Гетерогенный катализ

Элементарные стадии в гетерогенном катализе. Кинетика и механизмы гетерогенно-каталитических реакций. Примеры термодинамических показателей хемосорбционных процессов, структуры частиц. Классификация гетерогенных катализаторов по электронным свойствам.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 05.04.2020
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 3.11 - Примеры расположения атомов первых трех поверхностных слоев для различных кристаллографических плоскостей

В объеме катализатора атомы кристаллической решетки координационно насыщены. Атомы на поверхности катализатора координационно не насыщенны и имеют свободные валентности. Этим и объясняется их каталитическая активность. В зависимости от индекса кристаллографической плоскости, которая образует поверхность катализатора, атомы имеют различное количество свободных валентностей и, следовательно, обладают различной каталитической активностью. На Рисунке 3.11 изображены три кристаллографические плоскости металлического Ni, расположение атомов в объеме и на поверхности, а также соответствующие координационные числа и свободные валентности. Видно, что наименее координационно насыщенными являются атомы на плоскости (110). Очевидно, что потенциально они обладают наибольшей активностью в хемосорбции. Но каталитическая активность будет определяться не только этим фактором, но и геометрией расположения поверхностных атомов и геометрией молекулы адсорбата.

Рис. 3.12 - Количество окружающих атомов и свободных валентностей на различных кристаллографических плоскостях никеля в гкц кристаллической решетке

Влияние типа упаковки и межатомного расстояния на каталитическую активность металлов иллюстрируется следующим примером. Было установлено, что только металлы имеющие плотнейшую упаковку (т.е. координационное число - 12, что достигается только у металлов с ГЦК и ГПУ решетками) и межатомные расстояния в диапазоне 0,248-0,277 нм катализируют реакцию дегидрирования циклогексана до бензола (Таблица 5,8). Это связано с тем, что при дегидрировании до бензола хемосорбированная промежуточная частица должна располагаться на поверхности катализатора строго определенным образом, кек изображено на Рисунке 3.12. Такое расположение возможно только для охарактеризованных выше металлов.

Таблица 3.3 - Структура кристаллической решетки и межатомное расстояние (нм) для некоторых металлов

Тип кристаллической решетки

оцк

гцк

гпу

Ta

W

Mo

V

-Cr

-Fe

0.286

0.272

0.272

0.260

0.246

0.248

Ce

Ag

Au

Al

Pt*

Pd*

Ir*

Rh*

Cu*

-Co*

Ni*

0.366

0.288

0.288

0.286

0.276

0.274

0.270

0.268

0.256

0.252

0.248

Mg

Zr

Cd

Ti

Os*

Zn*

Ru*

-Co*

Be

0.320

0.312

0.298

0.292

0.270

0.266

0.266

0.252

0.224

* - Металлы, катализирующие дегидрирование циклогексана.

Рис. 3.13 - Расположение хемосорбированной частицы на поверхности металлов с плотнейшей упаковкой при дегидрировании циклогексана до бензола

Как было показано выше, в зависимости от кристаллографической плоскости, поверхностные атомы на ней располагаются определенным геометрическим образом (Рис. 3.12 и 3.13), поэтому различные кристаллографические поверхности даже одного и того же катализатора обладают различной каталитической активностью. Ярким примером служит активность металлического железа в реакции синтеза аммиака из азота и водорода. Установлено, что активность граней (110), (100) и (111) монокристалла металлического железа, имеющего ОЦК упаковку, в реакции гидрирования азота до аммиака соотносятся как 1:13:430. Наименьшую активность проявляет плоскость (110) на которой атомы железа наиболее удалены друг от друга, а наивысшую - плоскость (111) состоящая из наиболее близко расположенных атомов железа.

Очевидно, что реальная поверхность промышленного катализатора состоит из множества малых кристаллитов, расположенных хаотически и имеющих набор различных кристаллографических плоскостей.

Кроме этого, поверхность реального катализатора имеет целый ряд структурных дефектов (Рис. 3.14), таких как: терраса, излом, ступень (одно- и многоатомная), адсорбированный атом, вакансия.

Рис. 3.14 - Структура поверхности в реальном катализаторе

Террасы представляют собой протяженные участки, образованные одной кристаллографической плоскостью. Если терраса образована низкоиндексной плоскостью ((100), (110), (111)), то она проявляет все свойства этой плоскости. Но высокоиндексные плоскости могут образовывать более сложные многоступенчатые поверхности. Так, например, поверхность платины (557) представляет собой террасы (111), соединенные моноатомными ступенями (001).

В ходе каталитической реакции структурные дефекты могут непрерывно исчезать и возникать. В результате этого наблюдается некоторая усредненная активность катализатора.

Таким образом, в конечном итоге характер взаимодействия реагентов с поверхностными атомами катализатора определяется:

типом кристаллической решетки;

индексом кристаллографической плоскости, образующей поверхность, где расположен атом;

структурой поверхности (плоская терраса, излом, вакансия, ступень и пр.)

Рассмотрим влияние стерического фактора на примере реакции гидрирования этилена на Ni. Молекула этилена ассоциативно хемосорбируется на поверхности Ni, с разрывом -связи и образованием двух -связей с соседними атомами Ni (Рис. 3.15).

Рис. 3.15 - Хемосорбция молекулы этилена на поверхности металлического никеля

Оказалось, что поверхность (111) Ni намного менее активна в реакции гидрирования этилена, чем поверхности (100) и (110). Объяснение этому явлению можно дать с точки зрения влияния стерических факторов.

Экспериментально установлено (методом ДМЭ (LEED)), что межатомные расстояния Ni-Ni на различных кристаллографических плоскостях составляют 0,25 и 0,35 нм, а длина связи С-С у хемосорбированного этилена 0,182 нм.

Таблица 3.4 - Адсорбция и гидрирование этилена на разных кристаллографических плоскостях Ni

Расстояние Ni-Ni

Плоскость

Угол Ni-С-С

Связь Ni-С

Каталитическая активность

0,25 нм

(111)

105о

Прочная, стабильная

Низкая

0,35 нм

(100); (110)

123о

Слабее

Высокая

По длинам межатомных расстояний в поверхностном комплексе можно вычислить угол связи Ni-С-С, который составляет 105о для плоскости (111) и 123о для плоскостей (100) и (110). Угол 105о по величине очень близок к тетраэдрическому (109о), поэтому связь в комплексе на плоскости (111) прочная и стабильная, и дальнейшая реакция протекает медленно.

А на плоскостях (100) и (110) геометрическая ситуация менее выгодна. Хемосорбция менее прочная, молекула этилена более вытянута и более легко вступает в реакцию гидрирования. Суммарные данные приведены в Таблице 5.9.

Аналогичный подход может быть распространен и на другие металлы. На Рисунке 5.30 приведена диаграмма влияния межатомного расстояния на поверхности (100) у металлов: Ta, Ni, Rh, Pd, Pt, Fe, W - на каталитическую активность в реакции гидрирования этилена.

Рис. 3.15 - Относительная скорость гидрирования этилена, как функция межатомного расстояния на плоскости (100) переходных металлов

Максимальную активность проявляет Rh у которого межатомное расстояние равно 0,375 нм (больше, чем у никеля, поэтому хемосорбированная молекула этилена более активирована и легче вступает в реакцию). При дальнейшем увеличении расстояния двухцентровая ассоциативная хемосорбция становится все слабее, что приводит к снижению концентрации активированных молекул на поверхности (а следовательно, и скорости реакции), вплоть до полной невозможности образовывать двухцентровой комплекс.

При уменьшении расстояния металл-металл хемосорбция становится все более прочной, комплекс более стабильный и менее реакционно способный.

Однако, ошибочным будет утверждение, что на каталитическую активность в рассмотренной модельной реакции влияет только геометрический фактор. Безусловно, необходимо учитывать и влияние энергетического фактора (теплота адсорбции). Но в данном, конкретном случае вклад геометрического фактора является определяющим.

3.5 Структурно-чувствительные и структурно-нечувствительные реакции. Дисперсность металлов

Помимо взаимного расположения атомов катализатора на кристаллографических плоскостях, большое влияние также оказывает место расположения атомов на дефектах поверхности катализатора.

Так, например, при гидрогенолизе циклогексана до н-гексана на платине, атомы на изломах имеют активность на порядок выше, чем атомы на ступенях, а наименее активны - атомы на террасах. Таким образом по активности поверхностные атомы платины можно разделить на три группы:

Высоко координационно-насыщенные атомы на террасах: низкая активность;

Атомы на ступенях: более активны, катализируют разрыв С-Н и Н-Н связей;

Сильно координационно-ненасыщенные атомы на изломах: высоко активны, катализируют разрыв С-С связей.

По причине высокой активности атомы ступеней и изломов не закоксовываются во время реакции. Предполагается, что образующийся на них слой карбонизированного продукта немедленно удаляется по реакции гидрирования.

Методом ИК-спектроскопии была изучена хемосорбционная активность платины по отношению к СО. Были выявлены следующие комплексы СО на поверхности Pt:

(СО) на ступенях: 2066 см-1, низкая степень покрытия поверхности, разрыхленная связь СО;

(СО) на террасах: 2090 см-1, высокая степень покрытия поверхности.

Эти данные объясняют высокую активность атомов Pt на ступенях в реакциях с участием СО.

Еще один пример влияния структуры поверхности на каталитическую активность - разложение ацетонитрила на никеле (Рис. 3.16).

Рис. 3.16 - Адсорбция и разложение ацетонитрила на поверхности Ni

Было установлено, что на гладких поверхностях (111) адсорбция ацетонитрила слабая и обратимая, а расщепление протекает значительно медленнее, чем на плоскости (110), которая имеет более высокую плотность ступенек.

Это объясняется тем, что молекула ацетонитрила всегда адсорбируется через атом азота и нитрильная группа располагается перпендикулярно поверхности. Таким образом, на ровной поверхности (Рис. 3.16а) геометрически не может произойти взаимодействие СН3-группы с поверхностью, и молекула остается не достаточно активированной. На изломе, ступени или рядом со ступенью происходит активирование водорода метильной группы и молекула легко подвергается разложению (Рис. 3.16 б,в).

Как следует из рассмотренных примеров, скорость каталитической реакции во многих случаях сильно зависит от геометрического строения активного центра. Наблюдаемая скорость гетерогенно-каталитической реакции складывается из суммы скоростей реакций, протекающих на разных каталитических центрах поверхности. Очевидно, что суммарная, наблюдаемая скорость реакции пропорциональна концентрации активных центров (на единицу массы катализатора), которая, в свою очередь пропорциональна удельной поверхности частиц катализатора.

Удельную поверхность металлических нанесенных катализаторов характеризуют дисперсностью.

Дисперсность (степень дисперсности) - это отношение числа поверхностных атомов к общему числу атомов активного компонента.

Рис. 3.17 - Расположение поверхностных атомов в кристаллитах платины: а) октаэдрической конфигурации; б) кубоктаэдрической конфигурации

Рассмотрим зависимость дисперсности от размера частицы на примере идеального октаэдрического кристалла платины (Рис. 3.17 а). Самый маленький кристалл представляет собой октаэдр из шести атомов (по 2 атома в каждом ребре), каждый из которых расположен на поверхности кристалла. Значит дисперсность равна 1 (или 100%), так как:

Следующий по размеру кристалл платины содержит по 3 атома в ребре и состоит из 19 атомов, из которых 18 атомов находятся на поверхности. Соответственно дисперсность, в данном случае, составляет 18:19 = 0,947 0,95 (или 95%). В Таблице 3.4 приведены данные по дисперсности для следующих, более крупных, кристаллов платины. Для частицы платины размером 1 мкм дисперсность составляет 0,001. В высокоэффективных промышленных платиновых катализаторах дисперсность нанесенной платины, как правило, выше 0,5.

На Рисунке (3.17 а) видно, что атомы поверхности платины можно разделить на три типа по координационному числу:

атомы на гранях имеют координационное число 9;

атомы на ребрах имеют координационное число 7;

атомы на углах имеют координационное число 4.

Соотношение поверхностных атомов с различным координационным числом также зависит от размера кристалла, то есть от дисперсности. Например, самый маленький октаэдрический кристалл (число атомов = 6) состоит только из угловых атомов с координационным числом 4. В Таблице 3.5 приведено среднее координационное число атомов поверхности для кристаллов различной дисперсности.

Таблица 3.5 - Дисперсность и среднее координационное число поверхностных атомов в октаэдрических кристаллах платины

Ребро кристалла

Дисперсность, %

Общее число атомов в кристалле

Среднее координационное число поверхностных атомов

Число атомов в ребре

Длина ребра, нм

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0,550

0,895

1,100

1,375

1,650

1,925

2,200

2,475

2,750

3,025

3,300

3,575

3,850

4,125

4,400

4,675

4,950

100

95

87

78

70

63

57

53

49

45

42

39

37

35

33

31

30

6

19

44

85

146

231

344

489

670

891

1156

1469

1834

2255

2736

3281

3894

4,00

6,00

6,94

7,46

7,76

7,97

8,12

8,23

8,31

8,38

8,44

8,47

8,53

8,56

8,59

8,62

8,64

Установлено, что для благородных металлов при высокой дисперсности преобладают угловые атомы; максимальное количество атомов на ступеньках достигается при средней дисперсности; террасы преобладают при низкой дисперсности. Поскольку каталитическая активность поверхностных атомов зависит от их координационной насыщенности, то естественно ожидать, что с уменьшением размеров частиц катализатора (т.е. с увеличением дисперсности) в некоторых реакциях должна изменяться наблюдаемая каталитическая активность.

По этому признаку каталитические реакции делят на: структурно-чувствительные - это реакции, для которых удельная активность или число оборотов на одном активном центре зависит от размера частиц катализатора; структурно-нечувствительные - это реакции для которых удельная активность или число оборотов на одном активном центре не зависит от размера частиц катализатора. К структурно-чувствительным реакциям, как правило относятся те, которые протекают с разрывом связей в молекуле реагента, и активация реагентов происходит на полиядерных центрах. Структурно-нечувствительные реакции, это, как правило, реакции в которых активированный реагент связан с одним атомом поверхности катализатора (одноцентровая хемосорбция). Причем, одна и та же реакция может быть структурно-чувствительной на одном катализаторе и структурно-нечувствительной на другом. Примеры реакций обоих типов приведены в Таблице 3.6.

Таблица 3.6 - Примеры структурно-чувствительных и структурно-нечувствительных реакций.

Структурно-чувствительные реакции

Структурно-нечувствительные реакции

Гидрогенолиз:

Этан (Ni);

Метилциклопентан (Pt)

Циклогексан (Pt)

Гидрирование:

Бензол (Ni)

Этилен (Ni)

Изомеризация:

Бутан, Гексан (Pt)

Окисление:

углеводородов (Pt);

аммиака (Pt);

Дегидролциклизация:

Гексан, Гептан (Pt)

Синтез аммиака (Fe)

Гидродесульфирование (Re)

Гидрирование:

Бензол (Pt)

Этилен (Pt)

Кетоны (Cu)

Дегидрирование:

Циклогексан (Pt)

Окисление:

СО

Этилена до этиленоксида (Ag)

Гидродесульфирование (Mo)

Размещено на Allbest.ru

...

Подобные документы

  • Правило Вант-Гоффа. Уравнение Аррениуса и его применение. Теория активных столкновений реагирующих молекул. Основы теории переходного состояния. Кинетика гетерогенных реакций. Особенности гетерогенных процессов. Гомогенный и гетерогенный катализ.

    лекция [182,9 K], добавлен 28.02.2009

  • Видные деятели химии о катализе. Немного о промышленном катализе. Роль катализа в экологии. Энергетический барьер. Прохождение через энергетический барьер. Гомогенный катализ. Гетерогенный катализ. Катализ в биохимии.

    курсовая работа [35,3 K], добавлен 26.01.2005

  • Свойства и экспериментальное исследование гетерогенных катализаторов. Интегральные, дифференциальные лабораторные реакторы, их характеристика. Изотопные методы в катализе. Термопрограммированные десорбция и реакция. Физические основы флеш-десорбции.

    реферат [2,3 M], добавлен 26.01.2009

  • Гетерогенный катализ, закономерности. Свойства пористых катализаторов. Взаимодействие катализатора и реакционной среды. Кинетическое и математическое моделирование гетерогенных процессов. Некаталитические гетерогенные процессы в системе газтвердое тело.

    учебное пособие [436,5 K], добавлен 06.11.2012

  • Катализ как химическое явление, суть которого заключается в изменении скоростей химических реакций при действии некоторых веществ – катализаторов. Факторы, влияющие на скорость протекания каталитических реакций, их физическое обоснование и значение.

    презентация [5,3 M], добавлен 27.03.2015

  • Применение закона действия масс для реакций на поверхности. Алгоритмы вывода кинетических уравнений для линейных механизмов на основании методов теории графов. Применение теории графов в химической кинетике. Последовательность ориентированных дуг.

    реферат [95,7 K], добавлен 28.01.2009

  • Определение скорости химической реакции. История открытия, понятие и типы каталитических реакций. Мнения видных деятелей химии о явлении катализа, физические и химические его аспекты. Механизм гетерогенного катализа. Ферментативный катализ в биохимии.

    реферат [19,5 K], добавлен 14.11.2010

  • Химическая кинетика и ее значение в управлении химическими процессами. Классификация реакций по средам протекания, их отличительные черты. Скорость химических реакций, зависимость ее от температуры среды и наличия света. Принцип действия катализаторов.

    реферат [152,7 K], добавлен 29.05.2009

  • Задачи химической кинетики, стадии химического процесса. Открытые и замкнутые системы, закон сохранения массы и энергии. Закон Гесса и его следствие, скорость реакций. Явление катализа, гомогенные, гетерогенные, окислительно-восстановительные реакции.

    курсовая работа [95,9 K], добавлен 10.10.2010

  • Активность реагентов и константы равновесия комплексов, входящих в материальный баланс по катализатору при исследованиях кинетики реакций. Поверхности и кинетика Лэнгмюра-Хиншельвуда при адсорбции смеси молекул. Статистическое планирование эксперимента.

    реферат [65,5 K], добавлен 28.01.2009

  • Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат [48,6 K], добавлен 16.11.2009

  • Скорость химической реакции. Классификация каталитических процессов. Гомогенный катализ. Кислотный катализ в растворе. Энергетические профили некаталитического и каталитического маршрутов химической реакции. Активированный комплекс типа Аррениуса.

    реферат [151,6 K], добавлен 30.01.2009

  • Понятие биологических катализаторов, действие ферментов в живых системах и их классификация. Факторы, влияющие на активность биологических катализаторов. Вещества, называющиеся коферментами. Кинетика ферментативного катализа, уравнение Михаэлиса-Ментена.

    презентация [943,7 K], добавлен 03.04.2014

  • Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа [43,3 K], добавлен 04.04.2009

  • Основные понятия и законы химии. Классификация неорганических веществ. Периодический закон и Периодическая система элементов Д.И. Менделеева. Основы термодинамических расчетов. Катализ химических реакций. Способы выражения концентрации растворов.

    курс лекций [333,8 K], добавлен 24.06.2015

  • Виды фотохимических процессов, протекающих при фотовозбуждении молекул. Различие кинетики фотохимических и темновых реакций. Полные и локальные скорости фотохимических реакций. Кинетика флуоресценции, фосфоресценции и интеркомбинационной конверсии.

    курсовая работа [2,8 M], добавлен 13.10.2011

  • Предмет термохимии, изучение тепловых эффектов химических реакций. Типы процессов химической кинетики и катализа. Энтальпия (тепловой эффект) реакции. Скорость реакции, закон действующих масс. Константа химического равновесия, влияние катализатора.

    презентация [2,2 M], добавлен 19.10.2014

  • Катализаторы-металлы, смешанные и полифункциональные катализаторы гетерогенного катализа. Требования к катализатору. Теории гетерогенного катализа. Мультиплексная и электронная теории. Теория активных ансамблей. Катализ в переработке природного газа.

    курсовая работа [637,0 K], добавлен 06.05.2014

  • Особенности полимер-металлических комплексов. Классификация и виды полиэлектролитов. Получение новых металлполимерных комплексов, исследование их свойств и практического применения их в катализе. Агломерация комплексообразующих молекул в растворах ИПЭК.

    дипломная работа [1,7 M], добавлен 24.07.2010

  • Понятия химической кинетики. Элементарный акт химического процесса. Законы, постулаты и принципы. Закон сохранения энергии. Принцип микроскопической обратимости, детального равновесия, независимости химических реакций. Закон (уравнение) Аррениуса.

    реферат [74,3 K], добавлен 27.01.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.