Катионная полимеризация 1,3-пентадиена и изопрена в присутствии каталитических систем на основе галогенидов бора, титана и ванадия
Исследование связей между природой компонентов каталитической системы, способами ее формирования и кинетическими особенностями катионной полимеризации. Разработка промышленного производства поли-1,3-диенов с заданными молекулярными характеристиками.
Рубрика | Химия |
Вид | автореферат |
Язык | русский |
Дата добавления | 27.02.2018 |
Размер файла | 764,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1Н и 13С ЯМР спектры катионного полиизопрена приведены на рис. 17.
Таблица 10.
Зависимость ненасыщенности поли-1,3-пентадиена, рассчитанной по 1Н (Нн) и 13С (Нс) ЯМР спектру и микроструктуры ненасыщенной части цепи полимера от конверсии мономера (К), температуры (Т) и строения каталитической системы. Расчет проведен по интенсивности сигналов углерода в метильной области 13С ЯМР спектра.
Каталитическая система, растворитель |
ТХУК MeXn |
T, °С |
К, мас. % |
Ненасыщенность, мол. % |
Микроструктура ненасыщенной части, мол. % |
||||||
1,4-транс-звенья |
1,2-звенья |
||||||||||
Нн |
Нс |
Г-Х |
Х-Х |
1,4 (1,2)- |
транс- |
цис- |
|||||
TiCl4-ТХУК, гексан |
2.0 |
20 |
24.7 41.5 62.6 77.5 |
82 79 78 77 |
81 82 80 78 |
54 54 56 57 |
6 7 7 8 |
7 6 6 5 |
30 29 28 26 |
3 4 3 4 |
|
60 -20 -70 |
47.4 42.9 47.5 |
74 83 85 |
75 84 86 |
59 56 55 |
7 8 8 |
4 7 7 |
27 25 25 |
3 4 5 |
|||
0 |
20 |
21.9 |
77 |
78 |
55 |
8 |
7 |
26 |
4 |
||
TiCl4-H2O, толуол |
0.31 |
20 -402 -403 |
32.5 37.0 23.5 |
76 89 84 |
77 90 83 |
57 55 50 |
9 8 23 |
10 9 4 |
22 26 10 |
2 2 13 |
|
ЭТБ-ТХУК, CH2Cl2 |
5.0 |
40 20 -70 |
33.2 39.4 36.5 |
80 83 89 |
81 85 90 |
50 51 49 |
10 10 12 |
9 9 10 |
25 24 23 |
6 6 6 |
|
VOCl3, CH2Cl2 |
0 |
20 |
48.1 |
82 |
86 |
49 |
11 |
10 |
23 |
7 |
Примечание. 1Cоотношение Н2О/TiCl4. Изомерный состав исходного 1,3-пентадиена: для 2 90% транс- 10% цис-; для 3 5% транс- 95% цис-; для остальных образцов 61% транс- и 39% цис-изомера.
Идентификация характеристических сигналов проводилась на основании анализа двумерных протон-углеродных ЯМР спектров (рис. 18). Доминирующей структурой катионного полиизопрена являлось 1,4-транс-звено регулярного присоединения "голова-хвост", которому принадлежали сигналы №13 (С1), №28 (С3), №21 (С3), №7 (С4) и №1 (С5). Инверсному присоединению 1,4-транс-звеньев по типу "хвост-хвост" соответствовал сигнал №10 метиленового углерода С4, а присоединению звеньев по типу "голова-голова" - сигнал №12 метиленового углерода С1. В состав 1,4-транс-структур входили концевые 1,4-транс-звенья, метильным группам которых в Z- и Е-положении к двойной связи принадлежали сигналы №2 и №6, а олефиновым углеродам - сигналы №22 и №25 соответственно. Среди минорных структур идентифицированы сигналы 1,2-звена полиизопрена №4 (С5), №29 (С3), №20 (С4) и №14 четвертичного углерода (С2), который не проявлялся при съемке спектра в режиме DEPT-135° (рис. 18). Для 3,4-звеньев идентифицированы сигналы №3 (С5), №30 (С3) и №19 (С4). Сигналы №8 и №9
Рис. 17. Спектры ЯМР 1Н (А) и 13С: алифатическая (Б) и олефиновая (В) области, катионного полиизопрена. Условия синтеза: -78 °С, СTiCl4=0.5•10-2моль/л, ТХУК/TiCl4=2.0, хлористый метилен, 10 мин.
Рис. 18. Двумерный протон-углеродный ЯМР спектр алифатической области катионного полиизопрена. Условия синтеза на рис. 17. принадлежали метильным углеродам, связанным с насыщенными структурами.
Предложенный способ количественного расчета микроструктуры катионного полиизопрена был основан на комплексном анализе олефиновых областей 1Н и 13С ЯМР спектров. По олефиновой области 13С ЯМР спектра определяли соотношение суммы площадей 1,2 и 3,4-звеньев (сигналы с д 111.1 и 147.7 м.д) к интенсивностям линий 1,4-транс-звеньев в диапазоне д 122.0-138.0 м.д. Соотношение 1,2-/3,4-звеньев определяли по олефиновой части 1Н ЯМР спектра. Расчет параметров структуры ненасыщенной части цепи образца катионного полиизопрена по данному способу давал следующие значения: 1,4-транс-звенья регулярного присо-единения - 66 мол. %, 1,4-транс-звенья инверсного присоединения - 26 мол. %, 1,2- и 3,4-звенья по 4 мол. %. Общая ненасыщенность образца полиизопрена определенная методом 13С ЯМР спектроскопии составляла 72 мол. %.
6. Общие закономерности и специфические особенности катионной полимеризации 1,3-диенов
Сопоставительный анализ полученных результатов позволяет предположить, что катионная полимеризация 1,3-диенов протекает на «классической» ионной паре, образующейся в результате взаимодействия протонодонорного соединения и кислоты Фриделя-Крафтса:
Схема 1. Предполагаемый механизм инициирования полимерной цепи.
где НА - протонодонор (например, Н2О), MeXn - кислота Фриделя-Крафтса (например, TiCl4), М- мономер.
В случае полимеризации 1,3-диенов на каталитических системах без добавок протонодонорных соединений, например, при полимеризации 1,3-пентадиена под действием VOCl3, роль протонодоноров, по-видимому, выполняли неконтролируемые примеси, содержащиеся в реакционной массе. Кроме того, исходные 1,3-диены, в отличие от олефинов, способны легко окисляться в присутствии следов кислорода на стадиях их получения, выделения и очистки с образованием гидроперекисей различного строения, которые, по литературным данным, в сочетании с хлоридами металлов, также являлись эффективными инициаторами процесса катионной полимеризации.
Характерной особенностью полимеризации 1,3-диенов в присутствии каталитических систем на основе TiCl4 и BF3•O(C2H5)2 являлось отсутствие индукционного периода полимеризации. Это свидетельствовало о том, что скорости инициирования цепи для всех изученных условий полимеризации превышали значение скорости роста. Только при полимеризации 1,3-пентадиена в присутствии VOCl3 было зафиксировано появление индукционного периода полимеризации. Добавки протонодонорных соединений, таких как вода и ТХУК, в ванадиевую каталитическую систему не приводили к уменьшению или исчезновению индукционного периода.
В литературе изучены донорно-акцепторные комплексные соединения 1,3-диенов с различными кислотами Фриделя-Крафтса. Было найдено, что с ростом кислотности соединения Фриделя-Крафтса и с понижением температуры реакции, равновесие существенно сдвигалось в сторону образования комплексных соединений. Так как, продолжительность индукционного периода полимеризации 1,3-пентадиена в присутствии VOCl3 также увеличивалась с понижением температуры (рис.14), можно предположить, что появление индукционного периода полимеризации было связано с образованием комплексного соединения 1,3-пентадиена и VOCl3 (комплекс II, схема 1). Кислотность BF3•O(C2H5)2 и TiCl4 (согласно эмпирическому правилу Драго) была существенно меньше, чем VOCl3, поэтому стабильность образующихся комплексов этих соединений с 1,3-пентадиеном была более низкой, что в конечном итоге обеспечивало быстрое образование активного центра полимеризации III (схема 1).
Рост полимерной цепи происходил в результате последовательного присоединения молекул 1,3-диена на сформированном активном центре полимеризации:
Схема 2. Предполагаемый механизм роста цепи полимерной цепи.
Характерной особенностью катионной полимеризации 1,3-диенов являлось существенное уменьшение скорости полимеризации с ростом конверсии мономера. Это явление было связано с дезактивацией активного центра полимеризации при его взаимодействии с ненасыщенными фрагментами полимерной цепи поли-1,3-диенов:
Схема 3. Предполагаемый механизм дезактивации активного центра.
Доказательством этого предположения служили эксперименты по полимеризации 1,3-пентадиена под действием каталитической системы TiCl4-H2O, модифицированной добавками полимеров различной структуры (рис. 10). Образование комплексных соединений TiCl4 с ненасыщенными фрагментами поли-1,3-пентадиена было подтверждено методом ИК спектроскопии (рис. 11). Важно отметить, что дезактивация активных центров катализатора не носила необратимого характера, о чем свидетельствовали эксперименты с дробной подачей мономера в систему.
Исследование молекулярной неоднородности полученных поли-1,3-диенов методами хроматографии и ЯМР спектроскопии позволяло предположить, что основными реакциями передачи растущей цепи являлись реакции передачи цепи на мономер и полимер. Процесс передачи растущей цепи на мономер протекал по следующей схеме:
Схема 4. Предполагаемый механизм передачи растущей цепи на мономер.
Представленный механизм передачи цепи в некоторых публикациях обозначался также как процесс передачи цепи через противоион. Различие в этих механизмах заключалось в участии противоиона в элиминировании протона от растущей полимерной цепи или "прямом" взаимодействии протона с новой молекулой мономера без помощи противоиона. На основании полученных экспериментальных данных, по-видимому, предпочтительнее выглядело первое предположение. Изменение строения компонентов, входящих в состав противоиона, как протонодонора, так и кислоты Фриделя-Крафтса, оказывало заметное влияние на уровень молекулярных масс образующихся полимеров и значения пороговых концентраций полимера. Доказательством процесса передачи цепи на мономер являлись идентифицированные методами ЯМР спектроскопии концевые винильные фрагменты -СН=СН2 и >С=СН2 в структуре получаемого поли-1,3-пентадиена (рис. 16). В случае полимеризации изопрена были также идентифицированы концевые ненасыщенные группы, образующиеся в результате процесса передачи цепи на мономер (сигналы 22 и 25, рис. 17). При увеличении концентрации ТХУК в каталитических системах наблюдалось уменьшение значений средних молекулярных масс поли-1,3-диенов и увеличение пороговых концентраций полимера, что свидетельствовало об участии ТХУК в реакциях передачи растущей цепи. Однако, исследование структуры поли-1,3-диенов методами ЯМР спектроскопии не выявило наличие хлор- или кислородсодержащих фрагментов в составе макромолекул. Это говорило о том, что для данных систем не реализовывался механизм "прямой" передачи растущей цепи на протонодонор, который приводит к получению полимера, содержащего концевую функциональную группу. Следовательно, можно предположить, что увеличение содержания протонодонора в системе приводило к повышению вероятности передачи цепи на мономер. Важно отметить, что влияние природы используемой протонодонорной добавки было специфично для каждой из исследованных каталитических систем. Так, добавки воды в титановую каталитическую систему практически не влияли на значения молекулярных характеристик полимера, в то время как для ванадиевой системы с ростом содержания воды молекулярные массы образующегося поли-1,3-пентадиена уменьшались (табл. 8). Таким образом, кислотность соединения Фриделя-Крафтса и природа протонодонорной добавки, входящих в состав каталитической системы, оказывают важнейшее влияние на соотношение констант скорости роста и передачи цепи на мономер.
Характерной особенностью катионной полимеризации 1,3-диенов являлась высокая вероятность протекания процесса передачи цепи на полимер:
Схема 5. Предполагаемый механизм передачи цепи на поли-1,3-диен.
Катионный центр полимеризации, по-видимому, способен взаимодействовать с олефиновой связью поли-1,3-диенов, что приводит к образованию ВМФ и НФ в полимере. Было установлено, что количественной характеристикой вероятности протекания процесса передачи цепи на полимер могут служить значения пороговых концентраций полимера в системе (С1пол и С2пол), при достижении которых происходило образование ВМФ и НФ в полимере. В таблицах 11, 12 представлены результаты по влиянию строения каталитической системы и условий полимеризации на значения пороговых концентраций полимера в системе.
Сопоставительный анализ представленных результатов свидетельствовал о том, что важнейшим параметром, определяющим вероятность протекания процессов передачи цепи на полимер, являлось строение и соотношение компонентов в каталитической системе. Независимо от природы используемого растворителя вероятность образования разветвленных и сшитых полимеров увеличивалась с ростом кислотности используемой кислоты Фриделя-Крафтса: BF3•O(C2H5)2< TiCl4? VOCl3. Наиболее высокие значения пороговых концентраций полимера были зафиксированы при полимеризации 1,3-пентадиена и изопрена в присутствии каталитических систем на основе эфирата трехфтористого бора, который характеризуется наиболее низкой кислотностью. В этом случае при полимеризации 1,3-пентадиена образование разветвленных и сшитых структур наблюдалось только при температуре (-70) °С (табл. 6). При полимеризации изопрена в присутствии катализаторов на основе ЭТБ образование разветвленных структур было зарегистрировано в интервале температур от (-70) до 20 °С, что свидетельствовало о более высокой склонности изопрена к реакциям передачи растущей цепи на полимер. С другой стороны, заметное влияние на процессы передачи цепи на полимер оказывала природа протонодонорной добавки. Так, при полимеризации 1,3-пентадиена под действием катализаторов на основе TiCl4 использование воды в качестве протонодонорной добавки в систему существенно снижало значения С1пол и С2пол по сравнению с добавками ТХУК (табл. 11).
Таблица 11.
Влияние природы мономера, кислоты Фриделя-Крафтса (КФК), протонодонора (ПД) и растворителя на значения пороговых концентраций полимера в системе. Температура 20 °С.
Мономер |
Каталитическая система |
Растворитель |
СКФК•102, моль/л |
Пороговые концентрации полимера, моль/л |
||||
КФК |
ПД |
ПД/КФК |
С1пол |
С2пол |
||||
1,3-пентадиен |
ЭТБ |
ТХУК |
5.0 |
СН2Сl2 |
1.0 |
>6.4 |
>6.4 |
|
TiCl4 |
ТХУК |
2.0 |
С2Н4Сl2 гексан гексан толуол |
1.0 1.0 2.0 1.5 |
3.1 2.0 3.2 >4.9 |
5.2 4.0 5.6 >4.9 |
||
Н2О |
0.2 |
гексан толуол |
3.3 3.3 |
<0.5 <0.9 |
2.6 3.4 |
|||
VOCl3 |
- |
0 |
СН2Сl2 |
1.5 |
1.1 |
3.3 |
||
Изопрен |
ЭТБ |
ТХУК |
5.0 |
СН2Сl2 |
1.0 |
4.0 |
6.0 |
|
TiCl4 |
ТХУК |
2.0 |
СН2Сl2 |
1.0 |
1.6 |
2.4 |
Таблица 12.
Влияние природы мономера, компонентов каталитической системы, растворителя и температуры (Т) на значения пороговых концентраций полимера в системе.
Мономер |
Каталитическая система |
Растворитель |
СКФК•102, моль/л |
Т, °С |
Пороговые концентрации полимера, моль/л |
||||
КФК |
ПД |
ПД КФК |
С1пол |
С2пол |
|||||
1,3-пентадиен |
ЭТБ |
ТХУК |
5.0 |
СН2Сl2 |
1.5 |
40 -20 -70 |
>8.0 >3.5 1.5 |
>8.0 >3.5 3.2 |
|
TiCl4 |
ТХУК |
2.0 |
С2Н4Сl2 |
1.0 |
60 -20 -35 |
>3.8 2.6 2.4 |
>7.7 3.8 2.9 |
||
Н2О |
0.2 |
гексан |
3.3 |
60 -20 -70 |
0.8 <0.5 <0.4 |
3.3 2.0 1.5 |
|||
VOCl3 |
- |
0 |
СН2Сl2 |
1.5 |
40 -20 -70 |
1.6 0.6 0.4 |
>4.0 2.7 1.0 |
||
Изопрен |
ЭТБ |
ТХУК |
5.0 |
СН2Сl2 |
1.5 |
40 -20 -70 |
>7.2 2.4 0.7 |
>8.0 5.0 2.5 |
|
TiCl4 |
ТХУК |
2.0 |
СН2Сl2 |
1.0 |
40 -20 -70 |
2.3 1.4 1.2 |
4.0 1.7 1.5 |
На рис. 19 представлены полулогарифмические анаморфозы конверсионных зависимостей полимеризации 1,3-пентадиена и изопрена в присутствии изученных каталитических систем, полученные при одинаковой концентрации мономера и температуре процесса.
Рис. 19. Полулогарифмические ана-морфозы кинетических кривых полимеризации 1,3-пентадиена (1-4) и изопрена (5) в присутствии каталитических систем TiCl4-H2O (1), VOCl3 (2), TiCl4-ТХУК (3), ЭТБ-ТХУК (4, 5). Условия полимеризации: 20 °С, См=4.0 моль/л. Для 1) СTiCl4=3.3•10-2 моль/л, Н2О/TiCl4=0.33, толуол; для 2) СVOCl3=1.5•10-2 моль/л, хлористый метилен; для 3) СTiCl4=1.0•10-2 моль/л, ТХУК/TiCl4=2.0, дихлорэтан; для 4) и 5) СЭТБ=1.0•10-2 моль/л, ТХУК/ЭТБ=5.0, хлористый метилен.
Одним из критериев выбора кинетических зависимостей представленных на рис. 19, являлась приблизительно одинаковая конверсия мономера при продолжительности процесса 120 мин (69-75 мас. %). Хотя во всех случаях процесс полимеризации характеризовался нестационарным характером, для каждой кривой наблюдались свои особенности. Для 1,3-пентадиена наименьшее отклонение от зависимости первого порядка по мономеру было зафиксировано при полимеризации в присутствии системы BF3•O(C2H5)2-ТХУК (рис. 19, кривая 4). Напротив, наиболее ярко выраженный «нестационарный» характер процесса полимеризации (наибольшая кривизна кинетической кривой) наблюдался в случае полимеризации 1,3-пентадиена под действием каталитической системы TiCl4-H2O и VOCl3 (рис. 19, кривые 1 и 2). Исследованные каталитические системы по степени отклонения наблюдаемых кинетических кривых от зависимости первого порядка по мономеру можно расположить в следующий ряд:
VOCl3 ? TiCl4-H2O > TiCl4-ТХУК > BF3•O(C2H5)2-ТХУК
Сравнивая значения С1пол и С2пол для этих каталитических систем (табл. 11), можно констатировать, что интенсивность уменьшения скорости полимеризации с ростом конверсии мономера была обратно пропорциональна значениям пороговых концентраций полимера в системе. Следовательно, можно предположить, что с ростом кислотности соединения Фриделя-Крафтса в каталитической системе увеличивается вероятность дезактивации активного центра полимнризации ненасыщенными фрагментами полимерной цепи поли-1,3-диенов. По-видимому, процесс дезактивации по схеме 3 является предшественником последующего процесса передачи растущей цепи на полимер по схеме 5. Значения пороговых концентраций полимера при полимеризации изопрена были заметно ниже, чем для 1,3-пентадиена (табл. 11, 12). Этому, как и в случае изменения кислотности, соответствует и более существенное отклонение кинетических кривых полимеризации изопрена от зависимостей первого порядка, по сравнению с 1,3-пентадиеном (рис. 19, кривые 4 и 5). Более высокая склонность изопрена к реакциям разветвления и сшивки полимерных цепей была связана, по-видимому, с повышенной активностью олефиновой связи полиизопрена в реакциях комплексообразования с катионным активным центром полимеризации и последующей реакцией передачи цепи на полимер.
Для всех изученных каталитических систем катионной полимеризации 1,3-диенов независимо от природы растворителя при снижении температуры полимеризации наблюдалось уменьшение значений пороговых концентраций полимера (табл. 12). Можно предположить, что при уменьшении температуры возрастала стабильность образующихся комплексов ненасыщенных фрагментов полимерной цепи с активным центром полимеризации. Это подтверждалось изменением характера кинетических кривых процесса полимеризации при уменьшении температуры процесса. Например, при полимеризации 1,3-пентадиена в присутствии каталитической системы TiCl4-ТХУК при температуре (-70) єС процесс полимеризации характеризовался высокой начальной скоростью, которая быстро снижалась с ростом конверсии мономера (рис. 6). Значение С1пол и С2пол для этой температуры составляли 1.9 и 3.0 моль/л полимера соответственно (табл.12). При температуре 60 єС процесс полимеризации имел более стационарный характер (рис. 6), а значения С1пол и С2пол возрастали до 5.4 и 6.1 моль/л соответственно (табл. 12). Что касается влияния растворителя, то следует отметить, что замена алифатического растворителя (гексана) на хлорсодержащие растворители приводила к увеличению значений пороговых концентраций полимера в системе (табл. 11). При использовании в качестве растворителя толуола значения С1пол и С2пол также заметно возрастали вследствие процесса передачи растущей цепи на ароматический растворитель.
Сравнительный анализ полученных значений пороговых концентраций полимера свидетельствует о том, что они являются своеобразной характеристикой нестационарности процесса катионной полимеризации 1,3-диенов. Это позволяет предположить, что структура активного центра катионной полимеризации для всех изученных каталитических систем имела принципиально одинаковое строение, а выявленные для каждой каталитической системы характерные особенности кинетики полимеризации и молекулярной неоднородности полимера связаны со строением используемой кислоты Фриделя-Крафтса, природой протонодонорной добавки и растворителя. Это также подтверждает относительно неизменная микроструктура поли-1,3-пентадиена, полученного под действием различных каталитических систем (табл. 10).
Таким образом, найденные закономерности позволяют регулировать активность каталитических систем катионной полимеризации 1,3-диенов и синтезировать поли-1,3-диены с заданными молекулярными характеристиками.
ВЫВОДЫ
Установлены общие закономерности и характерные особенности процесса полимеризации 1,3-диенов в присутствии каталитических системах на основе TiCl4, BF3·O(C2H5)2 и VOCl3.
1. Показано, что 1,3-пентадиен и изопрен полимеризовались в присутствии всех исследованных каталитических систем с образованием поли-1,3-диенов с невысокой среднечисленной молекулярной массой и пониженной ненасыщенностью. Введение в катализатор протонодонорного соединения может приводить не только к увеличению, но и к снижению активности каталитической системы в зависимости от строения соединения Фриделя-Крафтса и протонодонорной добавки. Способы формирования каталитических систем практически не оказывают влияния на их активность. Независимо от природы используемого растворителя процесс полимеризации 1,3-диенов в присутствии каталитических систем на основе галогенидов титана и бора относился к процессам нестационарного типа с быстрым инициированием. На примере полимеризации 1,3-пентадиена в присутствии каталитической системы TiCl4-Н2О показано, что снижение скорости полимеризации связано не только с расходом мономера, но и с взаимодействием TiCl4 с ненасыщенными фрагментами полимерной цепи образующегося поли-1,3-пентадиена. Для ванадиевой каталитической системы наблюдался индукционный период процесса, длительность которого увеличивалась с понижением температуры полимеризации.
2. Установлено, что зависимость скорости полимеризации 1,3-диенов от исходной концентрации мономера для всех изученных каталитических систем носила экстремальный характер с максимумом в области концентрации мономера 5.0-7.5 моль/л. Изучение зависимости молекулярных характеристик от исходной концентрации и конверсии мономера позволило установить, что при низких концентрациях и конверсиях мономера образующиеся поли-1,3-диены характеризовались мономодальным ММР. С ростом конверсии мономера наблюдалось скачкообразное увеличение значений среднемассовой молекулярной массы и полидисперсности полимера, связанное с образованием высокомолекулярной разветвленной фракции. Независимо от исходной концентрации мономера образование ВМФ в полимере происходило при достижении первой характерной (пороговой) концентрации полимера в системе (С1пол). Дальнейшая трансформация ВМФ в нерастворимую фракцию наблюдалось при достижении второй характерной концентрации полимера в системе (С2пол). Для всех изученных каталитических систем определены пороговые концентрации полимера (С1пол и С2пол). Закономерности формирования молекулярной неоднородности от строения каталитической системы специфичны для каждой из изученных систем и определяются природой кислоты Фриделя-Крафтса и протонодонорной добавки, входящих в состав катализатора. Изученные каталитические системы по увеличению значений пороговых концентраций полимера можно расположить в следующий ряд:
VOCl3 ? TiCl4-H2O < TiCl4-ТХУК < BF3•O(C2H5)2-ТХУК,
что соответствует уменьшению кислотности соединений Фриделя-Крафтса, входящих в состав каталитических систем.
3. При полимеризации 1,3-диенов в присутствии каталитических систем на основе BF3·O(C2H5)2 скорость полимеризации увеличивалась с ростом температуры процесса, а под действием каталитических систем на основе TiCl4 наблюдалась сложная температурная зависимость. При низких конверсиях мономера начальная скорость полимеризации увеличивалась с уменьшением температуры процесса. С ростом конверсии мономера выход полимера возрастал с увеличением температуры процесса. Для всех изученных каталитических систем с понижением температуры полимеризации значения пороговых концентраций полимера в системе уменьшались, т.е. увеличивалась вероятность разветвления и сшивки полимерных цепей в процессе полимеризации. С ростом полярности растворителя скорость катионной полимеризации 1,3-диенов увеличивалась. В идентичных условиях полимеризации наиболее высокая вероятность реакции передачи цепи на полимер была зафиксирована при проведении процесса в алифатическом растворителе - гексане, наиболее низкая - в толуоле.
4. Найдено, что изопрен более склонен к образованию разветвленных и сшитых структур по сравнению с 1,3-пентадиеном. Процессы разветвления и сшивки полимерных цепей для полимеризации изопрена происходили при более низкой концентрации полимера в системе, по сравнению с 1,3-пентадиеном. Это отражало более высокую реакционную способность олефиновой связи полиизопрена в реакциях передачи растущей цепи на полимер, по сравнению с поли-1,3-пентадиеном.
5. Полученные закономерности по изменению молекулярных характеристик от природы компонентов каталитической системы и условий полимеризации позволили установить причину образования нерастворимой фракции в ходе катионной полимеризации 1,3-диенов. Найденные значения пороговых концентраций полимера (С1пол и С2пол) позволяли подобрать условия синтеза поли-1,3-диенов, обеспечивающие необходимые молекулярные параметры получаемого полимера, и гарантировали отсутствие нежелательной нерастворимой фракции в полимере. Разработан общий подход к синтезу катионных поли-1,3-диенов с заданной молекулярной неоднородностью.
6. На основании исследования микроструктуры катионного поли-1,3-пентадиена методами ЯМР спектроскопии высокого разрешения было найдено, что во всех случаях доминирующей структурой ненасыщенной части полимерной цепи являлось 1,4-транс-звено регулярного присоединения «голова-хвост». Кроме того, в структуре полимера были обнаружены 1,2-транс-, 1,2-цис-, 1,4 (1,2)- и 1,4-транс-звенья с инверсным присоединением мономерных звеньев. Варьирование природы и соотношения компонентов каталитической системы и условий полимеризации слабо отражались на микроструктуре и ненасыщенности получаемого полимера. На основании изучения 13С ЯМР спектров гидрированных полимеров, в катионном поли-1,3-пентадиене были найдены следующие диадные комбинации звеньев: 1,4-1,4; 1,4-4,1; 4,1-1,4; 1,4-1,2; 4,1-1,2 и 1,2-1,2. Сравнительный анализ содержания диадных последовательностей позволял отметить склонность к статистическому распределению структурных звеньев в полимерной цепи поли-1,3-пентадиена. Установлено, что доминирующей структурой полимерной цепи катионного полиизопрена являлось 1,4-транс-звено регулярного присоединения «голова-хвост». Кроме того, в ненасыщенной части цепи полимера были обнаружены 1,4-транс-звенья с инверсным присоединением, а также 1,2- и 3,4-структуры.
7. Полученные в работе результаты были использованы при разработке технологического регламента для проектирования установки по получению синтетического каучука СКОП. На основании разработанного регламента в 1983 г. на Стерлитамакском нефтехимическом заводе была введена в эксплуатацию промышленная установка по получению каучука СКОП. В 1988 г. по разработанной технологии была введена в эксплуатацию модернизированная установка по получению каучука СКОП на Тольяттинском ПО «Синтезкаучук». Экономический эффект от внедрения в производство изобретений по А.С. СССР № 1573843, 1614684, 1669147 и 1741115 составил 4 580 004 руб. (в ценах 1988 г.).
ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ИЗЛОЖЕНЫ В СЛЕДУЮЩИХ РАБОТАХ:
Статьи в изданиях, рекомендованных ВАК
1. Пантух, Б. И. Влияние добавок хлоридов переходных металлов на активность ванадиевых каталитических систем / Б. И. Пантух, В. А. Розенцвет, С.Р. Рафиков // Известия АН СССР. Сер. Хим. - 1982. - № 5. - С. 1189-1191.
2. Закономерности полимеризации изопрена на каталитической системе VOCl3-Al(изо-С4Н9)3, активированной термообработкой / Б. И. Пантух, В. А. Розенцвет, Ю. Б. Монаков, С. Р. Рафиков // Доклады АН СССР. - 1982. - Т. 265, № 5. - С. 1186-1190.
3. Молекулярные характеристики олигопиперилена, полученного катионной полимеризацией / С. А. Егоричева, В. А. Розенцвет, Б. И. Пантух, М. В. Эскина, А. С. Хачатуров, Р. М. Лившиц // Лакокрасочные материалы и их применение - 1985. - № 1. - С. 12-13.
4. Реологические свойства олигопипериленовых каучуков марки СКОП и их концентрированных растворов / Л. С. Крохина, В. А. Розенцвет, Л. В. Вершинин, И. В. Полежаева, Б. И. Пантух // Журнал прикладной химии. - 1988. - Т. 61, № 7. -С. 1660-1663.
5. О молекулярной неоднородности полипиперилена / В. Г. Козлов, В. А. Розенцвет, З.Г. Шамаева, Б. И. Пантух, А. В. Раков, С. Р. Рафиков // Доклады АН СССР. - 1989. - Т. 307, № 6. - С. 1402-1406.
6. Розенцвет, В. А. Строение фрагментов цепи полипиперилена по спектрам ЯМР13С высокого разрешения / В. А. Розенцвет, А. С. Хачатуров, В. П. Иванова // Высокомолекулярные соединения. Серия А. - 2006. - Т. 48, № 6. - С. 939-944.
7. Розенцвет, В. А. Регулирование молекулярных характеристик катионного олигопиперилена с использованием изомерных метилбутенов / В. А. Розенцвет, В. Г Козлов, А. С. Хачатуров // Журнал прикладной химии. - 2006. - Т. 79, № 7. - С. 1198-1201.
8. Розенцвет, В. А. Микроструктура 1,4-транс- и 1,2-транс- поли-1,3-пентадиена / В. А. Розенцвет, А. С. Хачатуров, В. П. Иванова // Известия АН. Сер. Хим. - 2007. - № 6. - С. 1113-1118.
9. Розенцвет, В. А. Влияние концентрации мономера на катионную полимеризацию пиперилена на каталитической системе TiCl4- трихлоруксусная кислота / В. А. Розенцвет, В. Г. Козлов // Известия АН. Сер. хим. - 2007. - № 7. - С. 1310-1314.
10. Влияние температуры на катионную полимеризацию 1,3-пентадиена в присутствии каталитической системы TiCl4-трихлоруксусная кислота / Розенцвет В.А., Козлов В.Г., Коровина Н.А., Монаков Ю.Б. // Доклады РАН. - 2008. - Т. 420, № 1. - С. 55-58.
11. Катионная полимеризация изопрена в присутствии каталитической системы TiCl4-трихлоруксусная кислота / В. А. Розенцвет, В. Г. Козлов, Э. Ф. Зиганшина, Н. П. Борейко // Высокомолекулярные соединения Серия А. - 2008. - Т. 50, № 10. - С. 1770-1776.
12. Розенцвет, В. А. Особенности определения микроструктуры полиизопрена катионной полимеризации методом ЯМР спектроскопии / В. А. Розенцвет, А. С. Хачатуров, В.П. Иванова // Высокомолекулярные соединения. Серия А. - 2009. - Т. 51, № 8. - С. 1433-1439.
13. Катионный полиизопрен : синтез, структура и некоторые свойства / Розенцвет В.А., В. Г. Козлов, Э. Ф. Зиганшина, Н. П. Борейко, А. С. Хачатуров // Журнал прикладной химии. - 2009. - Т. 82, № 1. - С. 151-155.
14. Розенцвет, В. А. Регулирование молекулярной неоднородности 1,4-транс-полидиенов при варьировании состава «ванадий-титанового» катализатора / В. А. Розенцвет, А. С. Хачатуров, Ю. Б. Монаков // Доклады РАН. - 2009. - Т. 426, № 5. - С. 635-638.
Статьи в международных и отечественных журналах :
15. Исследование кинетических закономерностей 1,4-транс-полимеризации изопрена на ванадиевых катализаторах / Б. И. Пантух, В. А. Розенцвет, Ю. Б. Монаков, С. Р. Рафиков // Acta polimerica. - 1983. - Vol. 34, № 11/12. - P. 732-734.
16. Освоение производства транс-1,4-полиизопрена / Б. И. Пантух, В. А. Розенцвет, Ю. Б. Монаков, В. Р. Долидзе, Е. И. Морозова // Промышленность синтетического каучука, шин и РТИ. - 1984. - №8. - С. 10-11.
17. Катионная полимеризация пиперилена, катализированная четыреххлористым титаном / С. А. Егоричева, В. А. Розенцвет, Б. И. Пантух, Р. М. Лившиц // Промышленность синтетического каучука, шин и РТИ. - 1985. - № 11. - С. 7-12.
18. Особенности катионной олигомеризации пиперилена в среде олигопипериленового каучука / В. А. Розенцвет, С. А Егоричева, Ж. А. Матвеева, Б. И. Пантух, Р. М. Лифшиц // Промышленность синтетического каучука, шин и РТИ. - 1987. - № 4. - С. 8-12.
19. Связь молекулярных масс и характеристической вязкости растворов олигопипериленового каучука марки СКОП / В. Г. Козлов, З. Г. Шамаева, В. А. Розенцвет, Б. И. Пантух // Промышленность синтетического каучука, шин и РТИ. - 1980. - № 10. - С. 4-8.
20. Некоторые закономерности полимеризации пиперилена / В. А. Розенцвет, З. Г. Шамаева, В. Г. Козлов, Л. С. Бродько, К. В. Нефедьев // Производство и использование эластомеров. - 1991. - № 2. - С. 6-8.
21. Rozentsvet, V. A. Molecular parameters of cationic polypiperylene / V. A. Rozentsvet, V. G. Kozlov // J. Appl. Polym. Sci.Appl. Polym. Symp. - 1992. - № 51. - Р. 183-193.
22. Розенцвет, В. А. Применение металлополимерных катализаторов для утилизации крупнотоннажного побочного продукта нефтехимии - пиперилена / В. А Розенцвет, С. А. Егоричева, Б. И. Пантух // Известия Самарского НЦ РАН. - 2003. - Спец. вып. № 2. - С. 334-338.
23. Розенцвет, В. А. Влияние добавок ацетона на полимеризацию пиперилена на каталитической системе TiCl4-H2O / В. А. Розенцвет, В. Г. Козлов // Известия Самарского НЦ РАН. - 2004. - Т. 6, № 2. - С. 350-353.
24. Розенцвет, В. А. Механизм образования нерастворимой фракции при синтезе катионного полипиперилена / В. А. Розенцвет, В. Г. Козлов, Н. А. Коровина // Известия Самарского НЦ РАН. 2005- Спец. вып. № 4. - С. 314-316.
25. Розенцвет, В. А. К вопросу о микроструктуре полипиперилена, полученного катионной полимеризацией / В. А. Розенцвет, А. С. Хачатуров, В. П. Иванова // Известия Самарского НЦ РАН. - 2006. - Т. 8, № 2. - С. 588-594.
26. Розенцвет, В. А. Влияние температуры на катионную полимеризацию пиперилена в присутствии каталитической системы TiCl4-трихлоруксусная кислота / В. А. Розенцвет, В. Г. Козлов, Н. А. Коровина // Известия Самарского НЦ РАН. - 2006. - Т. 8, № 3. - С. 670-675.
Изобретения по теме диссертации:
27. А. с. 1208054 СССР, МКИ C 09 D 3/733, 3/28. Олифа / Б. И. Пантух, С. А. Егоричева, В. А. Розенцвет, Т. Ф. Тиманова, Э. Р. Адигамов, В. П. Четверикова, В. Д. Моисеев. - 1984. - Б.И. - 1986. - №4.
28. А. с. 1214699 СССР, МКИ C 09 D 3/36. Композиция для покрытий / Б. И. Пантух, В. А. Розенцвет, В. Р. Долидзе, Г. И. Рутман. - 1984. - Б.И. - 1986. - №8.
29. А. с. 1229205 СССР, МКИ C 08 F 36/04. Способ получения олигодиенов / Б. И. Пантух, В. А. Розенцвет, В. Г. Нагимов, В. Д. Моисеев. - 1984. - Б.И. - 1986. - №17.
30. А. с. 1249049 СССР, МКИ C 09 F 7/00. Способ получения пленкообразующего / Б. И. Пантух, В. А. Розенцвет, В. Р. Долидзе, Е. И. Морозова, Т. Ф. Тиманова, А. Б. Ямщикова, М. Х. Султанова, Э. Р. Адигамов. - 1983. - Б.И. - 1986. - №29.
31. А. с. 1326593 СССР, МКИ C 09 D 3/36. Состав связующего для покрытий / В. П. Медведев, А. М. Огрель, В. В. Лукьяничев, Б. И. Пантух, Г. И. Рутман, В. А. Розенцвет, Т. Ф. Тиманова. - 1985 - Б.И. - 1987. - №28.
32. А. с. 1545561 СССР, МКИ C 08 F 136/04, 6/08. / В. А. Розенцвет, А. М. Головачев, Х. Б. Исмухамбетов, А. В. Раков, Е. Л. Осовский, О. Ф. Скресанова. - 1988.
33. А. c. 1573843 СССР, МКИ C 08 А 236/04. / В. А. Розенцвет, Н. В. Абрамов, А. М. Головачев, Б. И. Пантух, А.В. Раков, Б. А. Немолочнов, Б. Б. Федорин - 1988.
34. А. с. 1614684 СССР, МКИ G 05 D 27/00, C 08 F 236/04. / В. А. Розенцвет, Н. В. Абрамов, А. В. Раков, Б. Б. Федорин. - 1988.
35. А. с. 1669147 СССР, МКИ С 05 Д 27/00, С 08 А 136/08. / А. В. Раков, В. А. Розенцвет, А. М. Головачев, В. И. Зотов, А. Н. Гуревич, В. Р. Тучинский. - 1989.
36. А. с. 1741115 СССР, МКИ G 05 D 27/00, C 08 C 2/06. Способ управления процессом двухступенчатой дегазации пипериленового синтетического каучука / В. Р. Тучин-ский, А. В. Раков, В. А. Розенцвет, А. М. Головачев, А. Н. Гуревич, Е. Л. Осовский- 1989. - Б.И. - 1992. - №22.
37. А. с. 1823418 СССР, МКИ С 07 С 11/18, 7/04, 7/148 / В. А. Розенцвет, А. В. Раков, Б. Б. Федорин, Н. А. Барышникова, В. А. Красильников, А. Н. Гуревич, В. И. Зотов, Т. Б. Жидкова, Т.В. Гришатова - 1989.
В материалах съездов, конференций и симпозиумов:
38. Исследование кинетических закономерностей 1.4-транс-полимеризации изопрена на ванадиевых каталитических системах / Б. И. Пантух, В. А. Розенцвет, Ю. Б. Монаков, С. Р. Рафиков // Успехи в ионной полимеризации : тез. докл. V Междунар. симпозиума. - Прага, 1982. - С. 30-1 - 30-2.
39. Пантух, Б. И. Закономерности олигомеризации пиперилена под действием тетра-хлорида титана / Б. И. Пантух, В. А. Розенцвет // Тезисы докладов IV Международного симпозиума по гомогенному катализу. -Л., 1984. - Т. 3. - С. 168.
40. Розенцвет, В. А. Применение комплексов тетрахлорида титана с ненасыщенными макролигандами для катионной олигомеризации пиперилена / В. А Розенцвет, С. А. Егоричева, Б. И. Пантух // Тезисы докладов V Международного симпозиума по гомогенному катализу. - Новосибирск, 1986. - С. 211.
41. Исследование молекулярной неоднородности олигопиперилена методом ГПХ / Розенцвет В.А. [и др.] // Адсорбция и хроматография макромолекул эластомеров : мат-лы II Всесоюз. семинара. - М., 1989. - Ч. II. - С. 169-175.
42. Воронов, В. Г. Математическое моделирование и оптимизация процесса олигомеризации пиперилена в реакторе вытеснения / В. Г. Воронов, В. А. Розенцвет, Б. И. Пантух // Химреактор-10 : тез. докл. Всесоюз. конф. - Куйбышев-Тольятти, 1989. - Т. 4. - С. 41-44.
43. Исследование молекулярной неоднородности олигопиперилена / З. Г. Шамаева, В. Г. Козлов, В. А Розенцвет., С. Р. Рафиков // Тезисы докладов XVI Менделеевского съезда по общей и прикладной химии. - Ташкент, 1989. - Т. 2. - С. 349.
44. Влияние растворителя на реологические свойства растворов смесей синтетической гуттаперчи с олигомерами / Л. С. Крохина, Е. А. Крылова, И. В. Полежаева, В. А. Розенцвет // Смеси полимеров : тез. докл. II Всесоюз. конф. - Казань, 1990. - С. 38.
45. Rozentsvet, V. A. Molecular parameters of cationic polypiperylene / V. A. Rozentsvet, V. G. Kozlov // Book Abstr. of III International Symposium on Polymer Analysis and Characterization. - Brno [Czechoslovakia], 1990. - P. 81.
46. Розенцвет, В. А. Регулирование молекулярных параметров катионного олигопипе-рилена добавками 2-метилбутена-1 / В. А. Розенцвет, В. Г. Козлов // Тезисы докладов ХVII Менделеевского съезда по общей и прикладной химии. Секция В. - Казань, 2003. - С. 360.
47. Rozentsvet, V. Control of Molecular Characteristics of Cationic Polypentadiene Using Isomeric Methylbutenes / V. Rozentsvet, V. Kozlov, A. Khachaturov // Book Abstr. of 40th International Symposium on Macromolecules. - Paris [France], 2004. - P. 78.
48. Rozentsvet, V. A. Cationic polymerization of dienes // Theoretical aspects of polymeric nanostructures formation : book Abstr. of International conference / V. A. Rozentsvet. - Tashkent [Uzbekistan], 2004. - P. 5.
49. Кузаев, А. И. Гель-проникающая хроматография олигопипериленов, полученных под действием TiCl4 / А. И. Кузаев, В. А. Розенцвет, А. Е. Тарасов // Тезисы докладов IX Международной конференции по физико-химии олигомеров. - Одесса, 2005. - С. 113.
50. Rozentsvet, V. Microstructure of stereoregular and cationic polypentadienes / V. Rozentsvet, A. Khachaturov, V. Ivanova // Book Abst. of European Polymer Congress. - Moscow, 2005. - P. 111.
51. Розенцвет, В. А. Особенности строения структуры фрагментов цепи стереорегуляр-ного и катионного полипентадиена / В. А. Розенцвет, А. С. Хачатуров, В. П. Иванова // «Нефтехимия-2005» : тез. докл. VII Междунар. конф. по интенсификации нефтехим. процессов. - Нижнекамск, 2005. - С. 44-46.
52. Rozentsvet, V. A. Modern NMR in Poly-1,3-pentadiene structure Investigation / V. A. Rozentsvet, A. S. Khachaturov, V. P. Ivanova // Nuclear Magnetic Resonance in Condensed Matter : Book Abstr. International Symposium. - St. Petersburg. 2006. - P. 98.
53. Розенцвет, В. А. 3,4-звенья в полипиперилене. Миф или реальность? / В. А. Розенцвет, А. С. Хачатуров, В. П. Иванова // Наука о полимерах 21-му веку : тез. докл. IV Всерос. Каргинской конф. - М., 2007. - Т. 3. - С. 27.
54. Розенцвет В.А. Закономерности катионной полимеризации пиперилена в присутствии каталитической системы TiCl4-трихлоруксусная кислота / Розенцвет В.А., Козлов В.Г. // Наука о полимерах 21-му веку: тез. докл. IV Всерос. Каргинской конф. - М. 2007. -Т.2. - С.236.
55. Молекулярно-массовое распределение олигопиперилена, полученного под действием различных катализаторов / А. Е. Тарасов, А. И. Кузаев, В. А. Розенцвет, М. Н. Тяпкина // Наука о полимерах 21-му веку : тез. докл. IV Всерос. Каргинской конф. - М., 2007. - Т. 2. - С. 272.
56. Rozentsvet, V. A. 3,4-Unints in Polypiperylene. Myth or Reality? / V. A. Rozentsvet, A. S. Khachaturov, V. P. Ivanova // Book Abstr. of 20th International Symposium on Polymer Analysis and Characterization. - Agios Nikolaos [Greece], 2007. - P. 95.
57. Катионная полимеризация изопрена на каталитической системе TiCl4-трихлоруксусная кислота / Э. Ф. Зиганшина, В. А. Розенцвет, Н. П. Борейко, В. Г. Козлов // Тезисы докладов XVIII Менделеевского съезда по общей и прикладной химии. - М., 2007. - Т. 3. - С. 358.
58. Rozentsvet, V. A. Structural composition of the chain fragments of the cationic polyisoprene over high-resolution NMR spectrum / V. A. Rozentsvet, A. S. Khachaturov // Molecular Order and Mobility in Polymer Systems : Book Abstr. 6th International Simposium. - St. Petersburg, 2008. - P. 057.
Размещено на Allbest.ru
...Подобные документы
Изучение основных реакций, обусловливающих формирование молекулярной цепи полиизопрена, и их количественная оценка. Участие молекул мономера и непредельных фрагментов полиизопрена в определении концентрации активных центров в процессе полимеризации.
реферат [513,2 K], добавлен 18.03.2010Эмульсионная полимеризация, капсуляция. Дисперсионный анализ диоксида титана. Определение поверхностного натяжения жидкостей. Влияние неорганического носителя на стабильность и свойства акриловых дисперсий. Условия безопасного проведения исследований.
дипломная работа [3,2 M], добавлен 14.03.2013Особенности проведения эмульсионной (латексной) полимеризации и капсуляции. Выбор неорганического носителя для дисперсий акриловых мономеров, их синтез. Исследование влияния диоксида титана на агрегативную устойчивость и реологические свойства дисперсий.
дипломная работа [1,1 M], добавлен 25.02.2013Аналитический обзор методов производства поливинилхлорида. Физико-химические основы производства винилхлорида. Производство поливинилхлорида методом блочной полимеризации. Эмульсионная полимеризации винилхлорида. Полимеризация винилхлорида в суспензии.
реферат [43,3 K], добавлен 24.05.2012Исследование полимеризации диацетиленовых мономеров, полимеризующихся только в кристаллическом состоянии с образованием полимеров, состоящих из вытянутых цепей с сопряженными связями. Термическая полимеризация и полимеризация под действием Y излучения.
реферат [323,3 K], добавлен 22.02.2010Общая характеристика и классификация диенов. Формула высокомолекулярных соединений полиолефинов, образующихся при полимеризации или сополимеризации ненасыщенных углеводородов, каучуки синтетические. Этиленпропиленовые каучуки, способ их получения.
реферат [345,0 K], добавлен 11.11.2009Изучение физических и химических свойств полимеров и взаимодействие их друг с другом. Описание и свойства поли-е-капроамида, его структура и конформация. Схема реакций получения поли-е-капроамида. Применение поли-е-капроамида для производства волокон.
реферат [1,2 M], добавлен 30.12.2008Ознакомление с процессом полимеризации акриловых мономеров в присутствии карбонилов металлов. Характеристика особенностей применения полимеров, модифицированных фосфазенами. Исследование и анализ химической структуры гексазамещенного циклофосфазена.
дипломная работа [1,5 M], добавлен 14.11.2017Типы диенов: изолированные, сопряженные и куммулированные. Способ получения дивинила из этанола. Строение сопряженных диенов. Причины затрудненного вращения в молекуле бутадиена. Реакции полимеризации. Реакционная способность кумулированных алкадиенов.
контрольная работа [320,4 K], добавлен 05.08.2013Характеристика методов получения политетрафторэтилена: эмульсионная, радиационная, суспензионная полимеризация, фотополимеризация. Кинетика и механизм суспензионной полимеризации тетрафторэтилена в воде, зависимость его плотности от молекулярной массы.
курсовая работа [1,2 M], добавлен 13.12.2010Влияние кислорода на полимеризацию с катализаторами. Особенности образования соединений ванадия высшей валентности. Зависимость эффективных констант скорости полимеризации этилена. Порядок подачи компонентов катализатора и кислорода в реакционную зону.
статья [362,6 K], добавлен 22.02.2010Физико-химические характеристики изопрена. Основные способы его производства. Получение изопрена жидкофазным окислением углеводородов и из изобутена и формальдегида. Особенности метатезиса бутена. Синтез изопрена из пропилена, ацетона и ацетилена.
курсовая работа [1,3 M], добавлен 28.01.2015Выбор и обоснование технологической схемы и аппаратурного оформления фазы производства. Описание технологического процесса изготовления поливинилхлорида: характеристика сырья, механизм полимеризации. Свойства и практическое применение готового продукта.
курсовая работа [563,9 K], добавлен 17.11.2010Окислительная димеризация метана. Механизм каталитической активации метана. Получение органических соединений окислительным метилированием. Окислительные превращения органических соединений, содержащих метильную группу, в присутствии катализатора.
диссертация [990,2 K], добавлен 11.10.2013Образование высокомолекулярного соединения из молекул-мономеров в ходе реакций полимеризации, поликонденсации. Процесс поликонденсации – ступенчатый процесс, в котором образующиеся продукты взаимодействуют друг с другом. Каталитическая полимеризация.
реферат [123,7 K], добавлен 28.01.2009Исследование процесса каталитической переработки отходов пластмасс в присутствии новых катализаторов на основе природных минералов и отходов промышленных производств в жидкие топлива. Установление оптимальных режимов проведения данного процесса.
дипломная работа [930,2 K], добавлен 24.04.2015Суть процесса автоускорения при радикальной полимеризации метилметакрилата. Реологические параметры реакционной системы для выявления корреляции кинетических параметров начала автоускорения со структурой и физическим состоянием полимеризующейся системы.
статья [204,1 K], добавлен 22.02.2010Технология производства диоксида титана, области применения. Получение диоксида титана из сфенового концентрата. Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков. Производство диоксида титана сульфатным и хлорный методом.
курсовая работа [595,9 K], добавлен 11.10.2010Высокая начальная скорость прививочной полимеризации полиметакриловой кислоты на поликапроамид является следствием поведения инициирующей системы при различном соотношении ее компонентов и высокой сорбцией мономера волокном на начальных стадиях процесса.
статья [222,3 K], добавлен 18.03.2010Особенности полимеризации акриламида в водных растворах, инициируемой персульфатом калия и специально добавленным трис- (2-карбамоилэтил) амином (ТКА). Кинетика взаимодействия в системе персульфат — ТКА. Влияние ТКА на гомолитический распад персульфата.
статья [185,6 K], добавлен 03.03.2010