Основные составляющие общей биохимии
Липиды - разнообразная по строению группа органических веществ, которые объединены общим свойством - растворимостью в неполярных растворителях. Синдром Бассена-Корнцвейга - результат нарушения обмена хиломикронов. Схема липогенеза в жировой ткани.
Рубрика | Химия |
Вид | курс лекций |
Язык | русский |
Дата добавления | 08.10.2017 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Энергетический баланс рассчитывается также как и для насыщенных ЖК с четным количеством атомов С, только на каждую двойную связь недосчитывают 1 ФАДН2 и соответственно 2 АТФ.
Суммарное уравнение в-окисления пальмитолеил-КоА:
С15Н29СО-КоА + 6 ФАД + 7 НАД+ + 7 HSKoA > 8 CH3-CO-KoA + 6 ФАДН2 + 7 НАДН2
Энергетический баланс в-окисления пальмитолеиновой кислоты: -2+8*12+6*2+7*3=127 АТФ.
Регуляция скорости в-окисления ЖК.
в-окисление активируют: НАД+, АДФ (энергодефицит), ЖК, глюкагон, адреналин.
в-окисление ингибируют: НАДH2, АТФ, инсулин.
Голод, физическая нагрузка > ^ глюкагон, ^ адреналин > липолиз ТГ в адипоцитах > ^ ЖК в крови > ^ в-окисление в аэробных условиях в мышцах, печени > 1) ^АТФ; 2) ^АТФ, ^НАДH2, ^Ацетил-КоА, (^ЖК) > v гликолиз > ^ экономию глюкозы, необходимую для нервной ткани, эритроцитов и т.д.
Пища > ^ инсулин > ^ гликолиз > ^ Ацетил-КоА > ^ синтез малонил-КоА и ЖК
^ синтез малонил-КоА > ^ малонил-КоА > v карнитинацилтрансферазы I в печени > v транспорт ЖК в матрикс митохондрий > v ЖК в матриксе > v в-окисление ЖК
Окисление ЖК в пероксисомах.
В пероксисомах в-окисления ЖК протекает в модифицированной форме. Этот путь обеспечивает катаболизм в печени длинноцепочечных ЖК (С=20, 22). Продуктами окисления является актоноил-КоА, Ацетил-КоА и Н2О2. Н2О2 синтезируется аэробной дегидрогеназой при взаимодействии ФАДН2 и О2. Актоноил и Ацетил переходят с КоА на карнитин и направляются в митохондрии, где окисляются с образованием АТФ.
б-окисление ЖК.
б-окисление -- специфический путь катаболизма ЖК с длинной (более 20 атомов С) и разветвленной углеводородной цепью. б-окисления протекает в нервной ткани, где преобладают ЖК с длинной цепью и в печени, куда поступают разветвленные ЖК растительной пищи (например, фитановая кислота).
При б-окислении синтез АТФ не происходит, от ЖК отщепляется по одному атому С, в виде СО2.
Рис. 16
Фитановая кислота, ЖК с разветвлённой углеводородной цепью, образуется из фитола, который входит в состав хлорофилла. В этой кислоте у каждого третьего атома С находится метильная группа, что делает невозможным в-окисление данной кислоты. При б-окислении фитановой кислоты вначале удаляется метильная группа, а затем происходит цикл в-окисления.
щ-Окисление ЖК.
щ-Окисление протекает в ЭПР, начинается с гидроксилирования щ-углеродного атома ЖК монооксигеназой (Р450) и в результате окисления приводит к образованию ЖК с двумя карбоксильными группами, которые разрушаются в-окислением с обеих сторон до дикарбоновых кислот: адипиновой (С6) и субериновой кислоты (С8), которые, выводятся с мочой.
Рис. 17
Нарушения окисления ЖК.
1) Нарушение в-окисления возникает при снижении транспорта ЖК в митохондрии.
Скорость переноса ЖК внутрь митохондрий зависит от доступности карнитина и активности карнитинацилтрансферазы I. Снижение концентрации карнитина происходит при: 1). длительном гемодиализе; 2). длительной ацидурии (карнитин выводится как основание с органическими кислотами); 3). нарушении синтеза карнитина. Карнитинацилтрансфераза I ингибируется препаратами сульфонилмочевины (лечение больных сахарным диабетом), существуют наследственные дефекты карнитинацилтрансферазы I.
В этих случаях ЖК с длинной цепью не используются как источники энергии. У таких людей снижена способность к физической активности; в мышечных клетках могут накапливаться ТГ в виде липидных капель.
2) Генетический дефект дегидрогеназы ЖК со средней длиной углеводородной цепи.
В митохондриях имеется 3 вида ацил-КоА-дегидрогеназ, окисляющих ЖК с длинной, средней или короткой цепью радикала. ЖК по мере укорочения радикала в процессе в-окисления последовательно окисляются этими ферментами.
Генетический дефект дегидрогеназы ЖК со средней длиной радикала - распространенное аутосомно-рецессивное заболевание (1:15 000). Частота дефектного гена в европейской популяции -- 1:40.
Активность этой дегидрогеназы особенно важна для грудных детей, т.к. у них основным источником энергии служат ЖК со средней длиной цепи, входящие в состав ТГ молока.
Невозможность использовать ЖК как источники энергии приводит к увеличению скорости окисления глюкозы. В результате у детей развивается гипогликемия, которая является причиной внезапной смерти (10% от общего числа умерших новорождённых). Если такие дети выживают, то после голодания в течение 6--8 ч у них развиваются гипогликемические приступы (слабость, головокружение, рвота, потеря сознания). Введение глюкозы приводит к исчезновению симптомов.
Во всех случаях, когда нарушается в-окисление, ЖК накапливаются в клетках и распадаются по пути щ-окисления, которое в норме идёт с очень низкой скоростью. Окисление происходит по метильному сжатому углерода, и в результате образуются дикарбоновые кислоты, выделяющиеся с мочой. Определение этих кислот в моче может служить диагностическим признаком нарушения в-окисления.
3) Нарушение б-окисления
Болезнь Рефсума - редкое наследственное заболевание развивающейся вследствие генетических дефектов ферментов б-окисления. Фитановая кислота, поступающая с пищей, не окисляется и накапливается в организме, в основном в нервной ткани.
Это приводит у взрослых к нарушению структуры нервной ткани и развитию многих неврологических симптомов (полиневропатии, мозжечковой атаксии), нарушению зрения (пигментная дистрофия сетчатки), костным деформациям, изменениям кожи по типу ихтиоза и поражениям сердца с развитием кардиомиопатий.
У детей развиваются выраженные черепно-лицевые аномалии, мышечная гипотония, пигментный ретинит, нейросенсорная глухота, грубая задержка психомоторного развития, судороги, гепатомегалия с нарушением функции печени.
4) Нарушение деградации ЖК в пероксисомах
Из-за дефекта пероксисом нарушена деградация длинноцепочечных жирных кислот, что проявляется в синдроме Целльвегера. В клетках отмечается повышение количества жирных кислот с длинной углеводной цепью.
Синдром Целльвегера - заболевание раннего детского возраста, наследующееся по аутосомно-рецессивному типу и проявляющееся мышечной гипотонией, нарушением моторики, арефлексией, кардиомиопатией, задержкой психического развития, судорогами, фиброзом печени и кистозом почек. Характерны черепно-лицевые дизморфии, атрофии зрительных нервов, помутнение хрусталика и роговицы, глаукома. С первых месяцев жизни выявляется выраженная задержка психомоторного развития.
Перекисное окисление липидов
Понятие ПОЛ объединяет все реакции неферментативного окисления полиненасыщенных ЖК, свободных или входящих в состав омыляемых липидов, протекающих по радикальному механизму. Реакции ПОЛ инициируются активными формами кислорода.
Рис. 18
Рис. 19
В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жирных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.
Регуляция ПОЛ.
Процессы ПОЛ усиливаются при избытке катехоламинов (стресс), гипоксии, ишемии (при реоксигенации), повышенном содержании активных форм О2, снижении антиоксидантной защиты, повышенном содержании ненасыщенных жирных кислот.
Активация ПОЛ происходит при воспалении и характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, атеросклерозе, развитии опухолей.
Физиологическое значение реакций ПОЛ:
1. модифицируют физико-химические свойства биомембран: увеличивают их проницаемость.
2. регулируют активность мембранных ферментов, реакции окислительного фосфорилирования.
3. участвуют в контроле клеточного деления.
4. Участвует в адаптации организма.
Повышение активности ПОЛ приводит к:
1. разрушению, фрагментации клеточных мембран, повреждению и гибели клеток.
2. модификации ЛП, особенно ЛПНП. Они становятся «липкими», легче проникают в сосудистую стенку, хорошо захватываются макрофагами, что ускоряет развитие атеросклероза.
3. накоплению продуктов ПОЛ, многие из которых токсичны, канцерогенены и мутагенены (МДА).
4. ускорению процессов старения организма.
На коже с возрастом увеличивается количество пигментных пятен. Пигмент, вызывающий образование этих пятен, называется липофусцин. Он представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с продуктами ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, и поэтому накапливается в клетках, нарушая их функции.
АНАБОЛИЗМ ЖИРНЫХ КИСЛОТ.
Источником ЖК в организме являются синтетические процессы и пища.
ЖК, которые синтезируются в организме, называются заменимыми. Значительная их часть образуется в печени, в, меньшей степени -- в жировой ткани и лактирующей молочной железе.
ЖК, которые не синтезируются в организме, но необходимы для него называются незаменимыми. Единственным источником незаменимых ЖК является пища.
У человека синтез ЖК начинается с образования пальмитиновой кислоты, из которой затем образуются другие заменимые ЖК. Кроме того, некоторые заменимые ЖК образуются из незаменимых ЖК. Субстратами для синтеза ЖК служит ацетил-КоА и НАДФН2, образующийся в основном из глюкозы. Таким образом, избыток углеводов, поступающих в организм, трансформируется в ЖК, а затем в ТГ.
Образование субстратов, необходимых для синтеза ЖК
Образование и транспорт Ацетил-КоА. В реакциях гликолиза из глюкозы образуется ПВК, который поступает в матрикс митохондрий и превращается в Ацетил-КоА с участием ПВК ДГ. Так как внутренняя мембрана митохондрий непроницаема для Ацетил-КоА, поэтому он при участии цитратсинтазы конденсируется с ЩУК с образованием цитрата:
Ацетил-КоА + Оксалоацетат > Цитрат + HS-КоА.
Затем транслоказа переносит цитрат в цитоплазму. Перенос цитрата в цитоплазму происходит только при увеличении количества цитрата в митохондриях, когда изоцитратдегидрогеназа и б-кетоглутаратдегидрогеназа ингибированы высокими концентрациями НАДН2 и АТФ (при избытке углеводов и низком энергопотреблении).
В цитоплазме цитрат расщепляется под действием фермента цитрат-лиазы:
Цитрат + HSKoA + АТФ > Ацетил-КоА + АДФ+ Pн + ЩУК
Образование НАДФН2.
1) ЩУК в цитоплазме превращается в малат под действием малат ДГ, малат под действием малик-фермента превращается в ПВК, при этом образуется НАДФН2. ПВК транспортируется обратно в матрикс митохондрий;
2) НАДФН2 образуется в цитоплазме из глюкозы в окислительных реакциях ПФШ;
3) Цитрат изомеризуется в изоцитрат, который дегидрируется цитозольной НАДФ-зависимой ДГ до б-КГ с образованием НАДФН2. б-КГ переноситься в матрикс митохондрий.
Рис. 20
Синтез пальмитиновой кислоты.
Образование малонил-КоА
Первая реакция синтеза ЖК -- превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА-карбоксилазой.
Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.
Реакция протекает в 2 стадии:
1) СО2 + биотин + АТФ > биотин-СООН + АДФ + Фн
2) ацетил-КоА + биотин-СООН > малонил-КоА + биотин
Ацетил-КоА-карбоксилаза регулируется несколькими способами:
1) Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;
2) Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;
3) Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.
Образование пальмитиновой кислоты.
После образования малонил-КоА синтез пальмитиновой кислоты продолжается на мультиферментном комплексе -- синтазе жирных кислот (пальмитоилсинтетазе).
Пальмитоилсинтаза - это димер, состоящий из двух идентичных полипептидных цепей. Каждая цепь имеет 7 активных центров и ацилпереносящий белок (АПБ). В каждой цепи есть 2 SH-гpyппы: одна SH-гpyппa принадлежит цистеину, другая -- остатку фосфопантетеиновой кислоты. SH-группа цистеина одного мономера расположена рядом с SH-группой 4-фосфопантетеината другого протомера. Таким образом, протомеры фермента расположены «голова к хвосту». Хотя каждый мономер содержит все каталитические центры, функционально активен комплекс из 2 протомеров. Поэтому реально синтезируются одновременно 2 ЖК.
Рис. 21
Этот комплекс последовательно удлиняет радикал ЖК на 2 атома С, донором которых служит малонил-КоА.
Реакции синтеза пальмитиновой кислоты.
1) Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;
2) Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;
3) Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО2.
4) Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;
5) Оксиацил дегидратируется гидратазой в еноил;
6) Еноил восстанавливается еноилредуктазой до ацила.
В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).
Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.
Суммарное уравнение синтеза пальмитиновой кислоты из ацетил-КоА и малонил-КоА имеет следующий вид:
CH3-CO-SKoA + 7 HOOC-CH2-CO-SKoA + 14 НАДФН2 > C15H31COOH + 7 СО2 + 6Н2О + 8 HSKoA + 14 НАДФ+
Рис. 22
Синтез ЖК из пальмитиновой и других ЖК.
Удлинение ЖК в элонгазных реакциях.
Удлинение ЖК называется элонгацией. ЖК могут синтезироваться в результате удлинение в ЭПР пальмитиновой кислоты и других более длинных ЖК. Для каждой длины ЖК существуют свои элонгазы. Последовательность реакций аналогична синтезу пальмитиновой кислоты, однако в данном случае синтез идет не на АПБ, а на КоА. Основной продукт элонгации в печени -- стеариновая кислота. В нервных тканях образуются ЖК с длинной цепью (С=20-24), необходимые для синтеза сфинголипидов.
Синтез ненасыщенных ЖК в десатуразных реакциях
Включение двойных связей в радикалы ЖК называется десатурацией. Десатурация ЖК происходит в ЭПР в монооксигеназных реакциях, катализируемых десатуразами.
Стеароил-КоА-десатураза - интегральный фермент, содержит негеминовое железо. Катализирует образование 1 двойной связи между 9 и 10 атомами углерода в ЖК. Стеароил-КоА-десатураза переносит электроны с цитохрома b5 на 1 атом кислород, при участии протонов этот кислород образует воду. Второй атом кислорода включается стеариновую кислоту с образованием её оксиацила, который дегидрируется до олеиновой кислоты.
Рис. 23
Десатуразы ЖК, имеющиеся в организме человека, не могут образовывать двойные связи в ЖК дистальнее девятого атома углерода, поэтому ЖК семейства щ-3 и щ-6 не синтезируются в организме, являются незаменимыми и обязательно должны поступать с пищей, так как выполняют важные регуляторные функции. Основные ЖК, образующиеся в организме человека в результате десатурации -- пальмитоолеиновая и олеиновая.
Синтез б-гидрокси ЖК
В нервной ткани происходит синтез и других ЖК -- б-гидроксикислот. Оксидазы со смешанными функциями гидроксилируют С22 и С24 кислоты с образованием цереброновой кислоты обнаруживаемой только в липидах мозга.
ЭЙКОЗАНОИДЫ.
Эйкозаноиды - БАВ, образуются из полиеновых ЖК с 20 атомами С (арахидоновая, эйкозапентаеновая, эйкозатриеновая). Эйкозаноиды являются тканевыми гормонами (аутокринный и паракринный эффект), с коротким периодом полураспада (секунды - минуты). Концентрация эйкозаноидов в крови низкая. Системное действие оказывают при некоторых патологиях, когда их концентрация в крови заметно повышается.
Схема образования эйкозаноидов
Полиеновые ЖК с 20 атомами С поступают в организм с пищей или синтезируются из эсенциальных полиеновых ЖК с 18 атомами С.
Рис. 24
После выделения арахидоновой кислоты из глицерофосфолипида она выходит в цитозоль и превращается 2 путями в эйкозаноиды: 1 путь циклооксигеназный дает простагландины, простациклины и тромбоксаны; 2 путь липоксигеназный дает лейкотриены, липоксины и др. эйкозаноиды.
Эйкозаноид PGE1: PG - простагландин, Е - заместитель в пятичленном кольце эйкозаноида, 1 - число двойных связей в боковых цепях эйкозаноида.
PG - простагландины, имеют 2 кольца в структуре (пятичленное и эндопероксидное).
PGI - простациклины, имеют 2 кольца в структуре (пятичленное и простое эфирное).
ТХА - тромбоксаны, имеют 2 кольца в структуре (шестичленное и простое эфирное). Синтезируются только в тромбоцитах.
LT - лейкотриены имеют 3 сопряженные двойные связи и не имеют циклов.
LX - липоксины имеют 4 сопряженные двойные связи и не имеют циклов.
Биологическое значение эйкозаноидов.
Эйкозаноиды регулируют тонус ГМК и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например бронхиальной астме и аллергическим реакциям.
Табл. 8
№ |
Эйкозаноид |
Эффект |
Место синтеза |
Активатор синтеза |
|
1 |
PGЕ2 простагландин |
Расслабляет гладкую мускулатуру, расширяет сосуды, инициирует роды, подавляет миграцию лимфоцитов, пролиферацию Т-лимфоцитов |
Большинство тканей, особенно почки |
||
2 |
PGF2б простагландин |
Сокращает гладкую мускулатуру, суживает сосуды, бронхи, стимулирует сокращение матки. |
Большинство тканей |
||
3 |
PGD3 простагландин |
Расширяет сосуды, снижает агрегацию тромбоцитов и лейкоцитов. |
Клетки гладкой мускулатуры |
||
4 |
PGI2 простациклин |
Снижает агрегацию тромбоцитов, расширяет сосуды. |
Эндотелий сосудов, сердце |
Синтезируется в норме, блокируется при повреждении эпителия |
|
5 |
ТХА2 тромбоксан |
Стимулирует агрегацию тромбоцитов, суживает сосуды, бронхи. |
Тромбоциты |
Синтезируется при контакте тромбоцита с поврежденной стенкой сосудов |
|
6 |
ТХА3 тромбоксан |
Стимулирует агрегацию тромбоцитов, суживает сосуды, бронхи. Менее эффективен чем ТХА2. |
Тромбоциты |
||
7 |
LTA4 лейкотриен |
Лейкоциты, тучные клетки |
|||
8 |
LTB4 лейкотриен |
Стимулирует хемотаксис и агрегацию лейкоцитов, освобождение лизосомальных ферментов лейкоцитов. Увеличивает проницаемость сосудов. |
Лейкоциты, эпителий сосудов |
||
9 10 11 |
LTС4 лейкотриен LTD4 лейкотриен LTE4 лейкотриен |
Расширяют сосуды, увеличивают их проницаемость. Вызывают сокращение бронхов. Основные компоненты «медленно реагирующей субстанции» анафилаксии. |
Лейкоциты, альвеолярные макрофаги |
||
12 |
LXA4 липоксин |
Стимулирует хемотаксис и образование супероксид аниона в лейкоцитах |
Лейкоциты |
Эйкозаноиды PGE, PGD, PGI функционируют через аденилатциклазную систему.
Эйкозаноиды PGF2б, TXA2, лейкотриены функционируют через инозитолтрифосфатную систему, увеличивая уровень кальция в цитозоле.
При преобладании в пище эйкозапентаеновой (много в рыбьем жире) над арахидоновой кислотой, она вместо арахидоновой, включается в фосфолипиды. В результате, при активации фосфолипазы А2 из ФЛ больше выделяется эйкозапентаеновой кислоты чем арахидоновой. Из эйкозапентаеновой кислоты образуются более сильные ингибиторы тромбообразования, чем из арахидоновой, что снижает риск образования тромба и развития инфаркта миокарда.
Инактивация эйкозаноидов происходит путем окисления гидроксильной группы в 5 положении до кетогруппы, восстановления двойной связи в 13 положении и в-окисления боковой цепи. Конечные продукты (дикарбоновые кислоты) выделяются с мочой.
4. Обмен холестерина и кетоновых тел. Атеросклероз
КЕТОНОВЫЕ ТЕЛА.
К кетоновым телам (КТ) относят в-оксибутират, ацетоацетат и ацетон.
Синтез КТ.
в-оксибутират и ацетоацетат синтезируются в митохондриях печени из ЖК. Ацетон образуется в крови неферментативно:
Рис. 25
1. Под действием тиолазы 2 ацетил-КоА взаимодействуют с образованием ацетоацетил-КоА;
2. Под действием ГМГ-КоА-синтазы с ацетоацетил-КоА взаимодействует третья молекула ацетил-КоА, образуя 3-гидрокси-3-метилглутарил-КоА (ГМГ-КоА);
3. ГМГ-КоА-лиаза катализирует расщепление ГМГ-КоА на свободный ацетоацетат и ацетил-КоА;
4. Высокая концентрация НАДH2, образованная при активном в-окислении ЖК, восстанавливает в печени большую часть Ацетоацетата до в-оксибутирата. Фермент в-гидроксибутират ДГ;
5. Ацетоацетат и в-гидроксибутират выделяются в кровь;
6. При высокой концентрации в крови ацетоацетата часть его неферментативно декарбоксилируется, превращаясь в ацетон.
Регуляция синтеза КТ
Глюкагон в жировой ткани активируется распад ТГ. ЖК поступают в печень в большем количестве, чем в норме, что увеличивает скорость их в-окисления.
Глюкагон в печени направляет ЩУК на глюконеогенез, подавляя ЦТК. Образующийся из ЖК ацетил-КоА не окисляться в ЦТК, накапливается в митохондриях и идет на синтез КТ.
Регуляторный фермент синтеза КТ -- ГМГ-КоА синтаза. Синтез ГМГ-КоА синтазы индуцируют высокие концентрации ЖК, ингибируют высокие концентрации НSКоА. Избыток ЖК в печени связывает НSКоА, концентрация НSКоА снижается, ГМГ-КоА-синтаза активируется. И наоборот, дефицит ЖК в печени увеличивает концентрацию НSКоА, фермент ингибируется.
Окисление КТ в периферических тканях.
Рис. 26
Как и ЖК, КТ окисляются только в аэробных условиях, обеспечивая синтез АТФ.
1. в-Гидроксибутират, попадая в клетки, дегидрируется НАД-зависимой дегидрогеназой и превращается в ацетоацетат. НАДН2 направляется ЦПЭ;
2. Сукцинил-КоА-ацетоацетат-КоА-трансфераза активирует ацетоацетат, при переносе КоА с сукцинил-КоА на ацетоацетат. Этот фермент не синтезируется в печени, поэтому печень не использует КТ как источники энергии;
3. Тиолаза расщепляет ацетоацетил-КоА на 2 Ацетил-КоА, которые направляются в ЦТК.
Биологическая роль КТ.
КТ -- хорошие топливные молекулы, окисление в-гидроксибутирата до СО2 и Н2О обеспечивает быстрый синтез 26 молекул АТФ. Окисление КТ, как и ЖК сберегает глюкозу, что имеет большое значение в энергоснабжении аэробных тканей при длительном голодании и физических нагрузках, когда возникает дефицит глюкозы. Для нервной ткани КТ имеют исключительное значение, так как в отличие от мышц и почек, нервная ткань практически не использует ЖК в качестве источника энергии(ЖК не проходят гематоэнцефалический барьер).
Преимущество КТ перед ЖК: 1) КТ водорастворимы, а ЖК - нет; 2) ЖК разобщают окислительное фосфорилирование и усиливают синтез ТГ, а КТ - нет.
Ацетон, в отличие от в-оксибутирата и ацетоацетата, не утилизируется тканями. Он выделяется с выдыхаемым воздухом, мочой и потом, что позволяет организму избавляться от избытка КТ, которые не успели вовремя окисляться.
Кетоацидоз.
В норме концентрация КТ в крови составляет 1--3 мг/дл (до 0,2 мМоль/л), но при голодании значительно увеличивается. Увеличение концентрации КТ в крови называют кетонемией. При кетонемии развивается кетонурия - выделение КТ с мочой. Накопление КТ в организме приводит к кетоацидозу, так как КТ (кроме ацетона) являются водорастворимыми органическими кислотами (рК~3,5).
Ацидоз достигает опасных величин при сахарном диабете, так как концентрация КТ при этом заболевании может доходить до 400--500 мг/дл. Тяжёлая форма ацидоза -- одна из основных причин смерти при сахарном диабете.
ХОЛЕСТЕРИН.
Холестерин (ХС) -- стероид, характерный только для животных организмов.
Источником ХС в организме являются синтетические процессы и пища. В сутки в организме синтезируется около 1г (0.7) ХС. В печени синтезируется более 50% ХС, в тонком кишечнике -- 15-- 20%, остальной ХС синтезируется в коже, коре надпочечников, половых железах. С пищей поступает в сутки 0,3--0,5г (0.3-0.4) ХС. Общее содержание ХС в организме составляет в среднем 140г, 90-93% находиться в клетках, 7-10% - в крови (5,2+1,3 ммоль/л).
Биологическая роль ХС.
1. ХС входит в состав всех мембран клеток, увеличивает их электроизоляционные свойства, придает им жесткость и прочность;
2. В мембране ХС защищает полиненасыщенные ЖК от окисления;
3. из ХС синтезируются жёлчные кислоты (0,5-0,7 г ХС в сут) 0.45, стероидных гормоны (половые и кортикоиды) (40 мг ХС в сут) и витамин Д3 (10 мг ХС в сут).
4. ХС является компонентом желчи, участвует в переваривании липидов.
Обмен ХС чрезвычайно сложен, в нем участвует около 300 разных белков.
Синтез ХС.
Реакции синтеза ХС происходят в цитозоле и ЭПР клеток. Это один из самых длинных метаболических путей в организме человека (около 100 последовательных реакций).
Синтез ХС делят на 3 этапа:
I этап синтеза ХС - образование мевалоната (мевалоновой кислоты).
1. Две молекулы ацетил-КоА конденсируются тиолазой с образованием ацетоацетил-КоА;
2. Гидроксиметилглутарил-КоА-синтаза присоединяет третий ацетильный остаток к ацетоацетил-КоА с образованием ГМГ-КоА (3-гидрокси-3-метилглутарил-КоА). Эта последовательность реакций сходна с начальными стадиями синтеза КТ. Однако синтез КТ происходит в митохондриях печени, а реакции синтеза ХС -- в цитозоле клеток.
3. ГМГ-КоА-редуктаза восстанавливает ГМГ-КоА до мевалоната с использованием 2 молекул НАДФH2. Фермент ГМГ-КоА-редуктаза -- гликопротеин, пронизывающий мембрану ЭПР, активный центр которого выступает в цитозоль.
II этап синтеза ХС - образование сквалена.
1. Мевалонат превращается в изопреноидную структуру -- изопентенилпирофосфат (5 атомов С);
2. 2 изопентенилпирофосфата конденсируются в геранилпирофосфат (10 атомов С);
3. Присоединение изопентенилпирофосфата к геранилпирофосфату дает фарнезилпирофосфат (15 атомов С).
4. 2 фарнезилпирофосфата конденсируются в сквален (15 атомов С).
III этап синтеза ХС - образование ХС.
Сквален циклазой превращается в ланостерол, (4 цикла и 30 атомов С).
Далее происходит 20 последовательных реакций, превращающих ланостерол в ХС (27 атомов С).
В организме человека изопентенилпирофосфат также служит предшественником убихинона (KoQ) и долихола, участвующего в синтезе гликопротеинов.
Регуляция синтеза ХС.
Ключевой фермент синтеза ХС ГМГ-КоА-редуктаза регулируется несколькими способами:
· ХС, желчные кислоты (в печени) репрессируют ген ГМГ-КоА-редуктазы. В норме поступление ХС с пищей снижает синтез собственного ХС в печени, однако с возрастом эффективность этой регуляции у многих людей снижается и уровень ХС повышается.
· Инсулин через дефосфорилирование осуществляет активацию ГМГ-КоА-редуктазы.
· Глюкагон через фосфорилирование осуществляет ингибирование ГМГ-КоА-редуктазы.
Повышение концентрации исходного субстрата ацетил-КоА стимулирует синтез ХС.
Таким образом, синтез ХС активируется при питании углеводами и ингибируется при голодании.
Этерификация ХС.
ХС образует с ЖК сложные эфиры (ЭХС), которые более гидрофобны чем сам ХС. В клетках эту реакцию катализирует АХАТ (ацилКоА: холестеролацилтрансферазой): ХС + АцилКоА > ЭХС + HSKoA.
АХАТ содержится лишь в некоторых тканях, синтезированный им ЭХС формирует в цитоплазме липидные капли, которые являются формой хранения ХС. По мере необходимости ЭХС гидролизуются холестеролэстеразой на ХС и ЖК.
ЭХС синтезируются также в крови в ЛПВП под действием ЛХАТ (лецетин: холестеролацилтрансферазой): ХС + лецитин > ЭХС + лизолецитин.
В составе ЛП ЭХС обеспечивают большую часть транспорта ХС в крови. На долю ЭХС крови приходиться 75% от общего количества ЭХС в организме.
Выведение ХС из организма.
Так как производные циклопентанпергидрофенантрена (стероиды) водонерастворимы и в организме не расщепляются, они выводятся из организма в основном с калом в составе желчи и немного с потом через кожу. В сутки из организма выводится от 1,0г до 1,3г ХС. ХС выводится с желчью (0,5-0,7 г/сут) в основном в виде жёлчных кислот и частично в чистом виде. Часть ХС в кишечнике под действием ферментов бактерий восстанавливается по двойной связи, образуя холестанол и копростанол. С кожным салом в сутки выделяется 0,1г ХС.
Рис. 27
ГИПЕРХОЛЕСТЕРОЛЕМИЯ.
Концентрация ХС в крови взрослых составляет 5,2+1,2 ммоль/л, как правило, с возрастом она увеличивается. Нарушения обмена ХС чаще всего проявляется гиперхолестеролемией, повышением ХС в крови выше нормы.
Причины развития гиперхолестеринемии:
1. Избыточного поступления с пищей ХС. Так как выведение из организма ХС ограничено 1,2--1,5 г/сут, излишки ХС накапливаются;
2. Переедание, недостаточная физическая активность, ожирение, сахарный диабет и гипотериоз способствуют гипергликемии и гиперлипидемии. Избыток углеводов и липидов в организме идет на повышенный синтез ХС;
3. Избыток в пище насыщенных и дефицит полиненасыщенных ЖК стимулирует в организме синтез ХС;
4. Некоторые дислипопротеинемии. Любой дефект рецептора ЛПНП (часто) или белка апоВ-100, взаимодействующего с ним, приводит к распространённому наследственному заболеванию -- семейной гиперхолестеролемии. Она сопровождается ксантоматозом и атеросклерозом. У гомозигот с дефектом рецептора ЛПНП смерть в возрасте 5--6 лет от инфаркта или инсульта.
Ещё в 1987 г. Goldstein и Brown окончательно установили, что причиной семейной гиперхолестеролемии (СГХ) является дефект гена, ответственного за синтез апоВ-100 ЛПНП-рецептора на мембране гепатоцитов. У больных гетерозигот количество рецепторов снижено на 50%, а уровень ЛПНП крови повышен вдвое, что сочетается с ускоренным развитием атеросклероза и ишемической болезни сердца с инфарктом миокарда уже в юном возрасте.
Коэффициент атерогенности = (ХСобщ -ХСЛПВП) / ХСЛПВП < 3.
Гиперхолестеринемия вызывает атеросклероз и желчекаменную болезнь.
Статины - «золотой стандарт» терапии гиперхолестеринемии и атеросклероза - наиболее широко применяемая сейчас группа препаратов, доказавшая свою эффективность при ИБС и других формах атеросклероза во многих клинических исследованиях. Однако, было показано, что эти препараты оказывают некоторый токсический эффект на печень, пищеварительную систему и мышечную ткань. Кроме того, лечение статинами пожизненное, поскольку при прекращении их приёма наблюдается выраженный синдром отмены. Достаточно широкое применение статинов ограничивает и их высокая стоимость. Широкому применению других гиполипидемических препаратов препятствуют высокая частота побочных эффектов, риск возникновения гепатотоксичности и других органотоксических эффектов (фибраты, никотиновая кислота, анионообменные смолы) или менее выраженный эффект (пробукол и др.).
Для лечения некоторых категорий больных атеросклерозом (например семейной гиперхолестеринемией), резистентных к диетической и гиполипидемической терапии, применяется ЛПНП-аферез. Метод заключается в экстракорпоральной сорбции из крови апоВ-содержащих ЛП с помощью специальных иммуносорбентов или декстранцеллюлозы. Эффект процедуры является значительным (снижение концентрации ХС (ЛПНП) до 80%), но кратковременным. Необходимы повторные пожизненные сеансы как минимум 1 раз в месяц. В связи со сложностью и высокой стоимостью данного способа лечения он может применяться у весьма ограниченного круга больных.
Инвазивные хирургические методы применяются лишь для лечения осложнений атеросклероза и так же исключают системный подход терапии.
Показано, что при гиперхолестеринемии и атеросклерозе наблюдается выраженная дисфункция сосудистого эндотелия - нарушение его вазодилатирующей способности. Нарушение эндотелийзависимого расслабления сосудов обусловлено изменением метаболизма оксида азота (NO) в стенке сосуда (изменение активности или дефицит субстрата для NO-синтазы, ускоренная деструкция NO и т.д.). Основным фактором, повреждающим эндотелий при ДЛП, являются модифицированные ЛПНП. Исследование дисфункции эндотелия в ходе атерогенеза стимулировало изучение микроциркуляции в эксперименте и клинике.
Дислипидемии и дисфункция эндотелия обусловливают возникновение дислипидогенной микроангиопатии.
Ранее было установлено, что дислипидогенная микроангиопатия является инициальным звеном в возникновении и прогрессировании хронической неспецифической органной патологии и атеросклеротических изменений в органных и магистральных артериях у кроликов. Показано, что такие изменения микроциркуляции как спазм артериол и дилатация венул, эритроцитарные микростазы возникают с первых часов и дней АТД, то есть на самых ранних стадиях дислипопротеидемии. При прогрессировании ДЛП и атерогенеза наблюдается образование эритроцитарных агрегатов по типу «монетных столбиков» или более плотных, характерных для сладж-синдрома, капилляротромбоз, разрежение и выключение из кровотока капиллярных сетей. Появляются внесосудистые изменения в виде диапедеза эритроцитов, клеточных инфильтратов и периваскулярного отёка.
В последние годы появились работы, свидетельствующие о ведущей роли расстройств микроциркуляции при ишемической болезни сердца и других формах сосудистой патологии у человека. Описаны отдельные формы ИБС, обусловленные первичной дисфункцией микроциркуляторной системы сердца. На клиническом материале было показано, что ИБС может быть обусловлена не столько нарушением перфузии миокарда через атеросклеротические коронарные артерии, сколько нарушением микроциркуляции сердца. В настоящее время предложены методы диагностики (ультразвуковая доплерография) и коррекции (плазмаферез, ультрафиолетовое облучение крови) микроциркуляторных нарушений при атеросклерозе.
Таким образом, дислипидогенная микроангиопатия является первичной генерализованной реакцией эндотелия на гиперлипопротеидемию и приводит к циркуляторной гипоксии и полиорганной патологии (дистрофии) ещё до появления атеросклеротических бляшек в органных и магистральных артериях.
Дисфункция иммунорегуляторной системы как фактор развития ДЛП и атеросклероза.
Гомеостатическая функция иммунорегуляторной системы в организме осуществляется с помощью двух ветвей: системы мононуклеарных фагоцитов, образуемой клетками макрофагально-моноцитарного ряда, и системы лимфоидной ткани, образуемой различными популяциями лимфоцитов.
Клетки макрофагально-моноцитарного ряда осуществляют первую - воспалительную линию защиты организма. В ответ на воспалительную реакцию лимфоидная ткань запускает восстановительные процессы, осуществляемые с помощью двух важнейших функций лимфоцитов: иммунорегуляторной, обеспечивающей антителогенез, и морфорегуляторной, обеспечивающей постоянство численного состава клеток (паренхиматозных органов), их структурный и функциональный гомеостаз.
Очевидно, развивающаяся на фоне ДЛП и атеросклероза дисрегуляция иммуннорегуляторной системы с гиперсекрецией острофазных белков, приводит к угнетению лимфоидной ткани и подавлению восстановительных процессов в повреждёной печени и других органах. Это создаёт условия для преобладающего воздействия на них системной воспалительной реакции, которая не будучи сбалансирована, выступает в роли фактора прогрессирования атеросклеротического процесса.
Клетки rупфера, представляя собой клетки макрофагально-моноцитарного ряда, и являясь ключевыми эффекторами воспаления в организме, оказывают в тоже время регуляторное воздействие на гепатоциты, модулируя их функциональную активность. Эндотелиоциты печени также вырабатывают медиаторы воспаления и иммунной защиты, участвуя, таким образом, в осуществлении эффекторных реакций печени и всего организма.
Одной из таких реакций - является способность гепатоцитов продуцировать острофазные белки: С-реактивный белок, сывороточный амилоид А, гаптоглобин и др., которым принадлежит важная роль в инициации и модулировании воспалительных и репаративных ответов организма. Так, например, показано, что при содержании кроликов на ХС-диете уже на 4-7 дни параллельно с развитием гиперхолестеринемии происходило резкое увеличение концентрации СРБ в крови. При этом установлено, что острофазная реакция гепатоцита предшествует его жировой дистрофии.
Предполагается, что острофазные белки не только манифестируют, но провоцируют развитие ДЛП и атеросклероза. Показано, что острофазные белки блокируют апоВ-100 рецепторный эндоцитоз ЛПНП, легко и прочно связываются с ЛП и становятся физиологическими аналогами их апобелков. Так, например, С-реактивный белок может связать до 90% циркулирующих апоВ-ЛП. липид органический растворитель хиломикрон
Острофазная реакция печени и циркуляция острофазных белков в свою очередь ведут к активации и последующей дисрегуляции системы мононуклерных фагоцитов и системы лимфоидной ткани организма. Циркулирующие комплексы С-реактивный белок + ЛП, избыток ХС и ЛПНП и особенно м-ЛПНП, в условиях экспрессии молекул адгезии сосудистого эндотелия (VCAM), повреждают интиму сосуда, откладываются в ней (преимущественно в виде м-ЛПНП) и становясь аутоантигенами, запускают местную - воспалительную и системную аутоиммунную реакции.
Активированные макрофаги, мигрирующие в сосудистую стенку, презентируют аутоантиген, активируют эндотелиоциты и начинают секретировать цитокины, ростовые факторы, кинины и другие медиаторы, привлекая в образующийся очаг воспаления клетки иммунной системы. Постоянная выработка цитокинов и факторов роста, на фоне продолжающегося отложения м-ЛПНП и ХС, приводят к пролиферации и миграции гладкомышечных клеток медии, повышенной секреции коллагена и развитию фиброза сосудистой стенки. В конечном итоге формируется типичная атероматозная бляшка, которая относится к поздним атеросклеротическим изменениям.
При атеросклерозе обнаруживаются и системные иммунные сдвиги, обусловленные дисбалансом активности клеток лимфоидной ткани. Наблюдается снижение активности Т-супрессорного звена и активация В-звена иммунитета. In vitro отмечается двукратное снижение пролиферативного ответа лимфоцитов крови на митоген. То же самое наблюдается и при действии на них ЛПОНП больных атеросклерозом людей с ДЛП. Однако, в Т-зависимых зонах селезёнки и лимфоузлов происходит активация лимфоцитогенеза (возрастает митотическая активность, увеличивается количество лимфобластов), и это может указывать на блок оттока бластных клеток из органов иммуногенеза, т.е. на дисрегуляцию иммунных процессов в организме.
Всё вышеизложенное даёт право заключить, что атеросклероз - это хроническая системная воспалительная реакция организма со специфическими локальными проявлениями на стенке сосудов. Локальные проявления атеросклероза развиваются на фоне ДЛП (выражающейся нарушением соотношения отдельных фракций ЛП и липидов) в условиях дисфункции печени и иммунной системы и сопровождаются необязательным повышением концентраций ЛП и ХС в крови.
АТЕРОСКЛЕРОЗ.
Атеросклероз - хроническое прогрессирующее заболевание крупных и средних эластических и мышечно-эластических артерий. Атеросклероз характеризуется пролиферативно-синтетическим ответом ряда клеток сосудистой стенки и крови - гладкомышечных макрофагов, тромбоцитов, фибробластов на патологические (качественно своеобразные или количественно избыточные) ЛП, с формированием в интиме фиброатером.
Причины развития атеросклероза:
1. Гиперхолестеринемия;
2. Гиперлипидемия ЛПОНП, ЛППП и ЛПНП (вызывают генетические дефекты рецепторов, апобелков, СД, гипотериоз, переедание).
3. Изменение нормальной структуры ЛПНП под действием ПОЛ и гипергликемии. Избыток глюкозы гликозилирует апобелки, повышенное ПОЛ (при гипоксии, воспалении) повреждает липиды и апобелки ЛП. Модифицированные ЛПНП становятся чужеродными для организма, атакуются антителами и поглощаются макрофагами с участием «скевенджер-рецепторов» (рецепторов-мусорщиков);
4. Повреждение сосудистой стенки высоким артериальным давлением (психоэмоциональные стрессы), ПОЛ (гипоксия, курение (через СО), воспаления), иммунными реакциями, токсинами и другими ядовитыми веществами (Pb, Cd). Повреждающие факторы разрыхляют и истончают (до исчезновения) гликокаликс энтероцитов, увеличивают межэндотелиальные щели, что создает на поверхности эндотелия зоны повышенной клейкости и проницаемости;
5. Принадлежность к мужскому полу (гормональный статус).
Молекулярные механизмы развития атеросклероза.
Развитие атеросклероза проходит в 6 стадий:
1. Стадия измененного эндотелия. На поверхности поврежденного эндотелия скапливаются тромбоциты и моноциты. Модифицированные ЛПНП проникают под поврежденный эндотелий сосудов. За ними направляются моноциты (в ткани они макрофаги) и захватывают ЛП через скевенджер-рецепторы. Этот процесс не ингибируется избытком ХС, поэтому макрофаги перегружаются ХС и превращаются в «пенистые клетки». Отдельные «пенистые клетки» есть у новорожденных.
2. Стадия жировых полосок. При увеличении количества «пенистых клеток» они образуют липидные полоски. «Пенистые» клетки адсорбируют все остальные липиды без разбора. Поврежденный эндотелий, активированные макрофаги, тромбоциты выделяют БАВ, которые стимулируют пролиферацию ГМК и миграцию их в очаг повреждения.
3. Стадия переходная. Активированные ГМК синтезируют коллаген и эластин, что приводит к прорастанию бляшки фиброзной тканью. Клетки под фиброзной оболочкой некротизируются, а ХС начинает откладываться в межклеточном пространстве. Может происходить разрыв эндотелия сосудов.
4. Стадия атеромы. ХС межклеточного пространства формирует в центре бляшки липидную каплю - атерому, которая через разрушенный эндотелий выступает в просвет сосуда.
5. Стадия фиброатеромы. Атерома пропитываясь солями кальция, белками, ГАГ и приобретает плотную фиброзную крышку. Атерома становиться фиброатеромой.
6. Стадия осложнения фиброатеромы. Фиброатерома не стабильна, она может надрываться и изъявляться, что приводит к обострению атеросклероза.
Осложнения. Поврежденный эндотелий прекращает синтез PGI2, который в норме ингибирует тромбоциты. Тромбоциты активируются и секретируют тромбоксан ТХА2 и тромбоцитарный фактор роста (пептид). Тромбоцитарный фактор роста привлекает в бляшку клетки крови, ГМК, что способствует росту бляшки и развитию очага воспаления. ТХА2 > агрегацию тромбоцитов > образование тромбов > закупорка сосудов > ишемия тканей > некроз тканей > изъявления стенок сосудов > кровотечения, аневризмы. Оторвавшиеся тромбы > эмболии сосудов.
Чаще всего атеросклероз развивается в коронарных, мозговых, почечных артериях, артериях нижних конечностей и в аорте. Атеросклероз коронарных артерий проявляется ИБС, мозговых - ИБ мозга, почек - вазоренальной артериальной гипертензией. Спазм или тромбоз коронарных сосудов ведет к инфаркту миокарда, эмболия сонных артерий ведет к развитию инсультов.
Смертность от последствий атеросклероза (инфаркт миокарда, инсульт) лидирует в общей структуре смертности населения.
Биохимические основы лечения атеросклероза
Лечение гиперхолестеролемии, как правило, комплексное.
I Диета. Необходимо употреблять:
1) продукты гипокалорийные, гипохолестериные, с низким содержанием легкоусвояемых углеводов (растительная пища). Поступление ХС с пищей не должно превышать 0,3 мг/сут;
2) полиеновые ЖК семейства щ-3 (морепродукты). Из них синтезируются простагландины, подавляющие тромбообразование и замедляют развитие атеросклеротической бляшки. Ненасыщенные ЖК также ускоряют выведение ХС из организма (механизм не ясен);
3) витамины С, Е, А и другие антиоксиданты ингибирующие ПОЛ и поддерживающие нормальную структуру ЛПНП и их метаболизм.
Липримал дает самый сильный эффект.
II. «Размыкание» цикла энтерогепатической циркуляции жёлчных кислот. Лекарства типа холестирамина, холестипол (полимеры) адсорбируют в кишечнике жёлчные кислоты, выделяются с фекалиями и таким образом уменьшают возврат жёлчных кислот в печень. В печени увеличивается захват ХС из крови для синтеза новых жёлчных кислот.
III. Ингибирование синтеза ХС. Наиболее эффективные препараты для лечения атеросклероза -- ингибиторы ГМГ-КоА-редуктазы, например антибиотик мевакор. Такие препараты могут почти полностью подавить синтез ХС в организме, нормализуя уровень ХС.
IV. Активация катаболизма ЛП. Лекарственные препараты -- фибраты (клофибрат, фенофибрат) активируют ЛПЛ и ускоряют катаболизм ЛПОНП. Эти препараты также активируют окисление ЖК в печени, уменьшая тем самым синтез ТГ и ЭХС и, как следствие, секрецию ЛПОНП печенью.
Для эффективного лечения атеросклероза применяют, как правило, комбинированное воздействие нескольких лекарственных препаратов.
Рис. 28
По современным представлениям атеросклероз - это хроническая системная воспалительная реакция организма, развивающаяся на фоне дислипидемии и сопровождающаяся образованием одиночных или множественных очагов липидных отложений (атероматозных бляшек) на внутренней поверхности сосудов.
Полагают, что именно системная воспалительная реакция способствует развитию дислипидемии (ДЛП) и запускает процесс атерогенеза. В свою очередь алиментарные и наследственные ДЛП также индуцируют проявления синдрома системного воспалительного ответа и усугубляют тяжесть атеросклеротического поражения сосудов в организме.
В присутствии провоспалительных факторов, таких как окисленные ЛП (в особенности низкой и очень низкой плотности), инфекционные агенты и различные неспецифические стресс-факторы, в организме активируется макрофагально-моноцитарная система и усиливается выработка провоспалительных цитокинов (интерлейкинов: IL-1, 6, фактора некроза опухоли: TNF-б и др.). Эти цитокины, с одной стороны, вызывают в сосудистом эндотелии экспрессию молекул адгезии - ICAM-1, ICAM-2 (intracellular adhesion molecules), VCAM-1 (vascular cell adhesion molecules), селектины и др. и нарушают структуру эндотелиальной выстилки сосудов, а с другой вызывают экспрессию в гепатоцитах генов, ответственных за синтез в печени острофазных белков. Участие печени в острофазном процессе и, следовательно, в инициации и модуляции системной воспалительной реакции организма, смещает в ней баланс биохимических механизмов, что вызывает прежде всего, нарушения липидного обмена, поскольку печень играет центральную роль в регуляции этого вида обмена в организме.
Длительно поддерживаемая в организме активация макрофагально-моноцитарной системы из адаптивной постепенно превращается в повреждающую, при которой не только нарушается регуляция печенью липидного обмена, но и создаются условия для прогрессирования ДЛП и атеросклероза, а также для развития их осложнений.
При ДЛП и атеросклерозе клетками-мишенями (при системной воспалительной реакции) являются, прежде всего, клетки печени - гепатоциты, купферовские клетки, эндотелиоциты, а также эндотелиальная выстилка сосудо, изменения в которых развиваются параллельно, постепенно прогрессируют, ведут к формированию хронического гепатита, а также к типичному повреждению сосудистой стенки атеросклеротическим процессом.
ЖЕЛЧЕКАМЕННАЯ БОЛЕЗНЬ.
Желчнокаменная болезнь -- патологический процесс, при котором в жёлчном пузыре образуются камни, основу которых составляет ХС.
Выделение ХС в жёлчь должно сопровождаться пропорциональным выделением жёлчных кислот и фосфолипидов, удерживающих гидрофобные молекулы ХС в жёлчи в мицеллярном состоянии.
Если активность ГМГ-КоА-редуктазы повышена, а активность 7-а-гидроксилазы снижена - ХС синтезируется много, а жёлчных кислот мало. Это приводит к диспропорции ХС и жёлчных кислот, секретируемых в жёлчь. ХС начинает осаждаться в жёлчном пузыре, образуя вначале вязкий осадок, который постепенно становится более твёрдым. Иногда он пропитывается билирубином, белками и солями кальция. Камни, образующиеся в жёлчном пузыре, могут состоять только из ХС (холестериновые камни) или из смеси ХС, билирубина, белков и кальция.
...Подобные документы
Липиды - сборная группа органических соединений. Простые и сложные липиды. Свойства мембран как надсистем регуляции клеточного метаболизма. Животные и растительные жиры, оптические и геометрические изомеры. Эфиры многоатомных спиртов с высшими кислотами.
реферат [1,2 M], добавлен 31.10.2011Функции липидов в организме, сущность и биохимия жирового обмена в организме. Взаимодействие углеводного и липидного обменов, роль L-карнитина. Характеристика факторов, продуцирующих нарушения обмена, улучшение его за счет физических упражнений.
реферат [35,9 K], добавлен 17.11.2011Химическая связь в органических молекулах. Классификация химических реакций. Кислотные и основные свойства органических соединений. Гетерофункциональные производные бензольного ряда. Углеводы, нуклеиновые кислоты, липиды. Гетероциклические соединения.
учебное пособие [1,9 M], добавлен 29.11.2011Определение теплоемкости: средняя, истинная, при постоянном объеме, постоянном давлении. Расчет теплоемкости органических веществ методом Бенсона. Теплоемкость органических веществ, находящихся при повышенных давлениях, в газообразном и жидком состоянии.
реферат [85,0 K], добавлен 17.01.2009Реакции ионного обменного разложения веществ водой. Использование качественных реактивов на крахмал, на белок и на глюкозу. Гидролиз сложных эфиров, белков, аденозинтрифосфорной кислоты. Условия гидролиза органических веществ пищи в организме человека.
разработка урока [206,5 K], добавлен 07.12.2013Изомерия как явление существования соединений, одинаковых по составу, но разных по строению и свойствам. Межклассовая изомерия, определяемая природой функциональной группы. Виды пространственной изомерии. Типы номенклатуры органических соединений.
презентация [990,3 K], добавлен 12.03.2017Главные методы компьютерного моделирования. Термодинамические функции растворения и сольватации. Спектроскопические исследования водно-органических растворителей. Методы IKBI и QLQC. Связь между составом бинарной смеси растворов и параметром полярности.
курсовая работа [2,8 M], добавлен 16.06.2014Характеристика адсорбционных методов. Расчет изотермы адсорбции молекулярно-растворенных органических веществ на активных углях. Методы выбора и контроля адсорбентов для очистки воды. Влияние ионизации и ассоциации молекул в растворе на их адсорбцию.
курсовая работа [2,0 M], добавлен 17.08.2009Условия, определяющие противомикробную активность. Механизм действия органических соединений ароматического (группы фенола, нитрофурана) и алифатического (группа формальдегида, спирты) ряда, неорганических веществ (галогены, окислители, бигуаниды).
презентация [21,0 M], добавлен 26.05.2014Понятие о гормонах, механизм их действия и классификация по химической природе и по выполняемым функциям. Гормональная регуляция обмена веществ и гипоталамо-гипофизарная система. Взаимопревращение гликоген-фосфорилазы. Гормоны периферических желез.
презентация [5,9 M], добавлен 29.10.2014Глюкоза как основной энергетический субстрат, ее источники для организма. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени. Окислительное декарбоксилирование пировиноградной кислоты. Сахарный диабет: этиология, патогенез.
презентация [1,6 M], добавлен 30.11.2013Изучение теоретических основ методов осаждения органических и неорганических лекарственных веществ. Анализ особенностей взаимодействия лекарственных веществ с индикаторами в методах осаждения. Индикационные способы определения конечной точки титрования.
курсовая работа [58,1 K], добавлен 30.01.2014Жиры, определение, физико-химические свойства. Липиды, важнейшие классы липидов. Липопротеиды. Животные жиры, состав и свойства, получение, роль в питании. Масла растительные. Производные жиров: мыла, классификация, получение. Жировой обмен.
курсовая работа [530,2 K], добавлен 13.04.2007Грань между органическими и неорганическими веществами. Синтезы веществ, ранее вырабатывавшихся только живыми организмами. Изучение химии органических веществ. Идеи атомистики. Сущность теории химического строения. Учение об электронном строении атомов.
реферат [836,2 K], добавлен 27.09.2008Основные условия процесса превращения одного или нескольких исходных веществ в отличающиеся от них по химическому составу или строению вещества. Протекание химических реакций при смешении или физическом контакте реагентов и участии катализаторов.
презентация [693,8 K], добавлен 08.08.2015Сравнительная характеристика органических и неорганических химических соединений: классификация, строение молекулярной кристаллической решетки; наличие и тип химической связи между атомами; относительная молекулярная масса, распространение на планете.
презентация [92,5 K], добавлен 11.05.2014Сравнение свойств полисахаридов на примере молекул крахмала и целлюлозы. Особенности строения крахмала и целлюлозы. Домашние мини-исследования: определение крахмала в продуктах питания и оценка растворимости целлюлозы в органических растворителях.
презентация [3,9 M], добавлен 12.01.2012Физиологическая химия. Общая характеристика витамина А. Биохимические функции. Авитаминоз. Роль АТФ. Глюкоза. Формула глюкозы. Энергетика обмена. Функции липидов: структурная, энергетическая, резервная, защитная, регуляторная.
контрольная работа [28,7 K], добавлен 27.09.2006Понятие биохимии и биосистемы. Структурно-химическая организация живой клетки и ее строение. Жизненно необходимые соединения, структура и химические реакции аминокислот. Уровни структурной организации белков, жиров и ферментов. Классификация витаминов.
презентация [2,2 M], добавлен 17.12.2010Значение атома углерода в химическом строении органических соединений. Карбоновая кислота – представитель предельных одноосновных кислот. Циклические и ароматические углеводороды. Определение и химическое строение липидов. Виды спиртов. Получение мыла.
учебное пособие [5,9 M], добавлен 25.04.2011