Зависимость разрушений при землетрясении от грунтов
Понятие и типы землетрясений, динамика грунтов, оценка силы и частоты. Поведение грунтов при землетрясениях и причины разрушений, состояние домов типовой застройки и более надежных построек. Строительство домов в сейсмоопасных зонах, защита и укрепление.
Рубрика | Строительство и архитектура |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.11.2013 |
Размер файла | 28,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
1. Основные понятия
Землетрясения - подземные удары (толчки) и колебания поверхности земли, вызванные процессами высвобождения энергии внутри неё (главным образом тектоническими). По своим разрушительным последствиям землетрясения не имеют себе равных среди стихийных бедствий. Вся поверхность земного шара делится на несколько огромных частей земной коры, которые называются тектоническими плитами. Это: североамериканская, евроазиатская, африканская, южно-американская, тихоокеанская и атлантическая плиты. Тектонические плиты находятся в постоянном движении (могут раздвигаться, сдвигаться или скользить одна относительно другой), и оно составляет несколько сантиметров в год. Землетрясения являются результатом столкновения этих плит и сопровождаются изменениями поверхности земли в виде складок, трещин и т.п., которые могут простираться на большое расстояние. Районы, расположенные вблизи границ тектонических плит, в наибольшей степени подвержены землетрясениям. Иногда случаются землетрясения во внутренних частях плит - так называемые внутриплитовые землетрясения.
Землетрясения могут возникать и по другим причинам. Одной из таких причин является вулканическая деятельность (в местах, где раздвигаются тектонические плиты). Другой причиной является обрушение кровли шахт или подземных пустот с образованием упругих волн. Землетрясения, возникающие при развитии крупных оползней, называют обвальными. Кроме того, землетрясения могут вызываться и инженерной деятельностью человека (заполнение водохранилищ, закачка воды в скважины).
Опасные последствия землетрясений разделяются на природные и связанные с деятельностью человека. К природным относятся: сотрясение грунта, нарушение грунта (трещины и смещения), оползни, лавины, сели, разжижение грунта, оседания, цунами, сейши.
К последствиям землетрясений, связанным с деятельностью человека относятся: разрушение или обрушение зданий, мостов и других сооружений; наводнения при прорывах плотин и водопроводов; пожары при повреждениях нефтехранилищ и разрывах газопроводов; повреждение транспортных средств, коммуникаций, линий энерго- и водоснабжения, а также канализационных труб; радиоактивные утечки при повреждении ядерных реакторов.
Область возникновения подземного удара - очаг землетрясения - представляет собой некоторый объём в толще земли, в пределах которого происходит процесс высвобождения накапливающейся длительное время энергии. В центре очага выделяется точка, именуемая гипоцентром. Проекция гипоцентра на поверхность земли - эпицентр.
Землетрясения создаются ударными волнами и упругими колебаниями земной коры. Причиной неглубинных землетрясений (глубина очага не менее 60 км) могут служить скольжение литосферных блоков вдоль разломов земной коры, скачкообразное изменение давления паровых газов в коре, вулканическая деятельность. Более глубокие землетрясения вызываются изменениями фазового состояния магмы, подстилающей земную кору. Наиболее часты и сильны мелко фокусные (глубина очага менее 15 км) землетрясения, обусловленные относительными смещениями блоков.
Помимо естественных землетрясений, происходят и могут быть разрушительными землетрясения, вызванные человеческой деятельностью. Примером такой деятельности является заполнение глубоких (более 100 м) водохранилищ, образование подземных полостей вследствие добычи полезных ископаемых. Разрушительная способность землетрясения зависит от его магнитуды и от глубины очага и характеризуется в условных баллах интенсивности.
2. Типы землетрясений
Полезно ввести квалификацию землетрясений по способу их образования. Больше всех распространены тектонические землетрясения. Они возникают, когда в горных породах под действием тех или иных геологических сил происходит разрыв. Тектонические землетрясения имеют важное научное значение для познания недр Земли и громадное практическое значение для человеческого общества, поскольку они представляют собой самое опасное природное явление.
Однако землетрясения возникают и от других причин. Подземные толчки другого типа сопровождают вулканические извержения. И в наше время многие люди все еще считают, что землетрясения связаны главным образом с вулканической деятельностью. Эта идея восходит к древнегреческим философам, которые обратили внимание на широкое распространение землетрясений и вулканов во многих районах Средиземноморья. Сегодня мы также выделяем вулканические землетрясения - те, которые происходят в сочетании с вулканической деятельностью, но считаем что как извержения вулканов, так и землетрясения являются результатом действия тектонических сил на горные породы, и они не обязательно возникают вместе.
Третью категорию образуют обвальные землетрясения. Это небольшие землетрясения, возникающие в районах, где есть подземные пустоты и горные выработки. Непосредственная причина колебаний грунта заключается при этом в обрушении кровли шахты или пещеры. Часто наблюдаемая разновидность этого явления - так называемые «горные удары». Они случаются, когда напряжения, возникающие вокруг горной выработки, заставляют большие массы горных пород резко, со взрывом, отделяться от ее забоя, возбуждающая сейсмические волны. Горные удары наблюдались, например, в Канаде; особенно часто они отмечаются в Южной Африке.
Большой интерес вызывает разновидность обвальных землетрясений, возникающих иногда при развитии крупных оползней. Например, в результате гигантского оползня, образовавшегося 25 апреля 1974 г. на реке Мантаро в Перу, возникли сейсмические волны, эквивалентные землетрясению умеренной силы.
Последний тип землетрясений - это искусственные, производимые человеком взрывные землетрясения, возникающие при обычных или ядерных взрывах. Подземные ядерные взрывы, производившиеся в течение последних десятилетий на ряде испытательных полигонов в разных местах земного шара, вызвали довольно значительные землетрясения. Когда в скважине глубоко под землей взрывается ядерное устройство, высвобождается огромное количество ядерной энергии. За миллионные доли секунды давление там подскакивает до величин, в тысячи раз превышающих атмосферное давление, а температура увеличивается в этом месте на миллионы градусов. Окружающие породы испаряются, образуя сферическую полость диаметром во много метров. Полость разрастается, пока кипящая порода испаряется с ее поверхности, а породы вокруг полости под действием ударной волны пронизываются мельчайшими трещинами.
За пределами этой трещиноватой зоны, размеры которой измеряются иногда сотнями метров, сжатие в горных породах приводят к возникновению сейсмических волн, распространяющихся во всех направлениях. Когда первая сейсмическая волна сжатия достигает поверхности, грунт выгибается вверх и, если энергия волны достаточно велика, может произойти выброс поверхностных и коренных пород в воздух образованием воронки. Если скважина глубокая, то поверхность только слегка растрескается и порода на мгновение поднимется, чтобы затем снова рухнуть на подстилающие слои.
Некоторые подземные ядерные взрывы были настолько сильны, что распространившиеся от них сейсмические волны прошли через внутренние области Земли и были записаны на дальних сейсмических станциях с амплитудой, эквивалентной волнам землетрясений с магнитурой 7 по шкале Рихтера. В некоторых случаях эти волны поколебали здания в отдаленных городах.
3. Динамика грунтов. Сила и частота землетрясений
землетрясение грунт застройка сейсмоопасный
Разрушительные последствия землетрясения определяются силой толчка и характером сотрясений, качеством проектирования и строительства и реакцией приповерхностных грунтов, которая часто бывает решающим фактором сейсмической устойчивости сооружений. Рассматриваются поведение грунтов при землетрясениях и сейсмичность разных регионов Земли.
Вопросы, затрагивающие закономерности поведения грунтов и их взаимодействия с сооружениями при динамических нагрузках разного происхождения, изучаются динамикой грунтов - сравнительно молодой областью знаний на стыке инженерной геологии, сейсмологии и строительного дела, возникшей во многом из-за сейсмичности Земли.
Единственный относительно свободный от сейсмических толчков континент - это Антарктида, а остальные в той или иной мере сейсмичны. Расчеты показывают, что практически везде земная кора испытывает сжатие. Естественно предположить, что наибольшая плотность сейсмических очагов должна быть в местах концентрации максимальных напряжений. Очаги землетрясений в разных местах планеты сосредоточены в пределах сейсмических зон четырех основных типов, что объясняется с позиций современной тектоники литосферных плит.
Большая часть действительно глубокофокусных толчков происходит вокруг Тихого океана или вблизи его берегов и связана с зонами субдукции, или поддвига одной плиты (в данном случае Тихоокеанской) под другую (например, Южно-Американскую). С зонами субдукции связаны и многочисленные мелко-среднефокусные очаги землетрясений в зависимости от их положения на погружающейся плите. В результате формируются наклонные сейсмофокальные плоскости (скопления очагов), именуемые зонами Беньоффа.
Вне Тихого океана очаги глубиной более 100 км крайне редки. Приурочены они к сейсмической зоне другого типа - участку трения между двумя жесткими блоками земной коры, который проявляется как крупный сейсмогенерирующий разлом (например, разломы Сан-Андреас в Калифорнии и Анатолийский в северной Турции).
Преимущественно мелкофокусные землетрясения связаны также с широким поясом горных систем, протянувшимся из Мьянмы (ранее Бирма) через Гималаи и Среднюю Азию в Средиземноморье, где существуют зоны концентрации высоких сжимающих напряжений. Есть и исключения: район Гибралтара, где в 1954 году произошел толчок на глубине 640 км, горы Вранча в Румынии, а также Гиндукуш, где были толчки на глубине около 220 км.
Последний тип сейсмогенерирующих зон - это срединно-океанические хребты, где более тонкая земная кора испытывает растяжение и накапливаемые напряжения сравнительно невелики. В результате вдоль оси такого хребта формируются мелкофокусные очаги с умеренной сейсмической активностью, сопровождающейся вулканизмом. Пример такого участка - остров Исландия, пересекаемый Срединно-Атлантическим хребтом.
Примерно 2/3 всех произошедших на нашей планете землетрясений неглубокие (менее 70 км), и лишь несколько процентов толчков были отмечены на глубинах более 450 км. Наиболее же сейсмичные районы, где происходит около 140 сильных землетрясений ежегодно, сосредоточены у границ литосферных плит и составляют порядка 10% площади Земли.
Когда говорят о силе землетрясения, имеют в виду либо интенсивность толчка, либо его магнитуду. Первая есть мера разрушений, вызванных землетрясением, вторая - мера высвобожденной при толчке энергии сейсмических волн.
4. Поведение грунтов при землетрясениях и причины разрушений
Сейсмический толчок вызывает низкочастотные колебания сооружений. Поскольку они обладают большой массой, то при колебаниях возникают значительные силы инерции, в результате чего в различных местах конструкций генерируются высокие механические напряжения (сжатия-растяжения и сдвига), которые могут превысить прочность материала в том или другом месте и привести к повреждениям или даже к обрушению всего сооружения. Поэтому в сейсмичных районах возводятся здания с антисейсмическим усилением в уязвимых местах конструкции. Проектирование осложняется тем, что в зависимости от спектра толчка, угла подхода волн к поверхности, типа и жесткости сооружения, формы и глубины заложения фундамента и других факторов могут одновременно возбуждаться разные пространственные формы (или моды) колебаний как сооружения в целом, так и его конструктивных частей. В общем случае сооружение как свободное тело в пространстве имеет шесть степеней свободы и соответствующие им разные пространственные формы, или моды колебаний: три простых поступательных перемещения (вертикальное и два горизонтальных) и три вращательных перемещения: маятниковые колебания, или боковая качка, - колебания вокруг продольной оси; галопирование, или продольная качка, - колебания вокруг поперечной оси; виляние - колебания вокруг вертикальной оси. Вибрации произвольного сооружения с фундаментом являются результатом наложения разных мод колебаний, для каждой из которых существует собственная частота колебаний.
Очевидно, что на колебания сооружения влияют и грунты, на которых оно стоит. Важнейшей задачей при расчете колебательной системы сооружение-основание по всем модам является прогноз ее резонансных частот и пиковых амплитуд смещения, рассматриваемых как предельные - самые неблагоприятные условия работы сооружения. Дело в том, что в спектре сейсмической волны присутствуют колебания с частотами, близкими к собственной частоте ряда сооружений, которая для разных мод часто составляет от долей до первых герц (характерные периоды от 0,2 до 2 с). При возникновении резонанса резко возрастают напряжения по контакту фундамента с грунтом, а также в самой конструкции сооружения и вероятность его разрушения повышается. Особенно опасно резонансное усиление маятниковых колебаний - когда центр тяжести сооружения значительно удален от точки его опоры, что характерно для мостовых опор, труб и высотных зданий вообще.
Итак, сейсмический эффект определяется в основном тремя параметрами: уровнем амплитуд, преобладающим периодом и продолжительностью колебаний. Последний фактор может иметь решающее значение для устойчивости сооружений, и кратковременная нагрузка даже с весьма высоким ускорением может оказаться неопасной для многих из них. А длящееся сравнительно долго (несколько десятков секунд) малоамплитудное воздействие может привести к серьезным разрушениям.
Задача усложняется плохо прогнозируемыми эффектами резонансного усиления сейсмических колебаний рыхлыми приповерхностными грунтами: в зависимости от их типа и мощности пластов колебания одних частотных интервалов могут избирательно усиливаться, а других практически полностью поглощаться. Явление это связано с возбуждением собственных колебаний самого пласта вблизи свободной поверхности в волнах данного типа.
Поэтому для того, чтобы спроектировать устойчивое здание, необходимы не только сведения о силе и месте возможных землетрясений, но и надежные данные о вынужденных колебаниях сооружения на тех или иных грунтах основания. Для этого определяются некоторые характеристики грунта, такие, как его динамические модули сжатия и сдвига, коэффициент затухания, а в зависимости от них для расчетов принимается одна из возможных моделей поведения грунтового основания. Например, во многих случаях оказывается возможным применение достаточно простой модели упругого полупространства: при этом можно свести задачу к расчету колебаний твердого тела с известной массой на поверхности упругой, однородной, изотропной и непрерывной среды. Но существуют и более сложные модели, учитывающие вязкие свойства грунтов, их неизотропность, слоистость, и поиски более корректных моделей продолжаются.
Однако коварство многих рыхлых увлажненных грунтов (песков, глин, суглинков, то есть таких, которые обычно залегают с поверхности земли) заключается в способности менять свои механические свойства при прохождении через них упругих волн. Суть такого эффекта заключается в следующем. Указанные грунты состоят из мелких и мельчайших (до сотых и тысячных долей миллиметра) минеральных частиц, в промежутках (порах) между которыми находятся вода и газы. Все сопротивление такого грунта внешней нагрузке, например весу стоящего на нем здания, осуществляется за счет огромного числа контактов между этими частицами, многие из которых очень слабые. При прохождении упругой волны возбуждаются колебания частиц грунта с разными скоростями и часть контактов (тем большая, чем выше энергия волны) разрывается. В результате прочность грунта заметно (иногда в несколько раз) снижается, а стоящее на нем сооружение может осесть вглубь, перекоситься или опрокинуться. Некоторые водонасыщенные грунты (в особенности мелкие рыхлые пески) могут даже разжижаться при достаточно сильном сейсмическом воздействии: при исчезновении непосредственного контакта между песчаными зернами они в какой-то момент оказываются как бы взвешенными во вмещающей их воде. Вода при этом стремится отжаться, но процесс этот требует некоторого времени, поскольку ограничивается водопроницаемостью грунта. В результате сейсмическое разжижение грунтов обычно сопровождается тяжелыми авариями даже сейсмостойких сооружений: здания успевают «утонуть» или перекоситься, дороги разрываются на поверхности разжиженных отложений, а подземные емкости с горючим, наоборот, всплывают на поверхность, затопленную невесть откуда взявшейся грязной водой. Происходят даже выбросы разжиженного грунта на поверхность с образованием песчаных кратеров. Катастрофическое разжижение водонасыщенных пылевато-песчаных грунтов, вызвавшее жертвы и огромный экономический ущерб, произошло при двух сильных землетрясениях 1964 года: 27 марта у берегов Аляски близ Анкориджа с М = 8,4 и 16 июня в Ниигате (Япония) с М = 7,5.
Сейсмическое воздействие может нарушить равновесие значительного объема горных пород на склоне и привести к образованию крупных оползней и обвалов, которые сами по себе могут стать еще одной причиной жертв и разрушений. Оползни срываются вниз вместе с расположенными на них сооружениями, сметая все на своем пути, и могут похоронить целые поселки и даже города. Первые документальные свидетельства о сейсмогенных оползнях относятся к 372 году до н.э. (еще до рождения Александра Македонского). Разжижение или частичная потеря прочности грунтов способствуют возникновению оползней при землетрясениях, но могут быть и их непосредственной причиной.
5. Дома типовой застройки при землетрясении
Сейчас в городах большинство жилых домов представлены тремя типами: мелкоблочные, крупноблочные и крупнопанельные.
Мелкоблочные здания не очень надежны во время землетрясения. Уже при 7-8 баллах на верхних этажах повреждаются углы. У наружных продольных стен разлетаются стекла и выпадают окна. При 9 баллах углы разрушаются, вслед за ними начинают повреждаться стены. Наиболее безопасными считаются места пересечений внутренних несущих продольных стен с поперечными и так называемые «островки безопасности» у выхода из квартиры на лестничную клетку. При землетрясении следует находиться именно в этих местах, так как они остаются целыми при всех прочих разрушениях. Жители нижних этажей могут выбежать из здания, но только быстро, внимательно следя при этом за летящими сверху обломками. Особую опасность представляют тяжелые «козырьки» над дверями подъездов.
Крупноблочные дома достаточно хорошо выдерживают землетрясение. Но здесь также очень опасны углы здания верхних этажей. При сдвиге блоков могут частично падать плиты перекрытия и торцевые стены. Перегородки в этих домах, обычно, щитовые или деревянные, и их обрушения не приносят большого вреда. Травму могут причинить куски цементного раствора, выпадающие из швов плит перекрытия и большие куски штукатурки. Такие повреждения происходят при землетрясении в 7-8 баллов. Наиболее безопасные места - это те же двери на лестничную площадку, так как они все усилены железобетонными рамами.
Старые пятиэтажные крупнопанельные дома построены с расчетом устойчивости на 7-8 баллов, но практика показала, что они выдерживают и 9 баллов. Во время землетрясений на территории бывшего Советского Союза ни одно такое здание разрушено не было. Повреждаются только углы и появляются трещины у швов между зданиями. Так как эти дома достаточно надежны, то при землетрясении их лучше не покидать. Но при этом находиться надо подальше от наружных стен и окон на указанных выше «островках безопасности».
6. Более надежные дома
С семидесятых годов начали строить высотки до 12 этажей, в которых применяли новейшие, по тем временам, монолитные или сборные железобетонные конструкции. Все они проходили тщательную проверку виброустановками и, до настоящего времени, считаются надежными.
Также устойчивыми к колебаниям 8-9 баллов являются 1-2-этажные деревянные, щитовые и брусчатые дома. Уже проверено, что при таком землетрясении они сильно не разрушаются. Возникают лишь небольшие разрывы стен в углах и проседание грунта под зданием, но сами дома стоят. Хотя при толчках могут сильно раскачиваться перекрытия и стены, вывалиться куски штукатурки из стен и с потолка. В таких домах можно оставаться во время землетрясения, только находиться при этом подальше от наружных стен с окнами, от тяжелых шкафов и полок, например, спрятаться под крепкий стол.
Все же прочие дома, построенные в прежний период, нуждаются в дополнительном укреплении.
В 1998 году после землетрясений в южных государствах СНГ для сейсмически опасных районов Казахстана приняли новые, более жесткие нормы и правила строительства (СНиП). И сейчас они обязательны для всех застройщиков. Поэтому, возводимые новостройки должны отвечать всем современным требованиям сейсмостойкости.
Одна из новых технологий предлагает так называемые безригельные здания, не имеющие балок. Такие сооружения уже пользуются популярностью во всем мире. Их строительство обходится гораздо дешевле балочных домов. При правильном проектировании они намного устойчивее к разгулу подземной стихии.
Также очень популярными стали здания с большой площадью стеклянных покрытий. Оказывается, стекло является одним из наиболее подходящих материалов для строительства в сейсмоопасных зонах. Только стекло не обычное, а специальное сейсмопрочное, оно легче и крепче бетона. И обязательно вся конструкция должна быть выполнена с соблюдением СНИПов и только из качественных материалов.
Еще один новый тип домов хорошо выдерживает сейсмические нагрузки. Их называют деревянно-каркасными. При возведении таких зданий фундамент надежно крепится при помощи анкерных болтов. А сами деревянно-каркасные элементы обеспечивают прочность и пластичность стен, устойчивость перекрытий крыши и потолков, а места их стыков хорошо распределяют энергию землетрясения.
7. Строительство домов в сейсмоопасных зонах. Защита и укрепление строений
Лёгкие деревянные, кирпичные и глинобитные конструкции часто разрушаются уже при первых толчках интенсивностью в 7-8 баллов.
Для домов с кирпичными стенами и деревянными перекрытиями высотой в 2-3 этажа и с железобетонными перекрытиями высотой 2-4 этажа требуется обязательное усиление. Дома с саманными стенами усиливать бесполезно. Их надо сносить.
Ненадежны дома со стенами из малопрочных материалов, а также железобетонные каркасные сооружения. Это, как правило, общественные и административные здания.
Одно из несложных решений для укрепления уже существующих домов, было предложено академиком Жумабаем Байнатовым. Оно состоит в том, что по всему периметру здания копается ров, глубина которого равна глубине фундамента. Его заполняют использованными пластиковыми бутылками и засыпают землей. Если стоимость такого метода возложить на жителей многоквартирных домов, то каждой семье он обойдется примерно в 200 долларов. И дом станет гораздо надежнее, и в городе станет меньше мусора.
Еще одну идею выдвинули эксперты научного коллектива «Алматинской Строительной Компании «БЛОК». Суть в том, что в конструкции здания, там, где сходятся силовые панели и плиты перекрытия, создается так называемый «пространственный кинематический шарнир». Помимо увеличения устойчивости сооружения, это решение, в первую очередь, призвано спасти находящихся внутри людей.
По подсчетам, дома, построенные с использованием этой технологии, всего на 5-10% дороже обычных, а их устойчивость усиливается на 10 - 15%. Но это изобретение также можно использовать и для укрепления старых зданий, таких, как панельные «хрущевки». Их надстраивают до 7-9 этажных зданий, применяя новое конструктивное решение. В данной ситуации снова получается двойной эффект: старые дома получают дополнительную сейсмоустойчивость, а горожане - новые квартиры в укрепленном доме.
Еще одну интересную технологию строительства выдвинули французские ученые. Это так называемый «плащ-невидимка», который скрывает здание от землетрясения. Он состоит из системы 5-метровых скважин и специального материала, отражающего сейсмические волны.
При землетрясении часто большие повреждения получают многоэтажные здания, в цокольных этажах которых расположены гаражи и другие помещения с большим пустым пространством. Значит, таких конструкций лучше избегать. Сейчас принято для закрепления фундамента использовать болты и металлические крепежные соединения. При строительстве старых домов они не всегда использовались. Опыт показывает, что такие здания отходят от фундамента при землетрясении.
Еще в советское время были разработаны кинематические фундаменты. В них, во время землетрясения, жители должны ощущать только плавные покачивания, без резких толчков.
Еще один элемент здания, который необходимо укреплять - это дымоходные трубы, они очень неустойчивы к землетрясениям. Развал неармированных дымоходных труб очень часто приводит к повреждениям крыши и стен. Поэтому лучше, чтобы дымоходы были из армированных или других лёгких материалов.
При выборе строительной площадки предпочтение нужно отдавать скальным грунтам - фундамент сооружения на них более устойчивый. Здания не должны располагаться близко друг к другу, чтобы в случае их обрушения не задеть соседние постройки.
Обязательно в сейсмически опасных зонах высокие крепежные требования предъявляются к сооружениям водопровода, канализации и тепловым сетям.
Получается, что надежная защита зданий и сооружений от ударов возможных землетрясений зависит от общих усилий всего населения - ученых, властей, строителей и даже простых жителей городов и поселков. И высших сил, которые, будем надеяться, тоже защитят людей от тяжелых бедствий.
Заключение
Итак, что же мы знаем и умеем для обеспечения относительной сейсмической безопасности? Мы умеем измерять силу толчка и даже частично усмирять ее с помощью демпферов - устройств, поглощающих энергию сейсмических волн. Но многого мы еще не умеем, и Земля постоянно напоминает нам об этом.
Мы не умеем надежно предсказывать место, время и силу землетрясений, а наша оценка вероятности будущих толчков, особенно сильных, во многих регионах оказывается далека от реальности. Это усугубляется быстрым ростом городского населения, особенно в развивающихся странах, где и качество проектов и строительства, и соблюдение строительных норм, и надежность оценки сейсмической опасности очень низки. В результате число жертв землетрясений равной силы в городах развитых стран в сотни раз меньше.
Но и в развитых странах землетрясения разрушают дороги, мосты и самые надежные здания со стальным каркасом, прерывают подачу воды и электроэнергии, вызывают взрывы и пожары.
Разрушение современных надежных сооружений при землетрясении обычно связано не с низким качеством строительства, а с неблагоприятным поведением рыхлых грунтов основания и вызывается эффектами: а) избирательного усиления колебаний определенных частот, б) разжижением грунтов или частичной потерей их прочности, в) возникновением оползней на склонах, в том числе и в результате разжижения грунтов. Дополнительные сложности создают пока еще плохо поддающиеся аналитическому рассмотрению особенности взаимодействия колеблющегося сооружения с грунтами его основания. Решением этих важных и интересных проблем и занимается современная динамика грунтов.
Литература
1. Вознесенский Е.А. Динамические свойства грунтов и их учет при анализе вибраций фундаментов разного типа
2. Короновский Н.В. Напряженное состояние земной коры
3. Сейсмический риск и инженерные решения: Пер. с англ. / Под ред. Ц. Ломнитца, Э. Розенблюта. М.: Недра
4. Эйби Дж.А. Землетрясения: Пер. с англ. М.: Недра
Размещено на Allbest.ru
...Подобные документы
Существующие основные типы грунтов. Характеристика грунтов города Москвы и их поведение при строительстве. Выбор конструкции фундамента в зависимости от типа грунта. Схема размещения в городе Москве нового жилищного строительства в ближайшие годы.
реферат [281,0 K], добавлен 23.01.2011Оценка деформаций грунтов и расчет осадки фундаментов, свойства и деформируемость структурно неустойчивых грунтов. Передача нагрузки на основание при реконструкции зданий. Механические свойства грунтов, стабилометрический метод исследования их прочности.
курсовая работа [236,8 K], добавлен 22.01.2012Природа грунтов и показатели физико-механических свойств. Напряжения в грунтах от действия внешних сил. Разновидность песчаных грунтов по степени водонасыщения. Построение графика компрессионной зависимости и определение коэффициента сжимаемости грунта.
курсовая работа [610,6 K], добавлен 11.09.2014Определение показателей сжимаемости грунтов в лабораторных условиях на компрессионных приборах. Стабилизация осадки и закон ламинарной фильтрации для песчаных грунтов. Скорость фильтрации воды в порах. Сдвиговые испытания и линейная деформируемость.
презентация [267,4 K], добавлен 10.12.2013Основные типы современного деревянного жилищного домостроения. Особенности строительства домов из оцилиндрованного бревна, из цельного и клееного бруса. Примеры построек со стенами деревянно-каркасной и панельной конструкции. Требования к качеству домов.
презентация [1,7 M], добавлен 24.11.2013Контролируемые параметры оснований и фундаментов. Состояние прилегающей территории, цоколя и стен подвала. Тип и глубина заложения фундаментов. Физико-механические характеристики грунтов основания. Уровень грунтовых вод. Деформации грунтов основания.
презентация [2,5 M], добавлен 26.08.2013Характеристика площадки, инженерно-геологические и гидрогеологические условия. Оценка строительных свойств грунтов площадки и возможные варианты фундаментов здания. Определение несущей способности и количества свай. Назначение глубины заложения ростверка.
курсовая работа [331,0 K], добавлен 23.02.2016Анализ инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов. Анализ объемно-планировочных и конструктивных решений здания. Определение глубины заложения и обреза фундаментов. Определение осадки свайного фундамента.
курсовая работа [460,4 K], добавлен 27.04.2015Строительная классификация грунтов площадки, описание инженерно-геологических и гидрогеологических условий. Выбор типа и конструкции фундаментов, назначение глубины их заложения. Расчет фактической нагрузки на сваи, определение их несущей способности.
курсовая работа [245,7 K], добавлен 27.11.2013Геологическое строение оснований. Форма и размеры геологических тел в основании сооружений. Определение напряжений в массивах грунтов, служащих основанием или средой для сооружения. Практические методы расчета конечных деформаций оснований фундаментов.
контрольная работа [26,4 K], добавлен 17.01.2012Классификация средств механизации для уплотнения грунтов. Элементы взаимодействия гладкого вальца с укатываемой поверхностью. Тяговый расчет скребкового конвейера. Глубинное уплотнение пробивкой скважин. Уплотнение подводными и глубинными взрывами.
курсовая работа [3,6 M], добавлен 29.11.2012Инженерно-геологические данные и физико-механические свойства грунтов стройплощадки. Определение полного наименования грунтов основаниям. Выбор конструкции сваи: типа, длины и поперечного сечения. Технико-экономическое сравнение вариантов фундаментов.
курсовая работа [1,5 M], добавлен 20.04.2015Архитектурные особенности возведения жилых построек из дерева. Разновидности ручных срубов. Ассоциативные характеристики бревенчатых домов. Профилированный брус, его отличие его от простого строганного материала. Породы деревьев для деревянных домов.
презентация [3,2 M], добавлен 10.10.2019Анализ конструктивных особенностей здания и характера нагрузок на основание. Состав грунтов, анализ инженерно-геологических условий и оценка расчетного сопротивления грунтов. Выбор технических решений фундаментов. Расчет фундаментов мелкого заложения.
курсовая работа [1023,2 K], добавлен 15.11.2015Оценка инженерно-геологических условий и свойств грунтов с определением расчетного сопротивления грунтов основания. Определение глубины заложения подошвы фундамента. Определение давления на грунт основания под подошвой фундамента. Расчет плитной части.
курсовая работа [3,7 M], добавлен 24.08.2015Понятие и виды загородных домов для временного проживания. Проектирование дачных домов и коттеджей. Нормативное регулирование строительства. Зарубежный опыт, канадская технология строительства. Преимущества каркасно-панельного дома. Выбор материалов.
курсовая работа [58,0 K], добавлен 01.07.2013Разработка проекта фундамента для моста балочного типа в двух вариантах: фундамент мелкого заложения на естественном или искусственном основании при наличии прочных грунтов и свайный фундамент при наличии слабых грунтов на площадке строительства.
курсовая работа [159,1 K], добавлен 19.12.2010Строительство многоквартирных домов в городе Череповец. Взаимосвязь строительства жилых домов и управляющих компаний ЖКХ в городе. Законодательное обоснование возведения многоквартирного дома как объекта строительства. Управление многоквартирным домом.
курсовая работа [36,0 K], добавлен 14.02.2010Природа просадочных грунтов. Проектирование и проведение инженерно-геологических изысканий на просадочных грунтах в соответствии с нормативной документацией. Анализ изменения свойств просадочной толщи в ходе строительства зданий повышенной этажности.
дипломная работа [1,3 M], добавлен 10.11.2014Разрабатываемая технология строительства: глиняное литьё стен с последующей модернизацией раствора. Маркетинговые исследования калининградской загородной недвижимости. Преимущества строительства фахверковых домов, его основные этапы и себестоимость.
презентация [4,1 M], добавлен 14.12.2010