жидкие углеводороды перекачиваются насосом 9 в реак-

Циркуляционный газ

Рис. 2 Технологическая схема производства метанола в трехфазной системе: -- компрессор, 2 -- циркуляционный компрессор, 3,9 -- насосы, 4 * реактор кипящего слоя, 5,6 -- теплообменники, 7 -- холодильник-конденсатор, 8 -- сепаратор, 10 -- котел-утилизатор

Тор, соединяясь с потоком углеводородов, проходящих через котел-утилизатор 10. Таким образом жидкая углеводородная фаза циркулирует через реактор снизу вверх, поддерживая режим кипящего слоя тонкодисперсного катализатора в нем, и одновременно обеспечивая отвод реакционного тепла. Метанол-сырец из сепаратора 8 поступает на ректификацию или используется непосредственно как топливо или добавка к топливу.

Разработанный в 70-х годах трехфазный синтез метанола используется в основном, для производства энергетического продукта. В качестве жидкой фазы в нем применяются стабильные в условиях синтеза и не смешивающиеся с метанолом углеводородные фракции нефти, минеральные масла, полиалкилбензолы. К указанным выше преимуществам трехфазного синтеза метанола следует добавить простоту конструкции реактора, возможность замены катализатора в ходе процесса, более эффективное использование теплового эффекта реакции. Вследствие этого установки трехфазного синтеза более экономичны по сравнению с традиционными двухфазными как высокого так и низкого давления. В табл. 12.2 приведены показатели работы установок трех- и двухфазного процесса одинаковой производительности 1800

Таблица 1. Показатели работы установок синтеза метанола

Показатель

Тип установки

Трехфазная

Двухфазная

Давление, МПа

7,65

10,3

Объемная скорость газа, ч~1

4000

6000

Отношение циркуляционного газа *

к исходному синтез-газу

1:1

5:1

Концентрация метанола на выходе, % мол.

14,5

5,0

Мощность, потребляемая аппаратурой, кВт

957

4855

Термический коэффициент полезного

действия,%

97,9

86,3

Относительные капитальные затраты

0,77

1,00

5. Расчет материального баланса ХТС.

Таблица 2 Составы потоков

Показатель

Размерность

Значение

Обозначение

Содерж. СО в циркул. газе

Мольн. доли

0,12

Содерж. Н2 в циркул. газе

Мольн. доли

0,74

Содерж. СН4 в цирк. газе

Мольн. доли

0,14

Содерж СН4 в свежем газе

Мольн. доли

0,04

Общая конверсия СО:

Мольн. доли

0,2

- доля СО, преврат. в СН3ОН

0,95

- доля СО, преврат. в (СН3)2О

0,03

- доля СО, преврат. в С4Н9ОН

0,02

Базис расчета

т. СН3ОН

1500

1.Структурная блок - схема.

Рис. 4

Производство метанола основано на реакции:

СО + 2Н2 СН3ОН +Q,

Одновременно протекают побочные реакции:

СО +3Н2 СН4 +Н2О

2СО + 4Н2 (СН3)2О +Н2О

4СО + 8Н2 С4Н9ОН + 3Н2О

Составляем уравнения материального баланса:

Таблица 3 Соответствие переменных потокам.

Поток

Переменная

Размерность

Значение по расчету

X1

моль

234,375

X2

Моль

53,267

X3

Моль

1509,233

X4

Моль

1250

X5

Моль

133,168

X6

моль

53,267

Производим замену переменных и записываем линейные уравнения следующим образом:

X1 - X2 - 0.12X3 = 0

X4 - X5 - 0.74X3 = 0

X4 - 0.4X1 - 0.74X3 - 0.74X6 = 0

0.8X1 - 0.12X3 - 0.12X6 = 0

0.04X2 + 0.04X5 - 0.14X6 = 0

6.4X1 = 1500

Матрица коэффициентов.

Таблица 4

X1

X2

X3

X4

X5

X6

Свободные члены

1

-1

-0,12

0

0

0

0

0

0

-0,74

1

-1

0

0

-0,4

0

-0,74

1

0

-0,74

0

0,8

0

-0,12

0

0

-0,12

0

0

0,04

0

0

0,04

-0,14

0

6,4

0

0

0

0

0

1500

Таблица 5 Материальный баланс химико-технологической системы производства метанола на 1500т метанола.

Приход

масса

%масс.

Расход

масса

%масс.

СО

1491,476

0,792

СН3ОН

1500

Н2

266,336

0,142

(СН3)2О

32,347

0,017

СН4(инерт)

124,3

0,066

С4Н9ОН

17,344

0,009

Н2О

25,31

0,014

СН3ОН(чист.)

1425

0,759

Отдув. газы

377,153

0,201

Всего

1882,102

Всего

1877,153

Невязка

4,949

Расчет:

M=M*N

Приход:

Расход:

Расчёт технологических показателей:

Степень превращения

X = (1580,6 - 198,95)/ 1580,6 * 100% = 87,4 %

Селективность

= 46,88 Ммоль * 28 г/моль / (1580,6т - 198,95т ) * 100% = 95,0 %

Выход целевого продукта

= 1500 т / (56,45 Ммоль * 32 г/моль ) *100 % = 83,1 %

Расходный коэффициент

= 1580,6т / 1500т = 1,05

Теоретический расходный коэффициент

= 1380,4т / 1500 т = 0,92

Рис. 5

Поточная диаграмма

Рис. 6

Выводы

Принцип наилучшего использования сырья

Возможность использования избытка реагента для регулирования технологических параметров. В процессе синтеза метанола :

CO + 2H2 = CH3OH

Избыток водорода способствует смещению равновесия, ускорению лимитирующей стадии - хемосорбции водорода, регулированию температуры, подавлению побочных реакций, а также увеличивает срок службы катализатора в результате гидрирования продуктов уплотнения, отлагающихся на катализаторе в процессе синтеза.

Принцип интенсивности процесса

Для увеличения движущей силы процесса используются: повышение давления в процессах с участием газовой фазы, создание производств не имеющих вредные выбросы в атмосферу, схемы с рециркуляцией газов.

Принцип наилучшего использования энергии

Регулирование нагрузки реактора. Если в системе, состоящей из теплообменника и реактора, полное количество тепла, необходимое для нагревания газов до заданной температуры перед входом в реактор, поставляются газом, покидающим реакционное пространство, то такая система будет работать автотермично. Это наиболее выгодный режим работы. Его осуществляют в процессах синтеза аммиака, метанола, конверсии СО. Интенсивность потока газа на входе или нагрузка реактора позволяет регулировать температурный режим процесса.

Принцип экологической безопасности химических производств

В настоящее время применяется, в основном, термин “чистое производство” - это производство, которое характеризуется непрерывным и полным применением к процессам и продуктам природоохранной стратегии, предотвращающей загрязнение окружающей среды таким образом, чтобы понизить риск для человечества и окружающей среды. Например, такие современные производства, как производство аммиака, азотной кислоты, серной кислоты(из серы), метанола, этанола, аммофоса и ряд других можно отнести к разряду малоотходных технологий.

Список литературы

1. А.М.Кутёпов, Т.И.Бондарёва, М.Г.Беренгартен. Общая химическая технология, Москва "Высшая школа", 1990г

2. И.П.Мухлёнов, Общая химическая технология. Том 2 - Важнейшие химические производства

3. Г.Н.Кононова,В.В.Сафонов, Е.В.Егорова, "Расчет материального баланса химико-технологических систем интегральным методом".

Размещено на Аllbеst.ru

...

Подобные документы

  • Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.

    контрольная работа [42,6 K], добавлен 10.09.2008

  • Исходное сырье для производства этилового спирта и способы его получения. Физико-химическое обоснование основных процессов производства этилового спирта. Описание технологической схемы процесса производства, расчет основных технологических показателей.

    курсовая работа [543,6 K], добавлен 04.01.2009

  • Физические и химические свойства спиртов, их взаимодействие с щелочными металлами. Замещение гидроксильной группы спирта галогеном, дегидратация, образование сложных эфиров. Производство этилового, метилового и других видов спиртов, области их применения.

    презентация [1,5 M], добавлен 07.04.2014

  • Технологические особенности и этапы, сырьевая и материальная база для изготовления этилового спирта в химической промышленности, его главные физические и химические свойства, направления практического использования. Гидратация этилена и ее схема.

    курсовая работа [739,7 K], добавлен 16.10.2011

  • Рассмотрение методов проведения реакций ацилирования (замещение водорода спиртовой группы на остаток карбоновой кислоты). Определение схемы синтеза, физико-химических свойств метилового эфира монохлоруксусной кислоты и способов утилизации отходов.

    контрольная работа [182,3 K], добавлен 25.03.2010

  • Физико-химические свойства метанола, области применения, текущее состояние рынка данного продукта. Производство, переработка метанола в России и перспективы его использования. Метанол как альтернативный энергоноситель. Новое топливо из природного газа.

    курсовая работа [2,1 M], добавлен 05.10.2011

  • Разработка технологической схемы непрерывной ректификации для выделения метилового спирта из его смеси с водой. Проектирование тарельчатой ректификационной колонны. Подбор подогревательной исходной смеси по каталогу. Выбор тарелки, энтальпий, штуцеров.

    курсовая работа [4,7 M], добавлен 24.10.2011

  • Использование газохроматографического метода для определения содержания токсичных микропримесей, метилового спирта, сивушного масла, уксусного альдегида и эфиров. Анализ градуировочной смеси, полученной на хроматографе. Разделение микропримесей в водке.

    презентация [82,0 K], добавлен 24.05.2015

  • Особенности использования метанола в органическом синтезе. Промышленные способы получения и схема производства метанола. Влияние параметров управления на на равновесие и скорость химической реакции. Оптимизация работы реактора по экономическим критериям.

    курсовая работа [552,7 K], добавлен 23.02.2012

  • Методы получения целевого продукта. Термодинамический анализ реакции. Восстановление карбоновых кислот. Реакция глицерина с щавелевой кислотой. Гидрирование пропаргилового спирта. Селективное гидрирование акролеина или пропаргилового спирта над палладием.

    дипломная работа [790,2 K], добавлен 18.05.2011

  • Основные химические свойства ацетона и изопропилового спирта, области применение и влияние на человека. Получение изопропилового спирта из ацетона. Тепловой и материальный баланс адиабатического РИВ и РПС. Программы расчёта и результаты, выбор реактора.

    курсовая работа [255,0 K], добавлен 20.11.2012

  • Отличие условий синтеза метанола от условий синтеза высших спиртов. Стадии процесса и их тепловой эффект. Влияние вида катализатора на параметры, скорость и глубину процесса. Синтез метанола на цинк-хромовом катализаторе. Схемы синтеза метанола.

    реферат [748,6 K], добавлен 15.06.2010

  • Получение этилового спирта сбраживанием пищевого сырья. Гидролиз древесины и последующее брожение. Получение этилового спирта из сульфитных щёлоков. Сернокислотный способ гидратации этилена. Физико-химические основы процесса. Отделение гидратации этилена.

    дипломная работа [1,2 M], добавлен 16.11.2010

  • Физические и химические свойства аммиака. Промышленный способ получения. Физиологическое действие нашатырного спирта на организм. Выбор оптимальных условий процесса синтеза аммиака. Влияние давления, температуры и катализаторов. Пассивация и регенерация.

    реферат [318,6 K], добавлен 04.11.2015

  • Этанол как многотоннажный продукт органического синтеза, огнеопасный растворитель. Общая характеристика основных методов и способов получения синтетического этанола. Знакомство с технологическими особенностями процесса производства этилового спирта.

    реферат [901,0 K], добавлен 02.04.2019

  • Производство ацетона брожением крахмала. Производство ацетона из изопропилового спирта. Обоснование создания эффективной ХТС. Определение технологической топологии ХТС. Построение математической модели ХТС. Свойства и эффективность функционирования.

    курсовая работа [1,0 M], добавлен 12.02.2009

  • Описание процесса производства изопропилового спирта методом сернокислой гидратации пропилена. Характеристика сырья и готовой продукции. Расчет холодильника, материального и теплового баланса колонны. Технико-экономические показатели работы установки.

    дипломная работа [202,5 K], добавлен 27.11.2014

  • Основная и побочная реакции синтеза бромистого этила. Схема установки для синтеза. График зависимости выхода бромистого этила от повышения процентного содержания этилового спирта в растворе (теоретический и практический выход вещества при реакции).

    презентация [81,2 K], добавлен 16.02.2014

  • Синтез метанола из оксида углерода и водорода. Технологические свойства метанола (метиловый спирт). Применение метанола и перспективы развития производства. Сырьевые источники получения метанола: очистка синтез-газа, синтез, ректификация метанола-сырца.

    контрольная работа [291,5 K], добавлен 30.03.2008

  • Промышленное производство бутадиена из этилового спирта в присутствии бифункционального катализатора. Характеристика бутадиена и область его применения. Подготовка алюмохромового катализатора к работе. Продукт термохимической активации гидраргиллита.

    контрольная работа [20,9 K], добавлен 13.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.