Водостойкие композиционные магнезиальные вяжущие вещества на основе природного и техногенного сырья

Физико-химические закономерности, оценка гидратационной активности, методы управления процессами фазообразования и формирования структур твердения и свойств композиционных магнезиальных вяжущих материалов с использованием силикатов магния и кальция.

Рубрика Химия
Вид автореферат
Язык русский
Дата добавления 30.01.2018
Размер файла 293,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Полученные данные показывают, что из числа исследованных добавок в композиционное магнезиальное вяжущее, наиболее эффективными являются волластонит и диопсид. Оптимальное их содержание в составе такого вяжущего составляет 60-80%. При этом достигается значительное увеличение прочности образцов при твердении на воздухе и существенное повышение их водостойкости, в том числе при длительном (90 суток) твердении в воде.

При введении электролитов в воду затворения значительную роль может играть ионный обмен - замещение катионов в структуре MgO или наполнителя ионами из раствора.

При введении в состав композиционных магнезиальных вяжущих веществ в качестве наполнителей волластонита или диопсида основными ионами, входящими в состав как MgO, так и указанных добавок, являются Mg2+ и Ca2+. При протекании возможного ионного обмена предпочтителен более высокий заряд иона в растворе и равный или меньший его ионный радиус по сравнению с таковым обменивающегося иона твердой фазы (Mg2+ и Ca2+). Из числа трехзарядных ионов близкие или меньшие значения ионного радиуса имеют: Al3+- 0, 057; Fe3+ - 0, 067; Cr3+ - 0, 064 нм.

Для получения композиций «MgO-микронаполнитель» реактив MgO марки «Ч», прокаленный при температуре 450 0С, смешивали с измельченным минеральным наполнителем (70% волластонита или диопсида) и затворяли раствором хлорида магния с плотностью 1, 2 г/см3 (контрольный образец), либо в раствор затворения вводились хорошо растворимые соли алюминия, железа и хрома: AlCl3, FeCl3, CrCl3, NH4Fe(SO4)2•12H2O. Добавки солей вводились в количестве 10 мас%. В случае NH4Fe(SO4)2•12H2O расчет концентрации проведен по безводной форме. Соотношение жидкой и твердой фазы принималось таким, чтобы нормальная густота (НГ) теста была одинаковой и равной 80-85%. Образцы твердели на воздухе в течение 1, 7, 28 и более суток. После этого образцы подвергались испытанию для определения предела прочности при сжатии, плотности и водостойкости.

Результаты исследования влияния растворов солей на свойства композиционного магнезиального вяжущего, содержащего 70 мас% волластонита, представлены в таблице 13. Для оценки упрочняющего действия солей приведено отношение прочности опытных образцов к прочности аналогичных (контрольных), твердевших без введения солей в затворитель (коэффициент упрочнения).

Таблица 13. Свойства композиционного магнезиального вяжущего, содержащего 70 мас% волластонита с 10% добавками солей в жидкость затворения

Соль

Средняя плотность, г/см3

Относительная прочность,

Rоп/Rконтр

7сут

28сут

7сут

28сут

-

1, 46

1, 45

1

1

AlCl3

1, 48

1, 43

1, 50

0, 60

FeCl3

1, 44

1, 41

2, 75

1, 05

CrCl3

1, 46

1, 42

3, 60

2, 13

NH4Fe(SO4)2•12H2O

1, 41

1, 37

1, 50

1, 75

Значительное влияние введенные соли оказывают на прочность образцов, особенно в ранние сроки гидратационного твердения (7 суток). Так, при введении в воду затворения солей железа и хрома (FeCl3, NH4Fe(SO4)2•12H2O, CrCl3) прочность после 7 суток твердения увеличивается в 1, 5-3, 7 раза. В случае солей CrCl3 и NH4Fe(SO4)2•12H2O этот эффект сохраняется и к 28 суткам твердения. В этом случае увеличение прочности по сравнению с образцами без солей составляют 70%.

Таким образом, введение в жидкость затворения солей CrCl3, NH4Fe(SO4)2•12H2O способствует значительному увеличению прочности композиционного вяжущего, содержащего 70% волластонита, как в возрасте 7, так и 28 суток при твердении на воздухе.

В случае композиционных магнезиальных вяжущих, содержащих 70 мас% диопсида, как и в предыдущем случае, прочность при сжатии образцов в возрасте 7 суток увеличивается при введении исследованных солей в воду затворения. Наиболее существенно это увеличение в случае введения AlCl3, NH4Fe(SO4)2•12H2O. Оно составляет 40-80%.

Определенное влияние вводимые соли могут оказывать и на минеральные добавки (наполнители) - волластонит и диопсид. Возможно их ионообменное взаимодействие с катионами солей, а также проявление гидравлической активности минеральных добавок.

Для интенсификации взаимодействия минеральных добавок (волластонита и диопсида) с растворами солей, усиления эффекта ионного обмена минералов добавок с растворами солей, что может приводить к появлению дефектов их микроструктуры, образцы порошков волластонита и диопсида кипятились в течение 1 часа в 5%-ных водных растворах рассматриваемых солей, затем высушивались и вводились в состав композиционного вяжущего при соотношении MgO: наполнитель=30:70 %мас. При этом соли в воду затворения дополнительно не вводились. В контрольной партии образцов использовались порошки волластонита и диопсида, не подвергавшиеся кипячению в растворах солей. Эффект упрочнения оценивали по отношению прочности образцов, содержащих обработанные в растворах солей минеральные добавки, к прочности таких же образцов, содержащих добавку в исходном состоянии.

Рассмотренная выше обработка порошка волластонита в растворах солей обеспечивает повышение механической прочности образцов на начальной стадии твердения, кроме обработки в растворе AlCl3 (таблица 14). Это увеличение составляет от 70 до 130%, однако оно меньше, чем в случае, когда соли вводились непосредственно в воду затворения.

В возрасте 28 суток более высоким по сравнению с контрольным значением уровнем прочности обладают образцы, обработанные в растворе CrCl3 и NH4Fe(SO4)2•12H2O. В последнем случае увеличение прочности составляет от 30 до 20%. Значение механической прочности образцов в возрасте 28 суток примерно одинаковые, как при введении солей в воду затворения, так и при обработке минералов в кипящих растворах солей, однако последний способ значительно более трудоемок и энергозатратен. При этом после твердения в воде в течение 90 суток значение прочности образцов, содержащих добавку, обработанную в растворах солей, существенно меньше, чем у контрольных составов, в которых соли вводились в воду затворения.

Таблица 14. Свойства композиционного магнезиального вяжущего, содержащего 70% волластонита, обработанного кипящими 10%-ными растворами солей

Соль

Средняя плотность,

г/см3

Относительная плотность,

Rоп/Rконтр

7сут

28сут

7сут

28сут

-

1, 44

1, 41

1

1

AlCl3

1, 47

1, 47

0, 07

0, 7

FeCl3

1, 43

1, 39

2, 09

1, 08

CrCl3

1, 46

1, 42

1, 72

1, 60

NH4Fe(SO4)2•12H2O

1, 45

1, 42

2, 31

2, 13

Как и в случае введения добавки волластонита, при использовании в составе композиционного магнезиального вяжущего диопсида, обработанного в кипящих водных растворах солей, после 7 суток твердения на воздухе во многих случаях прочность повышается по сравнению с контрольными образцами. Однако, это увеличение меньше, чем в случае использования волластонита.

После твердения в течение 28 суток на воздухе прочность у образцов, содержащих обработанный в растворах солей диопсид, во всех случаях меньше, чем у контрольного состава.

Таким образом, действие солей, содержащих многозарядные катионы (Fe3+, Cr3+, Al3+) оказывают упрочняющее действие при твердении композиционных магнезиальных вяжущих, содержащих 70 мас% измельченного волластонита или диопсида, особенно в начальные (7сут) сроки гидратации. Преобладающее влияние в процессе твердения композиционных магнезиальных вяжущих вводимые из раствора трехзарядные катионы оказывают на само магнезиальное связующее и в меньшей мере на минеральный наполнитель. Это воздействие может быть обусловлено гетеровалентным обменом ионов Mg2+ на ионы Fe3+, Cr3+, Al3+ из растворов, в результате чего образуются вакансии ионов в структуре

твердых тел, приводящие к повышению гидратационной активности магнезиальных вяжущих, особенно в ранние сроки твердения.

В главе 5 (Составы и технология композиционных магнезиальных вяжущих веществ с использованием природного и техногенного сырья) приведены результаты исследования свойств композиционных магнезиальных вяжущих веществ с введением диопсида, дунита, серпентинита. Эти материалы, как указано в главах 2 и 3, являются многотоннажными отходами производства и в соответствии с критериями оценки микронаполнителей могут проявлять достаточно высокую эффективность в составе композиционных магнезиальных вяжущих веществ.

Исследованы композиционные магнезиальные вяжущие, в которых соотношение диопсид: MgO составляло от 50:50 до 95:5. Удельная поверхность диопсида составляла 4, 5 м2/г. Затворение образцов производилось раствором хлорида магния с плотностью 1, 2 г/см3. Соотношение MgO:MgCl22О в тесте составляло от 6, 59:1:2, 41 до 1, 31:1:2, 95, т.е. так, чтобы нормальная густота (НГ) теста была примерно одинаковой и равной 48-52%, что соответствует синтезу стабильных гидроксохлоридов магния.

Физико-химические и технологические исследования композиционных магнезиальных вяжущих на основе смеси MgO-диопсид показали, что тонкоизмельченный диопсид является не только микронаполнителем, что способствует повышению плотности искусственного камня, но и активным компонентом, участвующим в образовании прочной кристаллизационной структуры. Активированный диопсид вступает во взаимодействие с метастабильным гидроксохлоридом магния с образованием смешанного гетероцепного полимера с более прочной связью. Игольчатые и плоско-призматические кристаллы силоксаноксохлорида магния заполняют свободный объем микропор, либо покрывают сплошным слоем внутреннюю поверхность пустот.

В композиционном магнезиальном вяжущем состава диопсид:MgO=70:30 количество активного составляющего MgO и основного составляющего (диопсида) оптимально. Процессы гидратации и оксохлоридообразования интенсифицируются, причем частиц диопсида достаточно для формирования и кристаллизации оксохлоридной фазы на силикатной подложке - поверхности частиц диопсида (таблица 10).

Основную массу новообразований камня представляют хорошо сформированные игольчатые и плоско-призматические кристаллы 3MgO •MgCl2 •8H2O. В полостях и пустотах размером 100 мкм и менее игольчатые кристаллы формируются на внутренней поверхности пустот, образуя сплошной слой мелких иголок размером 0, 01-0, 06 мкм - «шубу». На их основе прорастают вторичные призматические кристаллы. Размер их достигает 0, 10-0, 13 мкм. Такая кристаллизация характерна для большинства микропор, в которых свободный объем заполняется кристаллами оксохлоридной фазы (рисунок 4).

Рисунок 4 - Электронные микроснимки продуктов 7-суточного твердения на воздухе композиционного магнезиального вяжущего состава диопсид:MgO=70:30, х2000.

У образцов после хранения в воде и в 3%-ных растворах хлорида и сульфата магния наблюдается понижение плотности и прочности камня (таблица 10).

В образцах состава диопсид: MgO=70:30 хорошо закристаллизованный 3MgO •MgCl2 •8H2O сохраняется. Часть 5 MgO •MgCl2•8H2O гидролизуется, другая его часть подвергается перекристаллизации до состава 3MgO•MgCl2•2H2O, о чем свидетельствует появление рефлексов на рентгенограмме с d=0, 444; 0, 234нм.

Композиционные магнезиальные вяжущие материалы, содержащие 70-80 мас.% диопсида, обладая высокой механической прочностью и нормальными сроками схватывания, характеризуются высокой стойкостью к воде и агрессивным растворам хлоридов и сульфатов.

При использовании серпентинитовых отходов в составе композиционного вяжущего необходима их предварительная подготовка. Серпентинитовые отходы необходимо доизмельчить в шаровой мельнице или подвергнуть механической активации в ПЦМ для повышения гидратационной активности серпентина. Серпентинит проявляет вяжущие свойства, если порошок имеет высокую дисперсность (удельная поверхность не менее 3, 0 м2/г) с долей активных частиц (10-45 мкм) 30-60%. Использование тонкомолотого серпентинита совместно с MgO обеспечивает достижение высокой механической прочности камня, до 25-56 МПа (табл. 11). При прямом воздействии воды, агрессивных растворов хлоридов и сульфатов коэффициент химической стойкости составляет соответственно: 0, 96-1, 03; 0, 92-1, 08; 0, 85-1, 0.

Таблица 10. Физико-механические свойства композиционных магнезиальных вяжущих материалов, содержащих диопсид

Состав, %мас.

диопсид:MgO

MgO/

MgCl2

H2O/

MgCl2

Среда твердения

Плотность,

г/см3

Rсж,

МПа,

Кст.

50:50

6, 59

2, 41

Воздух

2, 06

42

-

Вода

2, 01

39

0, 92

3% MgCl2

2, 05

46

1, 09

3%MgSO4

2, 02

34

0, 80

70:30

3, 95

2, 42

Воздух

2, 14

52

-

Вода

2, 14

49

0, 94

3% MgCl2

2, 14

55

1, 12

3%MgSO4

2, 10

46

0, 88

80:20

2, 63

2, 52

Воздух

2, 10

38

-

Вода

2, 08

38

1, 0

3% MgCl2

2, 10

42

1, 11

3%MgSO4

2, 06

35

0, 92

90:10

2, 31

2, 53

Воздух

2, 12

34

-

Вода

2, 10

32

0, 94

3% MgCl2

2, 11

38

1, 12

3%MgSO4

2, 10

27

0, 79

95:5

1, 31

2, 95

Воздух

2, 20

25

-

Вода

2, 18

22

0, 88

3% MgCl2

2, 20

28

1, 27

3%MgSO4

2, 18

20

0, 80

0:100

6, 59

Воздух

1, 87

40

-

Тонкомолотый дунит является микронаполнителем и одновременно активным компонентом, участвующим в образовании прочной кристаллизационной структуры в системе оксохлоридного твердения. При гидратации и твердении композиционного магнезиального вяжущего наряду с образованием гидроксохлоридов магния, имеет место стабилизация гидроксохлоридов магния на активной оливиновой (форстеритовой) подложке. Композиционные магнезиальные вяжущие, содержащие 70-80 мас.% дунита, характеризуются механической прочностью 46-69 МПа, коэффициент водостойкости соответственно равен 0, 9-0, 95; 0, 88-1, 09 (таблица 12).

Таблица 11.Физико-механические свойства композиционных магнезиальных вяжущих материалов, содержащих серпентинит.

Состав вяжущего,

серпентинит:

MgO, мас.%

MgO/

MgCl2

Плот

ность,

кг/м3

Сроки схватывания,

час-мин

Среда

твердения

Rсж, МПа,

в возрасте,

суток

начало

конец

7

28

90

50:50

3, 14

1000

0-38

1-45

Воздух

26

30

34

Вода

26

25

25

3% MgCl2

26

27

27

3% MgSO4

26

24

22

60:40

3, 20

1100

0-40

2-00

Воздух

29

32

35

Вода

29

28

27

3% MgCl2

29

29

30

3% MgSO4

29

27

26

70:30

3, 14

1190

0-45

2-25

Воздух

39

56

62

Вода

39

40

40

3% MgCl2

42

43

45

3% MgSO4

39

38

37

70:30

2, 43

1200

0-55

2-35

Воздух

33

36

40

Вода

33

33

32

3% MgCl2

35

35

35

3% MgSO4

33

32

30

Таблица 12. Физико-механические свойства композиционных магнезиальных вяжущих материалов, содержащих дунит

Состав вяжущего,

дунит:MgO, мас.%

MgO/

MgCl2

Плотность

кг/м3

Сроки схватывания,

час-мин

Среда

твердения

Rсж, МПа,

в возрасте,

суток

начало

конец

7

28

90

Сырой дунит, 60:40

3, 70

1140

1-00

1-25

Воздух

35

42

45

Вода

35

35

32

3% MgCl2

35

36

35

3% MgSO4

35

29

28

70:30

3, 83

1250

1-14

1-35

Воздух

46

60

62

Вода

46

45

43

3% MgCl2

47

48

50

3% MgSO4

46

45

42

80:20

3, 25

1350

1-25

2-00

Воздух

40

52

56

Вода

40

37

37

3% MgCl2

41

42

41

3% MgSO4

40

38

34

Дунитовая пыль,

70:30

2, 43

1200

0-50

1-10

Воздух

48

67

69

Вода

48

45

45

3% MgCl2

48

50

51

3% MgSO4

48

46

42

80:20

2, 25

1360

1-05

1-20

Воздух

42

55

58

Вода

42

38

37

3% MgCl2

43

45

46

3% MgSO4

42

38

37

В главе 6 (Составы и технология строительных материалов на основе композиционных магнезиальных вяжущих веществ с использованием природного и техногенного сырья) приведены данные о реализации результатов, полученных в работе.

В результате исследований предложены составы композиционных магнезиальных вяжущих веществ с использованием промышленных отходов. Они включают оксид магния, полученный из бруситовых отходов или магнезиального шлама от переработки природных хлоридных рассолов, обожженных при 450-5500С, или на основе бруситовой пыли. В качестве минеральных наполнителей используются измельченные отходы производства: диопсид, волластонит, дунит, серпентинит. Установлено оптимальное соотношение минеральный наполнитель: MgO, равное 70:30; 80:20 при удельной поверхности наполнителя 2, 5-4, 0 м2/г. Композиционное вяжущее такого состава имеет высокую механическую прочность и водостойкость.

На разработанные составы композиционных магнезиальных вяжущих веществ и технологию их изготовления получены авторские свидетельства № 1756298, М.кл. С04В 9/00, №1807026 А1, М.кл. С04В 9/00, патент РФ №2006110101/03 МПК С04В9/02, положительное решение по заявке на патент №2008143041 от 29.10.2008. Укрупненные лабораторные испытания, проведенные в ИХТТИМС СО РАН совместно с центральной лабораторией «Сибакадемстрой», опытно-промышленные испытания в условиях цеха производства прессованного бруса НПО «Катон» г. Новосибирска, подтвердили стабильность физико-механических свойств, повышенную водостойкость композиционных магнезиальных вяжущих веществ с использованием магнийсодержащих техногенных отходов.

В результате проведенных исследований предложены технологические схемы получения композиционных магнезиальных вяжущих материалов. При использовании диопсидовых, серпентинитовых, дунитовых отходов необходимо их дробление, помол и рассев до прохождения через сито №008 не менее 85 мас.% материала. Для производства композиционных магнезиальных вяжущих материалов может быть использована схема получения с термической активацией (при необходимости) или без нее.

Рекомендованы составы ксилолита, в котором в качестве магнезиального вяжущего использован магнезиальный шлам от переработки хлоридных рассолов, обожженный при 450-5500С; бруситовые пыли, измельченные до удельной поверхности 2, 5-3, 0 м2/г, или магнезильнодиопсидовое вяжущее состава 70:30. Органическим заполнителем являются опилки хвойных пород фракции менее 5 мм. Предложенные составы ксилолита при использовании в качестве микронаполнителя диопсида обеспечивают повышенную водостойкость (коэффициент водостойкости 0, 87-0, 92) с достижением прочности при сжатии 26-35МПа при плотности 1300-1460 кг/м3.

Предложены составы пеномагнезита, в котором в качестве вяжущего применена бруситовая пыль с удельной поверхностью 2, 5 м2/г. В качестве органического заполнителя использованы древесные опилки фракции 1-2 мм, полиуретан фракции 0, 2-0, 3 мм. Предложенные составы пеномагнезита при использовании дунитовой пыли с удельной поверхностью 3, 0 м2/г или золы с удельной поверхностью 1, 5 м2/г обеспечивают повышенную водостойкость с достижением прочности при сжатии 8-10 МПа, плотности 540-800 кг/м3, коэффициента теплопроводности 0, 09-0, 13 Вт/м•град. Рекомендованы составы декоративных облицовочных плиток на основе магнезиального шлама, диопсида и стеклобоя; с повышением водостойкости (Кст. до 0, 9), рекомендованные составы одновременно обеспечивают достижение прочности при сжатии 23-30 МПа, плотности 1620-1870 кг/м3.

Предложены составы грунтозолобетонов с использованием низкомагнезиального отхода - золы от сжигания бурых углей с удельной поверхностью 1, 5 м2/г (30-70 мас.%). Составы грунтозольных композиций обеспечивают повышение морозостойкости и достижение прочности при сжатии 12-15 МПа. Предложенные грунтозолобетоны опробованы для укрепления спортивных площадок и дорожных покрытий.

На основе результатов проведенных исследований составлены рекомендации по использованию магнийсодержащих промышленных отходов в производстве композиционных магнезиальных вяжущих материалов и технологический регламент на производство магнезиальных и композиционных магнезиальных вяжущих материалов.

ВЫВОДЫ

1. Гидратационная активность магнезиального сырья определяется содержанием MgO, степенью кристалличности (дефектностью) структуры; дисперсностью; морфологией образующегося оксида магния, что является следствием кристаллохимической природы исходного сырья и способа его переработки, что положено в основу предложенной классификации сырья: высокомагнезиальное с содержанием MgO не менее 65% (I класс); магнезиальное с содержанием MgO 45-65% (II класс); среднемагнезиальное с содержанием MgO 15-45% (III класс); низкомагнезиальное с содержанием MgO не более 15% (IV класс).

2. Высокомагнезиальные отходы производства, такие как отсевы при обогащении брусита, пыли при обжиге брусита, высокомагнезиальные шламы от переработки хлоридных рассолов, могут быть использованы в качестве самостоятельных вяжущих веществ. При этом необходима их механическая активация измельчением, а в случае бруситовых отходов и высокомагнезиальных шламов также предварительная термическая обработка при температуре 450-5000С. Продукты гидратации в системе MgO-MgCl2-H2O представлены в основном гидроксохлоридами магния. Присутствие в системе хлоридов натрия (3 мас.%) или кальция (6 мас.%) замедляет процесс образования и кристаллизации оксохлоридных фаз, снижает механическую прочность и водостойкость образующегося камня. Присутствие карбоната кальция (9 мас.%) оказывает положительное влияние.

3. Формирование прочных водостойких структур в композиционном магнезиальном вяжущем определяется активностью MgO, формированием при гидратационном твердении преимущественно тригидроксохлорида магния, природой модифицирующих ионов в жидкости затворения, природой и активностью микронаполнителя. Эффективность действия веществ, составляющих микронаполнитель, определяется близостью их удельной энтальпии образования, энтропии, энергии кристаллической решетки к аналогичным характеристикам оксида магния. К числу эффективных микронаполнителей композиционных вяжущих веществ относятся диопсид, волластонит, кремнезем.

4. Влияние микронаполнителей на свойства композиционного вяжущего обусловлено их кристаллохимической природой и дисперсностью. При среднеобъемном размере зерен заполнителя, равном 30-40 мкм (волластонит, диопсид), оптимальная концентрация его составляет 70-80 мас.%. При среднеобъемном размере зерен 10 мкм и менее (известняковая мука, микрокремнезем) оптимальная концентрация заполнителя снижается до 40 мас.%. Введение в раствор хлорида магния, используемого при затворении вяжущего, 10% солей с трехзарядными катионами (Al3+, Fe3+, Cr3+) способствует ускорению набора прочности при твердении. Наиболее эффективно действие CrCl3 и NH4Fe(SO4)2 •12H2O.

5. Среднемагнезиальные отходы с содержанием 15-45 мас.% MgO, образующиеся при добыче, обогащении и переработке диопсидов, серпентинитов, дунитов, после измельчения до удельной поверхности 2, 6-3, 0 м2/г и введения активатора твердения в виде концентрированного раствора хлорида магния проявляют незначительную гидратационную активность 2, 5-8, 0 МПа. Высокой механической прочностью до 60 МПа и водостойкостью обладают композиционные вяжущие вещества, в которых соотношение этих силикатов магния и MgO составляет (по массе) 70:30 или 80:20. При этом тонкоизмельченные силикаты магния выполняют в системе с магнезиальным (оксохлоридным) твердением роль как микронаполнителя, способствующего повышению плотности, прочности, водостойкости образующегося камня, так и активного компонента, участвующего в образовании прочной кристаллизационной структуры.

6. Механическая активация среднемагнезиального сырья в планетарно-центробежных мельницах приводит к аморфизации кристаллических фаз и деструкции кристаллических решеток, что способствует повышению их активности в процессе гидратационного твердения. Механическая активация серпентина вызывает структурные нарушения в октаэдрическом слое решетки с ослаблением и разрывом связи Mg - OH, нарушением связи Mg - O - Si. Механическая активация диопсида способствует разупорядочению кристаллической структуры с разрывом связей Ca - O - Si, Mg - O - Si. Механическая активация дунита приводит к аморфизации оливина и форстерита и механической деструкции серпентина и брусита.

7. Предложенные составы композиционных магнезиальных вяжущих веществ с использованием промышленных отходов являются новыми и включают оксид магния, или магнезиальный шлам от переработки хлоридных рассолов, обожженный при 450-5500С, или бруситовую пыль. В качестве минеральных наполнителей используются измельченные отходы производства: диопсид, волластонит, дунит, серпентинит. Установлено оптимальное соотношение минеральный наполнитель: MgO, равное: 70:30; 80:20 при удельной поверхности наполнителя 2, 5-4, 0 м2/г; композиционное вяжущее такого состава обеспечивает одновременно высокую механическую прочность (52-60 МПа), водо- (Кст 0, 94-1, 00) и солестойкость (Кст 0, 92-1, 27).

8. Предложенные составы ксилолита при использовании в качестве микронаполнителя диопсида обеспечивают достижение прочности при сжатии 26-35 МПа, коэффициента водостойкости 0, 87-0, 92 при плотности 1300-1460 кг/м3. Предложенные составы пеномагнезита при использовании дунитовой пыли с удельной поверхностью 3, 0 м2/г или золы с удельной поверхностью 1, 5 м2/г обеспечивают повышенную водостойкость с достижением прочности при сжатии 8-10 МПа, плотности 540-800 кг/м3, коэффициента теплопроводности 0, 09-0, 13 Вт/м•град. Рекомендованные составы декоративных облицовочных плиток на основе магнезиального шлама, диопсида и стеклобоя, с повышением водостойкости (Кст. до 0, 9) обеспечивают достижение прочности при сжатии 23-30 МПа, плотности 1620-1870 кг/м3. Предложены составы грунтозолобетонов, в которых в качестве вяжущего использован низкомагнезиальносиликатный отход - зола от сжигания бурых углей. В качестве активаторов твердения рекомендованы 3%-ные растворы MgCl2 или CaCl2, либо их смеси в соотношении 1:1. Составы грунтозольных композиций обеспечивают повышение морозостойкости и достижение прочности при сжатии 12-15 МПа. Предложенные составы грунтозолобетонов опробованы для укрепления спортивных площадок и дорожных покрытий.

ЛИТЕРАТУРА

1. Зырянова В.Н. Магнезиальные вяжущие вещества из отходов брусита / В.Н. Зырянова, Г.И. Бердов //Строительные материалы. -2006. - №4. -С.61-64.

2. Зырянова В.Н. Физико-химические процессы и технология получения композиционных магнезиальных вяжущих материалов с использованием магнийсиликатных наполнителей/В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Техника и технология силикатов. -2010. №1, -С.

3. Зырянова В.Н. Влияние минеральных наполнителей на свойства магнезиальных вяжущих/В.Н, Зырянова, Е.В. Лыткина, Г.И. Бердов// Техника и технология силикатов/ 2010. №, -С.

4. Зырянова В.Н. Влияние электролитов, вводимых в воду затворения, на свойства композиционных магнезиальных вяжущих веществ/ В.Н. Зырянова, Е.В. Лыткина, Г.И. Бердов// Техника и технология силикатов/ 2010. №, -С.

5. Зырянова В.Н. Отходы производства огнеупоров - эффективное сырье для получения вяжущих веществ / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Огнеупоры и техническая керамика. -2008. №1, -С.41-45.

6. Коцупало Н.П. Магнезиальные вяжущие материалы из природных высокоминерализованных поликомпонентных рассолов/Н.П. Коцупало, А.Д. Рябцев, В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Химия и химическая технология. -2010, Т.11, №2, -С.65-72.

7. Бердов Г.И. Нанопроцессы в технологии строительных материалов / Г.И. Бердов, В.Н. Зырянова, А.Н. Машкин, В.Ф. Хританков // Строительные материалы. - 2008. -№7. -С.2-6.

8. Зырянова В.Н. Получение химически стойких магнезиальных вяжущих материалов на основе промышленных отходов и нетрадиционного сырья / В.Н. Зырянова, В.И. Верещагин, О.Я. Исакова, А.Т. Логвиненко//Неорганические материалы. -1995. Т.31. -№2. -С.270-273.

9. Зырянова В.Н. Магнезиально-диопсидовое вяжущее на основе диопсидовых отходов / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин, С.В. Эрдман //Известия Вузов. Строительство. -2007. -№4. -С.48-51.

10. Зырянова В.Н. Магнезиальные вяжущие вещества из высокомагнезиальных отходов / В.Н. Зырянова, Г.И. Бердов //Известия Вузов. Строительство. -2005. -№10. -С.46-53.

11. Зырянова В.Н. Магнезиальное вяжущее из шламов магнийхлоридных рассолов/В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин// Известия вузов. Строительство. 2009. № 8. -С.21-25.

12. Савинкина М.А. Химико-технологические особенности золошлаковых отходов/ М.А. Савинкина, А.Т. Логвиненко, Л.Я. Анищенко, О.Я. Исакова, В.Н. Зырянова //Известия СО АН СССР, сер.хим.наук, вып. 4, 1987. -С.125-132.

13. Зырянова В.Н. Влияние примесей на формирование структур твердения и свойства магнезиального вяжущего/ В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко, М.И. Татаринцева//Известия СО РАН, серия химических наук, вып.3, 1992. -С.116-119.

14. Зырянова В.Н. Создание водостойкого магнезиального вяжущего на основе MgO и золошлаковых отходов ТЭС / В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко//Электрические станции. -1992. -№12. -С.11-13.

15. Савинкина М.А. Прогнозирование направления использования зол твердых топлив в строительстве / М.А. Савинкина, А.Т. Логвиненко, В.Н. Зырянова, Н.З. Ляхов//Химия твердого топлива. -1990. -№5. -С.107-110.

16. А.с. 1807026 А1 СССР, МПК С 04 В 9/00. Вяжущее / В.И. Верещагин, С.В. Филина, В.Н. Зырянова. -№4866154/33; заявл.19.06.90; опубл.07.04.93, Бюл. №13.

17. А.с. 1756298 А1 СССР, МПК С04 В 9/00. Вяжущее /В.Н. Зырянова, В.И. Верещагин, М.А. Савинкина, А.Т. Логвиненко. -№4725371/33; заявл.31.07.89; опубл.23.08.92, Бюл. №31.

18. Пат. 2306284 Российская Федерация, МПК С04В9/02. Вяжущее / В.И. Верещагин, С.В. Эрдман, В.Н. Смиренская, В.Н. Зырянова. -№2006110101/03; заявл. 2006.03.09; опубл.2007.09.20.

19. Решение о выдаче патента РФ, МПК С04В9/02. Вяжущее/В.Н. Зырянова, Г.И. Бердов, Е.В. Лыткина, В.И. Верещагин. Заявка №2008143041/03 (055987); заявл. 2008.29.10.

20. Зырянова В.Н. Влияние механической активации диопсида на свойства композиционного магнезиально-диопсидового вяжущего материала/ В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин// Материалы и изделия для ремонта: Международный сборник трудов. - Новосибирск: НГАУ-РАЕН. -2006. -С.24-27.

21. Зырянова В.Н. Магнезиальное вяжущее на основе продуктов переработки магнийхлоридных рассолов/ В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Материалы и изделия для ремонта: Международный сборник трудов. - Новосибирск: НГАУ-РАЕН. -2006. -С.96-101.

22. Berdov G.I Influence of natural mineral aggregates on structure and propeties of composition materials/ Berdov G.I, Parikova E.N., Zyryanova V.N.//Building and finishing materials. Standards of XXI century. XIII APAM international seminar, Novosibirsk, 19-21 September 2006. -Vol. 1. -P. 32-34.

23. Zyryanova V.N. Magnesian cementing materials on the base of industrial wastes/ Zyryanova V.N., Berdov G.I. // Building and finishing materials. Standards of XXI century. XIII APAM international seminar, Novosibirsk, 19-21 September 2006. -Vol. 2. -P.74-75.

24. Кучерова Э.А. Композиционные материалы из техногенного и природного некондиционного сырья/Э.А. Кучерова, В.Н. Зырянова, Е.В. Лыткина//Прогрессивные материалы и технологии в современном строительстве. Международный сборник трудов. - Новосибирск: НГАУ-РАЕН. -2007. -С.99-101.

25. Зырянова В.Н. Магнезиальные вяжущие вещества на основе запечных пылей / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Экология и ресурсосберегающие технологии в строительном материаловедении: Международный сборник научных трудов. - Новосибирск. -2005.-С.88-90.

26. Бородина И.А. Влияние силикатных наполнителей на структуру и механическую прочность композиционных материалов /И.А. Бородина, В.В. Козик, Г.И. Бердов, В.Н. Зырянова, Е.В. Парикова// Экология и ресурсосберегающие технологии в строительном материаловедении: Международный сборник научных трудов. - Новосибирск. -2005.-С.49-54.

27. Зырянова В.Н. Магнезиальные вяжущие вещества из отходов обогащения брусита / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин/ Экология и ресурсосберегающие технологии в строительном материаловедении: Международный сборник научных трудов. - Новосибирск. -2005.-С.85-87.

28. Зырянова В.Н. О влиянии дефектности структуры силикатов магния на их физико-химические свойства / В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко, В.И. Верещагин// Физико-технические проблемы разработки полезных ископаемых. -1992. -№6. -С.97-105.

29. Зырянова В.Н. Влияние механического воздействия на гидравлическую активность силикатов магния/ В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко, В.И. Верещагин//Материалы IX Симпозиума по механоэмиссии и механохимии. - Чернигов. -1990. -С.37-38.

30. Зырянова В.Н. Влияние примесей на формирование структур твердения магнезиальных вяжущих / В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко, В.И. Верещагин//Труды научно-технической конференции НИСИ. - Новосибирск. -1990.-С.54-55.

31. Зырянова В.Н. Исследование химической стойкости магнезиального вяжущего активированными силикатами магния / В.Н. Зырянова, М.А.Савинкина, А.Т. Логвиненко, В.И.Верещагин//Дезинтеграторная технология: Труды VIII Всесоюзного семинара по механоэмиссии и механохимии. - Киев.-1991.-С.38.

32. Зырянова В.Н. Создание водостойкого магнезиального вяжущего на основе MgO и золошлаков ТЭС/ В.Н. Зырянова, М.А. Савинкина, А.Т. Логвиненко//Проблемы использования канско-ачинских углей в энергетике: Труды Всесоюзной конференции. - Красноярск.-1991.-С.31.

33. Верещагин В.И. Создание водостойкого магнезиального вяжущего на основе магнийсодержащих силикатов и цемента Сореля / В.И. Верещагин, М.А. Савинкина, В.Н. Зырянова, С.В. Филина// Материалы Всесоюзного совещания по химии цементов. - Москва.-1991.-С.76.

34. Зырянова В.Н. Магнезиальное вяжущее на основе высокомагнезиального техногенного сырья / В.Н. Зырянова, В.И. Верещагин// Труды НГАСУ. - Новосибирск. -2003. -С.23-24.

35. Зырянова В.Н. Композиционные вяжущие и строительные материалы на основе промышленных отходов и нетрадиционного сырья / В.Н. Зырянова, В.И. Верещагин//Ресурсо- и энергосберегающие технологии в производстве строительных материалов: Материалы Международной конференции. - Новосибирск. -1997. Ч.2. -С.35-36.

36. Зырянова В.Н. Создание водостойкого композиционного магнезиального вяжущего / В.Н. Зырянова, В.И. Верещагин, С.В. Эрдман//Труды НГАСУ. - Новосибирск. -2003. -С.12-14.

37. Зырянова В.Н. Композиционные магнезиальные вяжущие материалы/ В.Н. Зырянова, Г.И. Бердов, Н.И. Тюленева/ Актуальные проблемы в строительстве и архитектуре. Образование. Наука. Практика: Материалы Всероссийской научно-технической конференции. - Самара. -2007. -С.189.

38. Зырянова В.Н. Физико-химические процессы при гидратационном твердении композиционных магнезиальных вяжущих веществ / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин//Современные проблемы производства и использования композиционных строительных материалов: Материалы Всероссийской конференции. - Новосибирск.-2009. -С.50-52.

39. Бердов Г.И. Нанопроцессы в технологии композиционных строительных материалов / Г.И. Бердов, В.Н. Зырянова, А.Н. Машкин, В.Ф. Хританков// Современные проблемы производства и использования композиционных строительных материалов: Материалы Всероссийской конференции. - Новосибирск. -2009.-С. 10-12.

40. Зырянова В.Н. Магнезиальное вяжущее из шламов магнийхлоридных рассолов / В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин// Современные проблемы производства и использования композиционных строительных материалов: Материалы Всероссийской конференции. - Новосибирск. -2009. -С.168-170.

41. Зырянова В.Н. Водостойкие композиционные магнезиальные вяжущие вещества с использованием природного и техногенного сырья /В.Н. Зырянова, Г.И. Бердов, В.И. Верещагин// Материалы III(XI) Международного Совещания по химии цемента. Москва, 27-29 октября, 2009. -С.97-100.

Размещено на Allbest.ru

...

Подобные документы

  • Закономерности трансформации состава, свойств бентонита в процессе модифицирования. Исследование сорбционной активности природных и модифицированных форм бентонита. Определение закономерностей модифицирования бентонита Кабардино-Балкарского месторождения.

    магистерская работа [9,2 M], добавлен 30.07.2010

  • Хемосорбционное модифицирование минералов. Свойства глинистых пород. Методика модификации бентонитовой глины месторождения "Герпегеж". Физико-химические способы исследования синтезированных соединений. Определение сорбционных характеристик бентонина.

    курсовая работа [9,2 M], добавлен 27.10.2010

  • Характеристика химических и физических свойств извести. Проводство и виды строительной (воздушной) извести. Процесс гашения и твердения. Гидравлические известесодержащие вяжущие. Смешанные вяжущие вещества. Применение, хранение, транспортировка извести.

    реферат [318,0 K], добавлен 16.03.2015

  • Значение использования прогрессивных видов композиционных материалов, формовочные композиционные материалы с определенными свойствами. Физико-механические свойства полибутилентерефталата, модифицированного высокодисперсной смесью железа и его оксидом.

    статья [35,6 K], добавлен 03.03.2010

  • Актуальность и история разработки геополимерных вяжущих материалов, их виды, характеристики. Оценка биопозитивности геополимерных вяжущих на основе низкокальциевой золы-уноса. Геополимерные материалы из горных пород, активизированные добавками шлака.

    реферат [1,2 M], добавлен 31.03.2015

  • Разработка рецептур и создание полимерно-битумных вяжущих на основе региональных источников нефтехимического сырья. Групповой и химический состав, коллоидно-химические свойства битумов. Полимеры, используемые для модификации битума. Адгезионная добавка.

    дипломная работа [2,7 M], добавлен 10.12.2014

  • Соединения магния, кальция и бария как лекарственные средства. Изменения в группе величины радиусов атомов и ионов, потенциал ионизации. Качественные реакции на ионы магния, кальция, стронция. Биологическая роль магния и кальция, значение для организма.

    реферат [24,6 K], добавлен 14.04.2015

  • Образование пространственных структур. Классические представления о твердении вяжущих. Представления о механизмах гидратационного твердения на примере портландцемента. Схема структуры ксонотлитовой ленты. Процесс твердения композиционного материала.

    реферат [1,7 M], добавлен 03.02.2014

  • Получение композиционных материалов на основе полимеров и природных слоистых силикатов (смектитов): гекторит и монтмориллонит. Полигуанидины как структуры для получения гуанидинсодержащих полимерных нанокомпозитов. Полимер-силикатные нанокомпозиты.

    магистерская работа [3,1 M], добавлен 27.12.2009

  • Общая характеристика алифатических полиамидов, их технические характеристики. Физико-химические закономерности получения полиамидов. Особенности поликонденсации дикарбоновых кислот и диаминов. Изменение структуры и свойств наполненного полиамида ПА-6.

    курсовая работа [981,2 K], добавлен 04.01.2010

  • Изучение поверхностной активности композиционных систем на границах раздела вода/воздух и вода/масло. Закономерности моющего действия композиционных систем на твердые поверхности. Действие магнитных жидкостей в процессе очистки поверхности воды от нефти.

    дипломная работа [3,0 M], добавлен 21.11.2016

  • Исследование физических и химических свойств кальция. Электролитическое и термическое получение кальция и его сплавов. Алюминотермический способ восстановления кальция. Влияние температуры на изменение равновесной упругости паров кальция в системах.

    курсовая работа [863,5 K], добавлен 23.10.2013

  • Хлорид кальция: физико-химические свойства. применение и сырье. Получение плавленого хлорида кальция из дистиллерной жидкости содового производства. Получение хлорида кальция и гидроксилохлорида из маточного щелока. Безводный кальций из соляной кислоты.

    реферат [84,4 K], добавлен 09.08.2008

  • Характеристика элемента. Получение магния. Физические и химические свойства магния. Соединения магния. Неорганические соединения. Магнийорганические соединения. Природные соединения магния. Определение магния в почвах, в воде. Биологическое значение магни

    реферат [40,1 K], добавлен 05.04.2004

  • Характеристика магния: химические свойства, изотопы в природе. Соли магния: бромид, гидроксид, иодид, сульфид, хлорид, цитрат, английская соль; их получение и применение. Синтез нитрата магния по реакции концентрированной азотной кислоты с оксидом магния.

    курсовая работа [74,6 K], добавлен 29.05.2016

  • Характеристика магния, способы его производства. Знакомство с вредными веществами, образуемыми при получении магния. Паспорта ингредиентных загрязнителей: хлора, диоксида и монооксида углерода, фторидов натрия и кальция. Происхождение твердых отходов.

    курсовая работа [1,2 M], добавлен 11.05.2014

  • Цепочка химического синтеза Mg(NO3)2-MgO-MgCl2. Физико-химические характеристики веществ, участвующих в химических реакциях при синтезе MgCl2 из Mg(NO3)2, их химические свойства и методы качественного и количественного анализа соединений магния.

    практическая работа [81,6 K], добавлен 22.05.2008

  • Практическое значение аналитической химии. Химические, физико-химические и физические методы анализа. Подготовка неизвестного вещества к химическому анализу. Задачи качественного анализа. Этапы систематического анализа. Обнаружение катионов и анионов.

    реферат [65,5 K], добавлен 05.10.2011

  • Понятие и назначение химических методов анализа проб, порядок их проведения и оценка эффективности. Классификация и разновидности данных методов, типы проводимых химических реакций. Прогнозирование и расчет физико-химических свойств разных материалов.

    лекция [20,3 K], добавлен 08.05.2010

  • Характеристика состава и физико-химических свойств флюсов, способы их получения. Изучение процесса рафинирования алюминиевых сплавов от магния при использовании флюса, обладающего покровными свойствами; исследование его влияния и технология применения.

    дипломная работа [1,7 M], добавлен 28.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.