Фрактальная геометрия Б. Мандельброта и организация архитектурных систем

Фрактальность природных и архитектурных форм. Фракталы как язык геометрии. Линейные и нелинейные фрактальные языки. Треугольник Серпиньского, практические возможности и задачи фрактальной геометрии, квадратичный диалект. Множества Жюлиа и Мандельброта.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 11.01.2013
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Приднепровская государственная академия строительства и архитектуры

Кафедра основ архитектуры

Реферат на тему

Фрактальная геометрия Б. Мандельброта и организация архитектурных систем

Выполнила студ. гр. 521 Гайдабас А.И.

Проверил проф .А.В. Челнаков

Днепропетровск 2011

Фрактальность природных и архитектурных форм

С целью выявления общности и специфических отличий морфогенеза в природе и архитектуре рассмотрены некоторые здания и сооружения в сопоставлении с природными формами и фрактальными моделями. Архитектурные формы более регулярны, чем природные, и вовлекают малое число повторов с их вариациями.

В течение последних десятилетий стремительно развивается новая обширная область междисциплинарных исследований, включающая нелинейную динамику, фрактальную геометрию, теорию самоорганизации. Междисциплинарный подход существенно раздвигает рамки научных исследований, помогая выявить общие черты морфогенеза в живой и неживой природе. Фрактальные алгоритмы (правила построения) в природе и творчестве человека открыл Бенуа Мандельброт (B. Mandelbrot). Одна из важнейших характеристик фрактала - масштабная инвариантность (самоподобие в широком диапазоне масштабов). Дробное значение фрактальной размерности характеризует степень заполнения пространства фрактальной структурой, тогда как значение лакунарности представляет собой меру неоднородности структуры фрактала.

Множество процессов, происходящих в природе и обществе - от космических до социальных и физиологических, - характеризуется хаотической фрактальной динамикой. Фрактальность природных объектов подтверждается возможностью построения весьма правдоподобных компьютерных ландшафтов виртуального мира на основе простых фрактальных программ, в которых приближение к реальности достигается некоторой степенью нерегулярности путем введения случайных чисел. Морфогенез растений также успешно имитируется подобными программами. Моделирование морфогенеза животных на всех уровнях их организации - динамично развивающаяся область биологии. Биологические структуры сложной пространственной организации могут быть количественно охарактеризованы путем определения фрактальной размерности, служащей показателем морфологической сложности этих структур [8]. Вовлечением фрактальных алгоритмов в биологический морфогенез обеспечивается сжатое генетическое кодирование. Фракталоподобные структуры живой природы характеризуются ограниченной шкалой повторов и менее хаотизированы по сравнению с фракталами неживой природы; как правило, это мультифракталы, т.е. неоднородные фракталы.

Бенуам Мандельбромт (фр. Benoоt B. Mandelbrot; 20 ноября 1924, Варшава -- 14 октября 2010, Кембридж) -- французский и американский математик, создатель фрактальной геометрии. Лауреат премии Вольфа по физике (1993).

«Патологические структуры», придуманные математиками XIX столетия, в последние годы приняли форму фракталов, -- математических объектов, имеющих дробную размерность в отличие от традиционных геометрических фигур целой размерности (например, одномерных линий или двумерных поверхностей). Нынешнее увлечение фракталами в основном является следствием работы Бенуа Б. Мандельброта, сотрудника Исследовательского центра имени Томаса Дж. Уотсона корпорации IBM в Йорктаун-Хейтсе (шт. Нью-Йорк). Термин «фрактал» был введён Мандельбротом в 1975 году; он происходит от латинского слова fractus, прилагательного от глагола frangere, что значит «ломать, разбивать». Понятие фракталов ворвалось в сознание математиков, других ученых и даже людей, не связанных с наукой, в 1983 году, когда была опубликована основополагающая книга Мандельброта «Фрактальная геометрия природы».

Фракталы -- это нечто гораздо большее, чем математический курьёз. Они дают чрезвычайно компактный способ описания объектов и процессов. Многие структуры обладают фундаментальным свойством геометрической регулярности, известной как инвариантность по отношению к масштабу, или «самоподобие». Если рассматривать эти объекты в различном масштабе, то постоянно обнаруживаются одни и те же фундаментальные элементы. Эти повторяющиеся закономерности определяют дробную, или фрактальную, размерность структуры. Фрактальная геометрия описывает природные формы, по-видимому, изящнее и точнее, чем евклидова геометрия.

Рис. 1. Трёхмерное представление множества Мандельброта используется для изучения этой сложнейшей и интереснейшей фрактальной структуры. На рисунке показан электрический потенциал, окружающий заряженное множество Мандельброта. Странное сходство между множеством Мандельброта и свойствами реального мира показывает, что в природе доминируют фракталоподобные структуры. Изображение взято с видеоленты компьютерного фильма, полученного авторами и их коллегами

Инвариантность по отношению к масштабу имеет примечательную параллель в современной теории хаоса, согласно которой многие явления, несмотря на то, что они следуют чётким детерминистским правилам, в принципе оказываются непредсказуемыми. Хаотические явления, такие, как турбулентность атмосферы или ритм сердечных сокращений у человека, проявляют сходные закономерности в вариациях в различных временных масштабах во многом подобно тому, как объекты, обладающие инвариантностью к масштабу, проявляют сходные структурные закономерности в различных пространственных масштабах. Соответствие между фракталами и хаосом не случайно. Скорее оно является симптомом их глубинной связи: фрактальная геометрия -- это геометрия хаоса.

Ещё одна параллель между фрактальной геометрией и теорией хаоса заключается в том, что последние открытия в той и другой области стали возможными благодаря мощным современным компьютерам. Этот факт противоречит традиционным математическим представлениям. В то время как многие математики встретили приход компьютеров с энтузиазмом и чувством облегчения, другие рассматривают компьютеризацию как отрицание чистой математики.

Фракталы -- это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких, как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур. Эти алгоритмы трансформируются в геометрические формы с помощью компьютера. Репертуар алгоритмических элементов неисчерпаем. Овладев языком фракталов, можно описать форму облака так же чётко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии.

Язык -- это очень подходящая метафора для концепции, лежащей в основе фрактальной геометрии. Как известно, индо-европейские языки базируются на алфавите с конечным числом букв (например английском, включающем 26 букв). Буквы не несут в себе никакого смыслового значения до тех пор, пока они не соединены в слова. Точно так же евклидова геометрия состоит лишь из нескольких элементов (прямая, окружность и т.д.), из которых строятся сложные объекты, геометрически выражающие некий смысл.

С другой стороны, азиатские языки, например китайский, состоят из символов, которые сами по себе уже выражают смысловое значение. Количество возможных символов, или элементов этих языков, произвольно велико и может считаться бесконечным. Аналогично можно рассматривать и фрактальную геометрию. Она состоит из бесконечного количества элементов, каждый из которых является завершённым и единственным в своем роде. Геометрические элементы определяются алгоритмами, которые функционируют как единицы «смыслового значения» в рамках фрактального языка.

Существуют две основные группы фрактальных языков: линейные и нелинейные. Оба диалекта используют бесконечное количество алгоритмов и, следовательно, охватывают бесконечное число возможных фрактальных изображений. Язык нелинейных фракталов гораздо богаче и разнообразнее. Большинство диалектов следует детерминированному набору правил (аналогичных правилам грамматики и фонетики). Одно семейство фракталов, называемых случайными фракталами, отличается от других тем, что его объекты строятся путём применения управляемой случайности.

Геометрия линейных фракталов представляет собой наиболее распространённый диалект фрактальных языков. Эти фракталы считаются линейными, потому что их алгоритмы аналогичны по форме тем алгоритмам, которые определяют линии на плоскости (на математическом языке это означает, что они содержат лишь члены первого порядка.)

Линейный алгоритм можно исследовать с помощью воображаемой копировальной машины со многими редукторами, способными многократно уменьшать исходное изображение. Такая машина является метафорическим выражением блестящей работы, выполненной Дж. Хатчинсоном, математиком из Австралийского национального университета в Канберре. Эта машина действует так же, как и обыкновенная копировальная машина, обладающая возможностью уменьшать или увеличивать изображение, но отличается тем, что имеет несколько уменьшающих линз, каждая из которых может копировать вводимое в машину изображение. Линзы могут настраиваться на различную степень уменьшения, и уменьшенные изображения могут помещаться в любое место. Таким образом, изображение может перемещаться, сжиматься, отражаться, вращаться и трансформироваться произвольным образом при условии, что прямые линии на изображении остаются прямыми после преобразования.

Рис. 2. Копировальная машина с механизмом многократного уменьшения, работая в режиме обратной связи, создаёт фрактальную структуру. Несколько линз, имеющихся в машине, преобразуют исходное изображение (поступающее на вход) в новое изображение (на выходе), которое представляет собой уменьшенное изображение того, что было заложено на вход. С выхода изображение вновь поступает на вход -- и так до бесконечности, пока не получится окончательное изображение

Способ, которым изображение перемещается и сжимается, определён алгоритмом. С помощью механизма обратной связи изображение подвергается многократной обработке, в процессе которой постепенно возникает фрактальная форма. Одним из примеров фрактала, полученного при помощи такого алгоритма с обратной связью (рекурсивного алгоритма), является треугольник Серпиньского, названный в честь польского математика Вацлава Серпиньского, который впервые описал его в 1916 году. Треугольник Серпиньского обладает свойством самоподобия: каждая часть фигуры, сколь бы малой она ни была, содержит изображение, которое в увеличенном виде воспроизводит целый треугольник Серпиньского.

Треугольник Серпиньского строится копировальной машиной со многими редукторами следующим образом. Изображение помещается в машину, уменьшается наполовину и копируется три раза, по одной копии в каждой вершине равностороннего треугольника. В результате получается триада. При повторении описанной процедуры триада, полученная на предыдущем шаге, снова уменьшается наполовину и копируется три раза и т.д. Уже после шести копирований, или итераций, начинает проступать окончательная форма, которая называется предельным изображением, поскольку оно является окончательным результатом бесконечно повторяющегося цикла копировальной машины. Предельное изображение можно довольно быстро определить путем оценки, но его невозможно достичь в рамках самого процесса.

Предельное изображение не зависит от исходного изображения. Например, в качестве исходного изображения можно взять слово FRACTAL. После шести шагов копирования исходное изображение станет уже практически невидимым, но зато в явном виде начнёт обнаруживаться форма треугольника Серпиньского. С каждым новым циклом копирования первоначальное слово FRACTAL будет всё более неразборчивым.

При небольшой перенастройке копировальной машины можно получить принципиально другие предельные изображения: фрактальное дерево или фрактал в форме листа папоротника (см. рис. 4). Предельное изображение зависит лишь от правил сжатия и переноса (т.е. от алгоритма), запрограммированных в машине.

Рис. 4. Фрактальные изображения, генерируемые многократно копировальной машиной с обратной связью, зависят лишь от запрограммированной процедуры копирования. Слово FRACTAL трансформируется программой, которая уменьшает изображение вдвое и копирует его три раза: по одной копии в каждой вершине равностороннего треугольника. Результирующее изображение представляет собой треугольник Серпиньского (слева). Несколько более замысловатые преобразования такого же рода порождают фрактал в форме листа папоротника (в центре) или фрактального дерева (справа). Любое исходное изображение, пропущенное через копировальную машину, даст один и тот же результат. Достаточно нескольких чисел, определяющих правила копирования (вверху), чтобы описать изображение, которое потребовало бы сотен тысяч чисел для его представления обычно применяющимися средствами

Эти правила представляют собой частный случай общего понятия, называемого математическими аффинными линейными преобразованиями на плоскости. Эти преобразования сохраняют прямые линии, но изменяют их положение, масштаб и общую ориентацию. Правила линейного диалекта фрактального языка можно полностью описать некоторым числом (n) функций преобразования, обозначаемых как {f1, f2, ..., fn} (см. верхнюю часть рис. 4).

Здесь кроются богатые практические возможности фрактальной геометрии. Описывая объекты посредством линейного фрактального диалекта, мы можем значительно уменьшить количество данных, необходимых для передачи изображения по линиям связи или для хранения его в памяти компьютера. Это было убедительно продемонстрировано на примере листа папоротника. Сложная форма, подобная форме этого листа, может быть полностью описана линейным алгоритмом, основанным лишь на 24 числовых параметрах. Заметим, что представление того же листа в точечном виде, как телевизионное изображение, требует несколько сотен тысяч числовых величин. В принципе любое изображение кодируется при помощи необходимого набора функций преобразования.

При передаче спутниковых изображений на землю время передачи, сложность сигнала и стоимость можно значительно снизить за счёт кодирования этих изображений с помощью фрактальных алгоритмов. Эта перспектива ставит перед специалистами исключительно важную и до сих пор в основном не решённую задачу. Каким образом найти минимальное семейство функций преобразования { f1, f2, ..., fn}, необходимых для того, чтобы представить изображение с желаемой точностью? Эта задача в настоящее время является предметом интенсивных исследований. Среди более общих приложений описанных процедур преобразования можно отметить создание полутоновых или даже цветных изображений.

Кодирование с помощью фрактальных изображений оправданно лишь в том случае, когда существует эффективный метод «извлечения» изображения, скрытого во фрактальных алгоритмах. На примере фрактального папоротника можно всесторонне проанализировать, каким образом получается изображение. Правила копировальной машины для этого фрактала указывают, что в результате каждого преобразования должно быть четыре редукции и четыре перемещения предшествующего изображения. Одно преобразование осуществляет особенно резкую редукцию, в результате которой изображение сжимается в вертикальную линию; эта линия образует стебель.

Если начать с одного прямоугольника, то на каждом шаге копирования число прямоугольников будет возрастать в четыре раза, всего же после m преобразований их окажется 4m.После четырёх итераций исходное изображение (в данном случае прямоугольник) ещё легко различимо. Для того чтобы прямоугольник стал достаточно мал и чтобы выявилась предельная форма изображения (лист папоротника), нужно произвести приблизительно 50 итераций, а следовательно, вычислить и нарисовать 450 (приблизительно 1030) прямоугольников. Эта задача не под силу любому существующему компьютеру.

Перед лицом этих трудностей возникает вопрос, каким же образом можно воспроизвести предельные изображения? Трюк, при помощи которого это оказывается возможным, основан на алгоритме, называемом «игрой в хаос» и придуманным М. Барнсли и С. Демко из Технологического института в шт. Джорджия. Эта игра начинается с выбора произвольной точки на плоскости. Затем мы бросаем четырехстороннюю игральную кость. Каждая ее сторона соответствует одному из четырех преобразований, задающих форму листа. При этом мы случайным образом выбираем одно из преобразований {f1, f2, f3, f4}, которое затем применяется к выбранной точке на плоскости, перемещая её на новое место. Бросив кость ещё раз, мы выбираем следующее преобразование, которое применяется к точке, полученной на предыдущем шаге, и т.д. Точки, получаемые в результате последовательных бросаний кости, вскоре начинают плотно ложиться на плоскость, заполняя предельное изображение. Недостаток этого метода заключается в том, что для построения окончательного изображения может потребоваться слишком много времени.

В приведённом примере бросание кости обеспечивало равные вероятности для каждой функции fk (k обозначает одну из возможных функций). Предельное изображение можно построить значительно быстрее, если каждой fk поставить в соответствие вероятность Pk, с которой она будет выпадать в нашей игре, и таким образом одни функции fk станут более вероятными, чем другие. Процесс построения картинки ускоряется, если наиболее высокие вероятности поставить в соответствие функциям, которые меньше всего сжимают изображение. Благодаря этой поправке точки будут покрывать каждую область предельного изображения с одинаковой частотой, и в результате все фрагменты изображения будут проявляться одинаково быстро.

Подобная коррекция нашей «игры в хаос» позволяет описывать полутона, просто связывая частоту, с которой заданная область покрывается точками, с интенсивностью серого оттенка. При соответствующем подборе Pk желаемый оттенок серого цвета (другими словами, желаемую частоту попаданий точек) можно получить для каждой точки изображения. Применяя тот же метод для основных цветов (красного, зелёного и синего), можно кодировать цветные изображения. Таким образом достигается ещё большее снижение количества данных, представляющих фрактальное изображение.

Удовлетворительный метод автоматической генерации фрактального кодирования произвольного изображения пока не найден. Для самоподобных изображений, таких, как папоротник Барнсли, существует полуавтоматическая процедура, предусматривающая взаимодействие человека и машины. Сначала человек разбивает изображение на части, подобные всему изображению. В случае папоротникового листа два нижних лепестка, а также верхняя часть листа, остающаяся после удаления нижних лепестков, оказываются подобными общей форме листа. Можно сконструировать копировальную машину со многими редукторами, в которую были бы встроены преобразования, сводящие всё изображение к этим фрагментам. Это нетрудно сделать методом проб и ошибок, работая с компьютерной программой в интерактивном режиме.

Идея, лежащая в основе метода, заключается в том, что только самоподобные изображения могут кодироваться во фрактальной форме. Это ограничение можно преодолеть за счёт многообещающего расширения метода, над которым в настоящее время ведётся работа. Центральная идея расширения заключается в использовании нескольких копировальных машин, работающих одновременно, в параллель, в рамках иерархической сети. Такого рода сеть может управлять индивидуальными самоподобными фрагментами или комбинировать несколько фрагментов. Например, становится возможным создавать папоротниковый лист, состоящий из треугольников Серпиньского (см. рис. 3).

Теперь обратимся к другому семейству фрактальных языков, их нелинейным диалектам. Один их них, так называемый квадратичный диалект, привлекает к себе особое внимание. Он порождает большое разнообразие геометрических форм с помощью довольно простого алгоритма, тесно связанного с современной теорией хаоса.

Теория, лежащая в основе квадратичного диалекта, впервые была описана в 1918 году французским математиком Гастоном Жюлиа, находившимся тогда в госпитале после ранений, полученных на фронте во время первой мировой войны. Как его работа, так и работа его современника и соперника Пьера Фату вскоре были преданы забвению, однако недавние исследования Мандельброта вновь привлекли внимание к их теории. Интеллектуальные достижения Жюлиа и Фату примечательны тем, что в их распоряжении не было вычислительных машин и им всецело приходилось полагаться на воображение.

Жюлиа и Фату занимались изучением комплексных чисел; как известно, комплексное число состоит из действительного числа и мнимой части, содержащей в качестве множителя мнимую единицу i, определяемую как v-1. Комплексные числа обычно отображаются на плоскости с перпендикулярными координатными осями, одна из которых представляет действительные числа, а другая мнимые. Обоих учёных интересовал вопрос, что будет с последовательностью точек zk, на комплексной плоскости, если они порождаются преобразованием

q(z) = z2 + c

Каждая новая точка zk+1 получается подставлением предыдущей точки zk в приведённую формулу преобразования. Комплексное число c является управляющим параметром, который можно выбирать произвольным образом. Казалось бы несложный процесс с обратной связью порождает потрясающее многообразие форм.

Когда исходная точка z0 подвергается преобразованию, то получающаяся последовательность демонстрирует поведение двух типов. Она либо свободно путешествует по плоскости, постепенно уходя в бесконечность, либо оказывается замкнутой в определённой области комплексной плоскости. Первые из них образуют множество «беглецов», те же, что остаются в замкнутом пространстве, принадлежат множеству «пленников». Исходная точка z0, выбранная из множества пленников, генерирует последовательность, которая остаётся в численной неволе, независимо от того, сколько поколений этой последовательности вычисляется. Форма этой «тюрьмы» зависит от выбранного значения параметра c. Для точки z0, лежащей вне замкнутой области, последовательность zk удаляется от центра плоскости и уходит в бесконечность. Множество пленников и множество беглецов отделены друг от друга бесконечно тонкой границей, известной как множество Жюлиа (см. рис. 5).

Рис. 5. Множества Жюлиа -- это фрактальные границы, возникающие в результате итерирования квадратичного преобразования zІ+c. Они принимают разнообразные и удивительные формы, которые зависят только от числа c, называемого управляющим параметром. Некоторые значения c порождают множества Жюлиа, имеющие одно связное тело (вверху), при других значениях c эти множества распадаются на фрагменты и рассыпаются подобно пылинкам (внизу). Множество Мандельброта состоит из всех точек c, которые ассоциируются со связными множествами Жюлиа; оно служит также «оглавлением» для множеств Жюлиа

Удивительно, что множество Жюлиа можно получить с помощью копировальной машины с редукторами многократного уменьшения, если снабдить её специальными линзами, производящими преобразование, обратное g(z). Обращение

g(z) = z2 + c

состоит из двух функций преобразования

f1(u) = +vu - c и f2(u) = -vu - c.

(В этих функциях c -- это уже знакомый нам управляющий параметр, а u -- выбранная входная величина.) Эти две функции можно рассматривать в качестве «редукторов» копировальной машины. Повторяющиеся операции этой машины заставляют случайно выбранные точки перемещаться в сторону множества Жюлиа.

Присутствие квадратного корня в уравнении означает, что копировальная машина уже работает не с одним и тем же фактором редукции, или степенью сжатия. Более того, поскольку это преобразование нелинейно, прямые линии после преобразования становятся кривыми. Из одного исходного изображения сначала получаются два более мелких изображения, затем четыре, восемь и т.д., пока не начнёт постепенно проявляться предельное изображение (см. рис. 6). Как и в случае линейных фракталов, предельное изображение не зависит от конкретного исходного изображения, а полностью определяется функциями f1 и f2, или же, что эквивалентно, выбором параметра c.

Рис. 6. Нелинейные фракталы, такие, как множества Жюлиа, также могут быть построены с помощью копировальной машины с многократным уменьшением. Линзы в этом случае не просто уменьшают изображение, а искажают его, дробят и переносят. Две системы линз графически обращают квадратичное преобразование, которым определяется множество Жюлиа. На каждом шаге изображение изменяется двумя преобразованиями +v z - c и -v z - c, обратными к zІ+c. Предельное изображение, выдаваемое копировальной машиной, -- это множество Жюлиа

Теперь мы подошли к одной из самых трудных и в то же время захватывающих задач фрактальной геометрии. Если вернуться к метафоре языка, то задачу можно сформулировать в виде следующего вопроса: каковы грамматические правила квадратичного диалекта? Выражаясь же математическим языком, мы поставим этот вопрос так: лежит ли в основе бесконечного многообразия множеств Жюлиа некая регулярность?

Поиски ответа на этот вопрос привели к одному из наиболее замечательных открытий экспериментальной математики. Решение заключается в том известном Жюлиа и Фату факте, что для каждого управляющего параметра c получающееся в результате фрактальное изображение попадает в одну из двух категорий. Множество Жюлиа может быть единой связной областью или может состоять из бесконечного числа не связанных друг с другом точек, разбросанных подобно пылинкам.

Предположим, что мы нанесли точку на комплексной плоскости для каждого значения управляющего параметра c, которое принадлежит связному множеству Жюлиа, и оставили пробел для значений c, принадлежащих несвязным множествам. Результатом будет ставшее уже знаменитым множество Мандельброта -- фрактал, поражающий богатством своих форм.

Очевидно, нам нужно каким-то образом узнать, является ли данное множество Жюлиа связным, чтобы определить принадлежность точки c множеству Мандельброта. Одно из крупнейших достижений Жюлиа и Фату состояло в открытии ими того факта, что эта трудная задача решается путём несложных подсчётов. Рассмотрим последовательность значений zk, полученных по формуле

g(z) = z2 + c,

когда исходная точка z0 равна нулю. Таким образом, наше внимание концентрируется на ключевом факторе, управляющем параметре c. Получающаяся последовательность имеет вид 0, c, c2 + c, (c2 + c)2 + c, ... . Если она не уходит в бесконечность, то ассоциированное с параметром множество Жюлиа будет связным и точка c принадлежит множеству Мандельброта.

Каждая часть множества Мандельброта характеризует соответствующее семейство множеств Жюлиа. Например, основное сердцевидное тело множества Мандельброта характеризует множества Жюлиа, которые выглядят как смятые окружности. Хотя множество Мандельброта, строго говоря, не является самоподобным, как треугольник Серпиньского и фрактальный папоротник, оно обладает сходным свойством: увеличение границы области обнаруживает бесконечное число крошечных копий множества. Всё богатство форм и структур множества Мандельброта проявляется лишь при таком детальном его исследовании.

Возможно, наиболее замечательная особенность множества Мандельброта заключается в том, что оно служит бесконечно эффективным хранилищем изображений. Помимо того, что оно классифицирует множества Жюлиа на связные и несвязные, множество Мандельброта выступает также в роли непосредственного графического оглавления для бесконечного числа множеств Жюлиа. При увеличении множества Мандельброта в окрестности его пограничной точки c появляются формы, которые являются также строительными блоками множества Жюлиа, ассоциированного с данной точкой c. Однако математическая строгость этого открытия пока остаётся делом будущего. Тан Ли, уже известный молодой учёный, в настоящее время работающий в Лионском университете во Франции, показал, что множество Мандельброта ведёт себя описанным образом в окрестности большинства значений параметра c, лежащих точно на границе множества Мандельброта.

Рис. 7. Множество Мандельброта отражает порядок, лежащий в основе бесконечного многообразия множеств Жюлиа. Каждая точка множества Мандельброта представляет значение параметра c, порождающего связное множество Жюлиа. Если точка c лежит вне множества Мандельброта, то ассоциированное с ней множество Жюлиа несвязно. Множество Мандельброта содержит в себе невероятное богатство мельчайших деталей. Три последовательных увеличения фрагментов (отмечены квадратиками) позволяют увидеть подобные повторяющиеся структуры множества Мандельброта с добавлением многих новых и прежде не повторяющихся элементов. Если всё множество изобразить в масштабе, в котором представлен фрагмент на крайнем правом рисунке, то оно заняло бы площадь, на которой уместилось бы 100 футбольных полей

Свойства множества Мандельброта представляют собой очень трудную и интересную тему математических исследований. Огромного прогресса удалось достичь за счёт слияния математической теории и компьютерных графических экспериментов. В этом отношении особенно следует выделить фундаментальную работу А. Дуади из Высшей нормальной школы в Париже и Дж. Хаббарда из Корнеллского университета.

Самой успешной работой в этой области следует считать исследование так называемого электростатического потенциала множества Мандельброта. Представьте себе, что множество Мандельброта несёт на себе электрический заряд. Можно провести измерение потенциала, поместив точечный пробный заряд в окрестности множества и замерив величину электростатической силы, действующей на этот заряд. Оказывается, что вычисление этого потенциала тесно связано с рядом 0, c, c2 + c, (c2 + c)2 + c, ... , который используется для того, чтобы определить, принадлежит ли точка c множеству Мандельброта.

Задача получения трёхмерного представления потенциала оказалась весьма трудоёмкой, особенно в мультипликациях, используемых для изучения множества Мандельброта. Более тщательный анализ компьютерно-графических свойств потенциала недавно позволил снизить затраты машинного времени приблизительно на порядок. В результате исследователи, в том числе и авторы этой статьи, всё чаще изучают множество Мандельброта с помощью видеофильмов, генерируемых компьютером. Аналогичная работа проводится также над трёхмерными потенциальными представлениями других фракталов.

Все рассмотренные выше фракталы можно считать детерминированными. Хотя случайные процессы (такие, как бросание игральной кости) иногда и помогают генерировать фрактальные изображения, они не оказывают никакого влияния на окончательную форму фрактала. Совершенно иная ситуация имеет место в отношении другого класса фракталов, а именно так называемых случайных фракталов.

Один из фракталов такого типа может начинаться с треугольника, лежащего в произвольной плоскости. Средние точки сторон треугольника соединены между собой, так что треугольник оказывается разделённым на четыре меньших треугольника. Затем каждая средняя точка сдвигается вверх или вниз на определённую, случайно выбираемую величину. Тот же процесс применяется к каждому из меньших треугольников, затем к ещё меньшим и так далее до бесконечности. После достаточно большого количества итераций начинает возникать всё более детализированная поверхность.

В этом методе смещения средних точек случайные величины для перемещения средних точек вверх или вниз управляются определённым законом распределения, который тщательно подбирается, чтобы получить близкую аппроксимацию желаемой поверхности. Для того чтобы поверхность была относительно гладкой, в преобразования следует встроить правило, согласно которому величина смещения средних точек должна становиться очень малой уже после нескольких первых итераций. Такое правило позволяет добавлять лишь небольшие «кочки» к общим очертаниям ландшафта. Для представления изрезанной поверхности, характерной, скажем, для горного хребта или береговой линии, более подходящим будет правило медленного уменьшения смещений после каждого шага итерационного процесса.

У данного метода построения поверхностей существует много приложений. Он применялся, в частности, в качестве модели эрозии почвы, для анализа сейсмических явлений, чтобы лучше понять характер изменений в зоне разломов. Р. Восс, один из коллег Мандельброта по Исследовательскому центру корпорации IBM, воспользовался идеей метода, чтобы строить изображения планет, спутников, облаков и горных хребтов, которые выглядят весьма реалистично (см. рис. 8).

Рис. 8. Фрактальные ландшафты могут создаваться из фракталов методом случайного смещения средней точки. Средние точки сторон треугольника (a) смещаются вверх или вниз от плоскости изображения и соединяются с вершинами (b). При этом возникает четыре меньших треугольника, к которым повторно применяется та же процедура. Функция распределения вероятности определяет величину смещения и, следовательно, степень гладкости фрактального ландшафта. Затем графическая программа компьютера закрашивает треугольники, создавая различные оттенки (c). В результате получается весьма реалистичная картина (d)

Независимо от природы или метода построения у всех фракталов есть одно важное общее свойство: степень изрезанности или сложности их структуры может быть измерена неким характеристическим числом -- фрактальной размерностью. Различные определения понятия фрактальной размерности в большей или меньшей степени восходят к работе Ф. Хаусдорфа, опубликованной в 1919 году. Хаусдорф был математиком в Боннском университете.

Следуя идее Мандельброта, фрактальную размерность можно определить методом подсчёта квадратиков. Представим себе объект сложной формы, который сплошь покрыт квадратиками, как миллиметровая бумага. Часть квадратиков будет содержать элементы множества, другие квадратики будут пустыми. Число непустых клеток N зависит от формы объекта и от размеров квадратной ячейки E. Постулируется, что N пропорционально 1/ED (чем мельче решётка, тем больше непустых ячеек). Показатель степени D и является размерностью объекта. Например, для такой сплошной плоской фигуры, как круг, уменьшение размера решётки вдвое приведёт к увеличению количества непустых клеток в четыре раза (два в квадрате), потому что фигура обладает размерностью два. Для фрактала количество непустых клеток будет возрастать с несколько меньшим, дробным показателем степени.

Описанная процедура не ограничивается математическими объектами или формами на плоскости. Аналогичным образом можно подсчитать фрактальную размерность реальных объектов, таких, как реки, облака, береговые линии, артерии или реснички, покрывающие стенки кишечника. Артерии человека, например, имеют фрактальную размерность порядка 2,7.

Помимо той полезной роли, которую играет фрактальная геометрия при описании сложности природных объектов, она предлагает ещё хорошую возможность популяризации математических знаний. Понятия фрактальной геометрии наглядны и интуитивны. Её формы привлекательны с эстетической точки зрения и имеют разнообразные приложения. Поэтому фрактальная геометрия, возможно, поможет опровергнуть взгляд на математику как на сухую и недоступную дисциплину и станет дополнительным стимулом для учащихся в освоении этой интересной и увлекательной науки.

Даже сами учёные испытывают почти детский восторг, наблюдая за быстрым развитием этого нового языка -- языка фракталов. Вот что пишет сам Мандельброт:

«Учёные с немалым удивлением и восторгом ... уяснят для себя, что многие и многие формы, которые они до сих пор вынуждены были характеризовать как зернистые, гидраподобные, похожие на морские водоросли, странные, запутанные, ветвистые, ворсистые, морщинистые и т.п., отныне могут изучаться и описываться в строгих количественных терминах.

Математики будут ... удивлены и обрадованы, узнав, что [фрактальные] множества, считавшиеся до сих пор чем-то исключительным ... в некотором смысле должны стать правилом, что конструкции, считавшиеся патологическими, должны происходить естественным образом из очень конкретных задач и что изучение природы должно помочь решить старые задачи и поставить немало новых».

фрактальная геометрия язык фрактал мандельброт

Литература

H.-O. Peitgen and D. Saupe. The Science of Fractal Images. Springer-Verlag, 1988.

H.-O. Peitgen and P. Richter. The Beauty of Fractals. Springer-Verlag, 1986. (Есть перевод: Х.-О. Пайтген, П. Х. Рихтер. Красота фракталов. -- M.: Мир, 1989.)

H.-O. Peitgen, H. Jurgens, D. Saupe and C. Zahlten (video). Fractals: An Animated Discussion, with Edward Lorenz and Benoit B. Mandelbrot. W.H. Freeman & Co., 1990.

Heinz-Otto Peitgen, Hartmut Jurgens and Dietmar Saupe. Fractals for the Classroom. Springer-Verlag, 1989.

M. Barnsley. Fractals Everywhere. Academic Press, Inc., 1988.

В.В. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman & Co., 1983. (Есть перевод: Бенуа Б. Мандельброт. Фрактальная геометрия природы. -- M.: Институт компьютерных исследований, 2002.)

Размещено на Allbest.ru

...

Подобные документы

  • Идея целесообразного "разумного" использования природных ресурсов и минимизации отрицательных воздействий урбанизации на окружающую среду. Автоматизированная "начинка" "умного дома" Разработка и архитектурных форм, повышающих энергоэффективность здания.

    реферат [24,3 K], добавлен 02.07.2013

  • Классификация и виды наиболее распространенных малых архитектурных форм. Садово-парковая мебель, ограды, мостики, вазоны и оборудование. Роль малых архитектурных форм в создании и украшении сада. Декоративное освещение фонтанов, каскадов и водопадов.

    реферат [21,1 K], добавлен 04.06.2015

  • Городской дизайн как средство повышения привлекательности городов России. Формирование конкурентной городской среды: создание туристской навигации, улучшение образа, имиджа и бренда. Роль малых архитектурных форм в развитии индустрии гостеприимства.

    статья [3,8 M], добавлен 24.03.2015

  • Понятие архитектурного стиля. Характеристика и особенности современных архитектурных направлений: минимализм, хай-тек, био-тек, постмодернизм, деконструктивизм, китч. Степени применимости современных архитектурных стилей в мировом строительстве.

    презентация [5,2 M], добавлен 07.12.2016

  • Парк Андре Ситроен - объёмно-пространственная композиция, состоящая из множества ландшафтов, раскрывающихся с определённых видовых точек. Исследование основных приёмов ландшафтного дизайна. Описания малых архитектурных форм, растений и водоемов парка.

    презентация [1,7 M], добавлен 26.09.2014

  • Коммуникативная значимость объекта в городской среде. Основные группы качеств архитектурных доминант, внутренние физические и художественные качества объекта, его взаимодействие с окружением. Классификация архитектурных доминант по типу доминирования.

    реферат [1,3 M], добавлен 26.04.2016

  • Начало творчества Вальтера Гропиуса: основные этапы биографии, новый язык архитектурных форм, время осмысления пройденного пути. Создание и закрытие "Баухауза". Педагогическая работа в Гарвардском университете в Кембридже. Продолжение принципов Гропиуса.

    реферат [37,4 K], добавлен 15.06.2015

  • Начало жизненного пути. Работа в области промышленного дизайна в архитектурном бюро Петера Беренса. Новый язык архитектурных форм. Время осмысления пройденного пути, создание "Баухауса". Деятельность в эмиграции. Актуальность принципов Гропиуса.

    реферат [18,2 K], добавлен 20.11.2010

  • Примеры геометрических зданий с использованием цилиндра, параллелепипеда и пирамиды. Симметрия как царица архитектурного совершенства. Параллелепипед как призма, в основании которой лежит параллелограмм. Примеры необычных архитектурных сооружений.

    презентация [7,7 M], добавлен 12.04.2015

  • Понятие архитектуры. Феномены энергоинформационного обмена в архитектуре. Явления и их взаимодействия. Эниология архитектурных форм: пирамиды и шатры, складки и ребра, своды и купола, арки, круглые формы, производные формы. Применение эниологии форм.

    курсовая работа [70,0 K], добавлен 12.11.2010

  • Государственное обеспечение условий для осуществления архитектурной деятельности. Комплекс работ для создания объекта строительства. Организация архитектурных и градостроительных конкурсов. Уполномоченные органы градостроительства и архитектуры.

    контрольная работа [13,8 K], добавлен 22.02.2013

  • Народные традиции и современные тенденции в архитектурных решениях. Формирование градостроительных ансамблей. Планировка и застройка производственных зон. Архитектурно-планировочная композиция природных объектов. Создание силуэта малого сельского поселка.

    презентация [2,4 M], добавлен 30.12.2014

  • Место комплекса Троицкого мужского монастыря в структуре окружения. История формирования комплекса, его планировочная и пространственная характеристика. Композиционная и стилистическая характеристика основных архитектурных объектов и природных элементов.

    реферат [9,0 M], добавлен 26.04.2010

  • Роль малых архитектурных форм в создании украшении сада. Виды садовых беседок и павильонов, садовая мебель, ограды, мостики, скульптуры, вазоны, перголы, арки, берсо, трельяж (треллис) и шпалеры. Декоративное освещение фонтанов, каскадов и водопадов.

    реферат [36,0 K], добавлен 06.11.2012

  • Способы вертикального озеленения. Ассортимент растений для вертикального озеленения. Посадка и уход за лианами. Описание различных видов малых архитектурных форм для вертикального озеленения, их функционального предназначения и архитектурного решения.

    отчет по практике [2,4 M], добавлен 04.12.2014

  • Предпосылки возникновения, историческая характеристика, строительные особенности, отличительные черты, критика и завершение эпохи барокко. Описание "идеального города" эпохи Возрождения. Специфика архитектурных форм и типов сооружений в стиле барокко.

    реферат [472,6 K], добавлен 31.05.2010

  • Морфология, символика, феноменология архитектурной формы. Принципы построения парадигмы. Концепции системного проектирования и факторного анализа. Сопоставление взглядов О. Шпенглера, Г.Ф. Гегеля и Г. Земпера. Полнота и бедность архитектурных форм.

    реферат [51,8 K], добавлен 26.05.2014

  • Природные условия и ресурсы исследуемой территории, животный и растительный мир. Композиционно-пространственная организация центра, общая характеристика каждого элемента комплекса. Построение архитектурных конструкций, системы отопления и водоснабжения.

    дипломная работа [2,6 M], добавлен 18.05.2014

  • Понятие и назначение малых архитектурных форм, номенклатура и формы, пути совершенствования. Методика проектирования детской площадки в парке культуры и отдыха, составление генплана с обустройством территории. Композиционные особенности проектирования.

    курсовая работа [35,6 K], добавлен 23.01.2010

  • Принципы организации открытых архитектурных пространств в структуре города, особенности их формирования. Разработка метода и приемов их моделирования для реорганизации городской среды на примере офисного здания с тротуарами и парковочной площадкой.

    курсовая работа [1,2 M], добавлен 14.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.