Погружение сваи
Инженерно-геологические условия строительной площадки. Расчётные значений физико-механических характеристик грунтов. Сбор нагрузок на фундамент крайней стены. Анализ грунтовых напластований. Определение количества свай. Расчет осадки. Подбор молота.
Рубрика | Строительство и архитектура |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.10.2013 |
Размер файла | 25,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Краткая характеристика проектируемого здания
Данное жилое здание имеет сложную конфигурацию в плане. Девятиэтажный 744-квартирный жилой дом имеет встроенные помещения:
парикмахерская,
Бюро путешествий,
магазин.
Жилой дом расположен в центре города, главным фасадом выходит на главный проспект города - пр. Коммунистический и улицу Солнечная. Площадка строительства попадает на территорию, застроенную ранее частными домами. Запроектированы следующие конструкции:
фундамент свайный, с монолитным ростверком и сборными железобетонными блоками,
перекрытия и покрытия - сборные железобетонные,
жилой дом оборудован пассажирским лифтом, грузоподъемностью 400 кг.
2. Инженерно-геологические условия строительной площадки
Исследуемую площадку пересекает ряд инженерных коммуникаций: водопровод, канализация, теплотрассы. Поверхность участка сравнительно ровная, с общим понижением рельефа в южном и юго-восточном направлении. Абсолютные отметки поверхности изменяются в пределах от 86,3 м до 92,85 м. Максимальная разность отметок в целом по участку составляет 6,55 м.
Геологический разрез участка был составлен на основе инженерно-геологических изысканий, которые были сделаны по скважине №1.
Слой I - современные образования представлены преимущественно почвенным слоем. Насыпной грунт мощностью 0,5 м. По составу насыпной грунт неоднородный, сложен преимущественно песком, реже суглинком с примесью почвы гравия. Среднее содержание примесей - 10%. По степени уплотнения от собственного веса - смешавшийся.
Слой II - слагает верхнюю часть разреза верхнечетвертичных аллювиальных отложений от подошвы слоя I, сложен преимущественно песком коричневым пылевитым, реже средней крупности; средней плотности, от маловлажного до водонасыщенного состояния с прослойками и линзами суглинка. Мощность слоя 1,3 м.
Слой III - слагает верхнюю часть разреза от подошвы слоя II до глубины 2,5 м. Слой представлен коричневым суглинком, является тугопластичным.
Слой IV - представлен коричневым пылевитым песком, плотный, влажный. Мощность слоя составляет 3,4 м. На глубине 4,5 м находится прослойка суглинка. В этом слое проходит уровень подземных вод на глубине 5,4 м от поверхности.
Слой V - слагает среднюю часть разреза от подошвы слоя IV до глубины 6,7 м. Слой представлен коричневым суглинком, текучим. Мощность слоя 0,8 м.
Слой VI - Слагает нижнюю часть митологического разреза верхнечетвертичных аллювиальных отложений от подошвы слоя V до конечной глубины скважины (15-20 м). Слой представлен песком коричневым, преимущественно пылевитым, маловлажный; с редкими прослойками и мизалями суглинка на глубине 7,5 м. Физико - механические свойства грунтов площадки строительства приведены в таблице.
Сводная таблица расчётных значений физико-механических характеристик грунтов
Наименование |
Мощ- |
Плотность |
Удельный вес |
Показатели |
Показатели |
|||||||
грунта |
ность |
частиц |
грунта |
сухого |
текучести |
текучести |
||||||
слоя |
s |
d |
s |
грунта d |
Wp |
WL |
Ip |
IL |
||||
Песок |
1,7 |
2,69 |
1,86 |
1,65 |
26,9 |
18,6 |
16,5 |
- |
- |
- |
- |
|
Суглинок |
2,5 |
2,71 |
2,04 |
1,76 |
27,1 |
20,4 |
17,6 |
21 |
13 |
8 |
0,38 |
|
Песок |
5,9 |
2,66 |
1,9 |
1,7 |
26,6 |
19 |
17 |
- |
- |
- |
- |
|
Суглинок |
6,7 |
2,74 |
2,06 |
1,73 |
27,4 |
20,6 |
17,3 |
21 |
13 |
8 |
0,38 |
|
Песок |
15 |
2,68 |
1,82 |
1,64 |
26,8 |
18,2 |
16,4 |
- |
- |
- |
- |
3. Сбор нагрузок на фундамент крайней стены
Для дальнейшего расчета фундамента необходимо определить нагрузки.
Постоянные нормативные нагрузки:
ПокрытияЧердачные перекрытия с утеплителемМежэтажные перекрытияПерегородкиВес парапетаКирпичная кладкаВес плиты лоджии |
2,54 кН/м23,80 кН/м23,60 кН/м21,00 кН/м21,00 кН/м218,00 кН/м210,60 кН/м2 |
Временные нормативные нагрузки:
На 1 м2 проекции кровли от снегаНа 1 м2 проекции чердачного перекрытияНа 1 м2 проекции межэтажного перекрытия |
1,50 кН/м20,75 кН/м21,50 кН/м2 |
Определим нагрузку на наружную систему. Грузовая площадь между осями оконных проемов:
А = 3,125·3=9.375 м2, где:
3,125 - расстояние между осями,
3 - половина расстояния в частоте между стенами.
Нормативные нагрузки на 3,125 м длины фундамента на уровне спланированной отметки земли (кН):
Постоянные нагрузки от конструкции:
Покрытия |
2,54 9,375 |
23,8125 кН |
|
Чердачного перекрытия |
3,89,375 |
35,625 кН |
|
9-ти межэтажных перекрытий |
9·3,6 9,375 |
303,75 кН |
|
Перегородок на 9-ти этажах |
9 1 9,375 |
84,375 кН |
|
Карстена выше чердачного перекрытия: |
0,77 1,5 6,3 1,8 3,125 |
40,93 кН |
|
Стена со 2-го этажа и выше на длине 3,125 м за вычетом оконных проемов |
0,77 (3,1252,8-1,4841,35) 1,8108 |
748,06 кН |
|
Вес системы 1-го этажа |
0,77 (3,1252,8) - 1,810 |
121,275 кН |
|
Вес от перекрытий подвала |
3,1253,66,61 |
74,25 кН |
|
Вес от покрытий парикмахерской |
3,1253,456,11 |
65,76 кН |
|
Вес от лоджий |
810,6 |
84,8 кН |
|
Итого: |
1582,646 кН |
Временные нагрузки
На кровлю от снега |
1,5 9,375 |
14,06 кН |
|
Чердачные перекрытия |
9,375 0,75 |
7,031 кН |
|
На 9-ти межэтажных перекрытиях с коэффициентом n1 = 0,489 |
9,375 10 0,489 1,5 |
68,864 кН |
Неодновременное загружение 6-ти этажей учитываем снижающим коэффициентом по формуле:
n1 = 0,3+0,6/n, где:
n - число перекрытий, от которых нагрузка передается на основание.
n1 = 0,3+0,6/9 = 0,4897
Итого: 89,9575 кН
Подберем длину забивной сваи и определим ее несущую способность по грунту.
Из анализа грунтовых напластований можно сделать вывод, что пластичная глина не обладает достаточным сопротивлением, а слой супеси имеет малую толщину. В качестве несущего слоя целесообразно принять слой «пылевитый песок». Тогда длина забивной сваи, с учетом заглубления в несущий слой не менее 1 м, составляет L = 0,3+2,6+0,8+4,3+1 = 9 м. Принимаем забивную сваю типа С10-30 по ГОСТ 19804.1-79 длиной 10 м, сечением 30 х 30 см, свая при этом будет висячей. Погружение сваи будет осуществляться дизельным молотом. Несущая способность висячей забивной сваи определяется в соответствии со СНиП 2.02.03-85 как сумма сил расчетных сопротивлений грунтов оснований под нижним концом сваи и на ее боковой поверхности по формуле:
Fd = C (CRRA+U CF fi hi), где
C - коэффициент работы сваи в грунте, принимаемый равным 1,
CR, CF - коэффициенты условий работы соответственно под нижним концом и на боковой поверхности сваи, принимаемые для забивных свай, погружаемых дизельными молотами без лидирующих скважин, равными 1,
A - площадь опирания сваи на грунту, принимаемая равной площади поперечного сечения сваи. A = 0,3·0,3 = 0.09 м2
U - наружный периметр поперечного сечения сваи 0,3·4=1.2 м,
R - расчетное сопротивление грунта под нижним концом сваи.
h1 = 3,9 м, h2 = 5,2 м, h3 = 6,3 м, h4 = 7,1 м, h5 = 8,1 м, h6 = 10,35 м
Подставляем полученные значения в формулу и определяем несущую способность сваи С10-30 по грунту.
Fd = 1(115900,09+1,2(273,9+29,45,2+31,36,3+ 32,17,1+33,058,1+34,2810,35))
Fd = 1710,0396 кПа
Определение количества свай в свайном фундаменте
Расчетную глубину промерзания грунта определяется по формуле:
df = Kn dfn
и зависит от теплового режима здания, от наличия подвала, конструкции пола.
dfn - нормативная глубина промерзания грунта, dfn = 2,2 м,
Kn - коэффициент, учитывающий влияние теплового режима здания, принимаемый равным 0,6.
тогда df = 2,2 0,6 = 1,32 м
Собственный вес одного погонного метра ростверка определяется по формуле:
GIP = b hp b f, где
b, hp - соответственно ширина и толщина ростверка, м
b - удельный вес железобетона, принимаемый b = 24 кН/м3
f - коэффициент надежности по нагрузке, принимаемый f = 1,1
Подставим в формулу соответствующие значения и величины:
GIP = 1,5 0,6 1,1 24 = 23,76 кН/м
Собственный вес группы на уступах ростверка может быть определена по формуле:
GIГР = (b - bc) h I` f, где:
bc - ширина цокольной части
h - средняя высота грунта на уступах ростверка, h = 1,25 м
I` - удельный вес грунта обратной засыпки, принимаемый равным I`= 17 кН/м3
f - коэффициент надежности по нагрузке для насыпных грунтов f = 1,15
GIГР = (1,5 - 0,73) 1,25 17 1,15 = 18,81 кН/м
Расчетная нагрузка в плоскости подошвы ростверка:
FI = FI' + GIР +GIГР = 1672,6 + 23,76 + 18,81 = 1715,17 кН/м
Расчет осадки свайного фундамента
Осадка ленточных фундаментов с двухрядным расположением свай и расстоянием между сваями (3 - 4 d) определяется по формуле:
n (1 - 2)
S = 0, где:
E
n - полная нагрузка на ленточный свайный фундамент (кН/м) с учетом веса условного фундамента в виде массива грунта со сваями, ограниченного: сверху - поверхностью планировки, с боков - вертикальными плоскостями, проходящими по наружным граням крайних рядов свай, снизу - плоскостью, проходящей через нижние концы свай.
E, - модуль деформации (кПа) и коэффициент Пуассона грунта в пределах снимаемой толщи.
0 - коэффициент, определяемый по номограмме СНиП 2.02.03 - 85.
Полная нагрузка n складывается из расчетной нагрузки, действующей в уровне планировочной отметки, и собственного веса условного ленточного фундамента.
FII' = 535,23 - 0,73 1,1 2,4 = 533,3 кН/м, тогда полная нагрузка n равна:
n = FII' + b d , где:
b - ширина фундамента, равна 1,4 м
d - глубина заложения фундамента от уровня планировочной отметки, равна 13 м
- среднее значение удельного веса свайного массива, = 20кН/м3
n = 533,3 + 1,4 13 20 = 897,3 кН/м
Для определения коэффициента 0 необходимо знать глубину снимаемой толщи HC, которая в свою очередь, зависит от значения дополнительных напряжений, развивающихся в массиве грунта под фундаментом.
Дополнительные напряжения определяются по формуле:
n
ZР = n, где:
h
n - полная нагрузка на ленточный свайный фундамент, кН/м
h - глубина погружения свай, м
n - безразмерный коэффициент, зависит от приведенной ширины b = b/h и приведенной глубины рассматриваемой точки z/h, где z - фактическая глубина рассматриваемого слоя грунта от уровня планировки
b = 1,4/10 = 0,14
Природные напряжения в уровне подошвы условного фундамента будут равны:
zdyg = 10,03 1,7 + 10,74 0,8 + 10,24 3,4 + 10,66 0,8 + 9,95 6,3 = 131,672
Для дальнейшего расчета осадки необходимо знать удельный вес грунта твердых частиц
S = gS, где
g - ускорение свободного падения, g = 9,8 м/с2
S - плотность грунта твердых частиц.
S1 = 26,36 S2 = 26,55 S3 = 26,068 S4 = 26,85 S5 = 26,26
gz1 = zdyg + 1 h1 = 131,672 + 10 0,31 = 134,1245 кПа
zg2 = zg1 + 2 h2 = 134,1245 + 10 0,38 = 137,9055 кПа
zg3 = zg1 + 3 h3 = 137,9055 + 10 0,766= 145,567 кПа и так далее…
Аналогично рассчитываются другие значения и сводятся в табл. 1. Ориентировочно, глубину снимаемой толщи HC можно определить из условия:
zp 0,2 zg.
Анализ табл. 1 показывает, что это условие выполняется примерно на относительной глубине z/h = 1,9. Тогда HC= 1,9 9,7 = 18,43 м
Z - глубина от подошвы фундамента, м
Коэффициент Пуассона для песка, = 0,3. Пользуясь номограммой при HC/h = 1,9 м и b = 0,14 находим 0 = 2,15.
Средняя осадка для многоэтажных бескаркасных зданий с несущими кирпичными стенами не должна превышать 10 см. Следовательно, условия
S SU выполняется S = 2,5 см SU = 10 см.
Таблица 1
Z/h |
n |
zp [кПа] |
Z [м] |
zq [кПа] |
0,2 zq[кПа] |
|
1,01 |
8,3858 |
246,87 |
0,08 |
131,672 |
26,208 |
|
1,05 |
6,5894 |
193,84 |
0,39 |
134,1245 |
26,824 |
|
1,1 |
5,02116 |
147,8 |
0,77 |
137,9055 |
27,581 |
|
1,2 |
3,4265 |
100,94 |
1,54 |
145,567 |
29,1137 |
|
1,3 |
2,67217 |
78,65 |
2,31 |
153,2285 |
30,6457 |
|
1,4 |
2,23026 |
65,7 |
3,08 |
160,89 |
32,178 |
|
1,5 |
1,9357 |
57,02 |
3,85 |
168,5515 |
33,71 |
|
1,6 |
1,72092 |
50,69 |
4,62 |
176,213 |
35,2426 |
|
1,7 |
1,5566 |
45,85 |
5,39 |
183,874 |
36,7749 |
|
1,8 |
1,42544 |
41,99 |
6,16 |
191,536 |
38,3072 |
|
1,9 |
1,31756 |
38,81 |
6,93 |
199,1975 |
39,839 |
|
2,0 |
1,22684 |
36,11 |
7,7 |
206,859 |
41,3718 |
|
2,1 |
1,14922 |
33,84 |
8,47 |
214,5205 |
42,904 |
|
2,2 |
1,0818 |
31,86 |
9,24 |
222,182 |
44,436 |
|
2,3 |
1,0225 |
30,12 |
10,01 |
229,8435 |
45,96 |
|
2,4 |
0,9699 |
28,57 |
10,78 |
237,505 |
47,5 |
|
2,5 |
0,9229 |
27,189 |
11,55 |
245,1665 |
49,03 |
Подбор молота для погружения свай
От правильности выбора дизель - молота зависит успешное погружение свай в проектное положение. В первом приближении дизель - молот можно подобрать по отношению веса его ударной части к весу сваи, которое должно быть для штанговых дизель - молотов 1,25 при грунтах средней плотности.
Минимальная энергия удара, необходимая для погружения свай определяется по формуле:
E = 1,75 a FV, где:
а - коэффициент, равный 25 Дж/кН,
FV - расчетная нагрузка, допускаемая на сваю, кН.
E = 1,75 25 535,23 = 23416,31 Дж
Пользуясь техническими характеристиками дизель - молотов подбирают такой молот, энергия удара которого соответствует минимальной. Возьмем трубчатый дизель - молот Ф - 859 с энергией удара 27 кДж. Полный вес молота Gh = 36500 Н, вес ударной части Gb = 18000 Н, вес сваи С10 - 30 равен 22800 Н. Вес наголовника принимаем равным 2000 Н. расчетная энергия удара дизель - молота Ф - 859:
ЕР = 0,4 Gh' hm, где:
Gh' - вес ударной части молота
hm - высота падения ударной части молота, hm = 2 м.
ЕР = 0,4 2 18000 = 14400 Дж.
Условие соблюдаются, значит принятый трубчатый дизель - молот Ф - 859 обеспечивает погружение сваи С10 - 30.
свая осадка грунт фундамент
Размещено на Allbest.ru
...Подобные документы
Анализ инженерно-геологических условий строительной площадки. Сводная таблица физико-механических свойств грунтов. Сбор нагрузок при расчёте по деформации на фундамент бункерного корпуса. Расчёт свайного фундамента под колонну. Объём ростверка и свай.
курсовая работа [613,9 K], добавлен 13.02.2014Инженерно–геологические условия строительной площадки. Сбор нагрузок на верх обреза фундамента. Назначение конструктивной глубины заложения подошвы фундамента. Уточнение расчетного сопротивления грунта. Определение нагрузок на минимально загруженные сваи.
курсовая работа [940,2 K], добавлен 04.08.2014Характеристика площадки, инженерно-геологические и гидрогеологические условия. Оценка строительных свойств грунтов площадки и возможные варианты фундаментов здания. Определение несущей способности и количества свай. Назначение глубины заложения ростверка.
курсовая работа [331,0 K], добавлен 23.02.2016Инженерно-геологические условия строительной площадки. Сбор нагрузок на обрез и на подошву фундамента. Определение глубины заложения фундамента. Выбор типа, длины и марки свай. Определение расчетного сопротивления грунта под подошвой фундамента.
курсовая работа [2,6 M], добавлен 23.01.2013Оценка грунтовых условий строительной площадки здания, построение инженерно-геологического разреза; учет конструктивных требований. Определение глубины заложения ростверка, длины и количества свай. Расчет осадки и размеров подошвы свайного фундамента.
курсовая работа [713,9 K], добавлен 23.04.2012Сводная таблица физико-механических свойств грунта. Анализ инженерно-геологических условий строительной площадки. Определение расчетных нагрузок и расчетных характеристик грунтов. Определение сопротивления грунта основания по прочностным характеристикам.
курсовая работа [106,0 K], добавлен 24.11.2012Оценка инженерно-геологических условий площадки строительства. Определение основных физико-механических характеристик грунтов. Расчёт фундамента мелкого заложения на естественном основании. Выбор сваебойного оборудования и определение отказа свай.
курсовая работа [890,9 K], добавлен 26.10.2014Определение физико-механических показателей грунтов и сбор нагрузок на фундаменты. Оценка инженерно-геологических условий площадки строительства. Проверка слоев грунта на наличие слабого подстилающего слоя. Расчет деформации основания фундамента.
курсовая работа [802,9 K], добавлен 02.10.2011Определение физико-механических показателей грунтов и сбор нагрузок на фундаменты. Оценка инженерно-геологических условий площадки строительства. Проектирование фундаментов мелкого заложения. Расчет ленточного свайного фундамента под несущую стену.
курсовая работа [1,9 M], добавлен 19.04.2012Нормативные расчётные вертикальные и горизонтальные нагрузки. Анализ инженерно-геологических условий и физико-механических свойств грунтов. Определение отметки плоскости обреза, глубины заложения, предварительных размеров подошвы и осадки фундамента.
контрольная работа [115,2 K], добавлен 19.02.2013Анализ результатов инженерно-геологических изысканий на строительной площадке. Изучение физико-механических характеристик грунтов в порядке их залегания. Принципы сбора нагрузок на фундаменты. Расчет фундаментов мелкого заложения. Выбор несущего слоя.
курсовая работа [1,6 M], добавлен 18.05.2015Оценка инженерно-геологических условий площадки строительства. Определение физико-механических характеристик грунтов площадки строительства. Определение нормативных, расчетных усилий, действующих по верхнему обрезу фундаментов. Расчет свайных фундаментов.
курсовая работа [347,7 K], добавлен 25.11.2013Оценка инженерно-геологических условий строительной площадки, мощности и вида грунта. Определение наименования грунтов основания. Сбор нагрузок на фундамент. Расчет фундаментов мелкого заложения и размеров подошвы. Разработка конструктивных мероприятий.
курсовая работа [151,4 K], добавлен 29.01.2011Определение расчетных нагрузок на фундаменты. Выбор вида свай, их длины и поперечного сечения. Подбор молота для забивки свай и определение расчетного отказа. Определение конечной (стабилизированной) осадки фундамента методом эквивалентного слоя.
курсовая работа [2,5 M], добавлен 02.09.2012Назначение и конструктивные особенности подземной части здания. Строительная классификация грунтов площадки. Определение несущей способности сваи и расчетной нагрузки. Выбор типа свай. Назначение глубины заложения ростверка. Расчет осадки фундамента.
курсовая работа [848,1 K], добавлен 28.01.2016Оценка инженерно-геологических условий площадки строительства. Определение производных, классификационных характеристик грунтов. Расчет фундаментов мелкого заложения на естественном основании по предельным состояниям. Сбор нагрузок в характерных сечениях.
курсовая работа [1,6 M], добавлен 29.06.2010Инженерно-геологические условия строительной площадки. Проектирование фундамента мелкого заложения. Определение осадки фундамента. Расчетное сопротивление основания. Нагрузки, передаваемые на основание фундамента. Требуемая площадь подошвы фундамента.
курсовая работа [552,3 K], добавлен 10.05.2012Объемно-планировочное и конструктивное решение здания. Теплотехнический расчет наружной стены, ограждающих конструкций и чердачного перекрытия. Инженерно-геологические условия строительной площадки. Выбор типа фундамента и определение глубины заложения.
дипломная работа [837,1 K], добавлен 07.10.2016Конструкция, план этажа панельно-блочного жилого дома. Определение расчетных нагрузок на фундаменты, глубины его заложения, размеров подошвы, расчёт сопротивления грунта основания. Расчёт уклона (крена) здания. Суть проектирование свайных фундаментов.
дипломная работа [2,0 M], добавлен 21.07.2011Инженерно-геологические данные и физико-механические свойства грунтов стройплощадки. Определение полного наименования грунтов основаниям. Выбор конструкции сваи: типа, длины и поперечного сечения. Технико-экономическое сравнение вариантов фундаментов.
курсовая работа [1,5 M], добавлен 20.04.2015