Электропрогрев бетона. Электросварочное оборудование

Характеристика методов и оборудования для прогрева бетона. Особенность индукционного способа. Электрообогрев монолитных конструкций в опалубке. Физическая сущность сварки. Изучение процесса зажигания дуги. Применение трехфазных сварочных аппаратов.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 11.01.2014
Размер файла 33,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

18

Федеральное государственное автономное образовательное учреждениевысшего профессионального образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Саяно-Шушенский - филиал Сибирского Федерального Университета

Кафедра «Строительство»

Реферат

по теме:

Электропрогрев бетона. Электросварочное оборудование

Введение

Прогрев бетона необходим для проведения строительных работ при низких температурах. Для прогрева бетона обычно используют специальное оборудование, которое за короткий промежуток времени способно нагреть материал.

В среднем бетон набирает свою прочность за 28 дней, но происходит это только при нормальных условиях (сухая погода, температура окружающей среды +20 градусов).

Если температура раствора опускается ниже определенной температуры, тогда он перестает твердеть. Процесс застывания происходит только после повышения температуры, но к тому времени марка материала значительно снижается.

Именно поэтому в процессе проведения строительных работ необходимо производить прогрев бетона.

Для прогрева бетона можно использовать такие способы:

· Обогрев с нагревательными проводами.

· Инфракрасный прогрев бетона.

· Индукционный нагрев бетона.

· Прогрев бетона в греющей опалубке.

1. Обогрев с нагревательными проводами

В основе контактного способа электрообогрева используется передача тепла от заложенных в раствор проводов к бетону. Для прогрева бетона необходимо пустить через провода большое количество тока. Тепло распространяется очень быстро, особенно если использовать проводки диаметром до трех миллиметров. Потребность энергии для прогрева бетона необходимо рассчитывать, зависимо от характеристик конструкции. Количество нагревательных элементов зависит от общего объема постройки. В процессе нагрева бетона нужно регулировать силу тока, постоянно изменяя ее в соответствии с температурными показателями. Все полученные данные нужно заносить в специальный журнал, после чего необходимо составить график изменений. В данном методе используются прогревочные трансформаторы с несколькими вариантами выходных напряжений марок ТСДЗ, СПБ и КТПТО различной мощности до 100кВА. Возможность прогрева до 100 куб.м. бетона, только одной прогревочной станцией, а на практике обычно используется от 3-х и более одновременно, нужно только позаботиться о нужной электрической мощности питающей сети.

2.Инфракрасный прогрев бетона

Метод «инфракрасного» прогрева бетона достаточно прост и эффективен. Залитый бетонный раствор накрывается электрическими термоматами, которые равномерно прогревают бетон сразу на всю глубину. Прогрев бетона на всю глубину заливки возможен благодаря способности ИК-лучей проходить через неметаллические материалы, следовательно мягко и равномерно прогревая их. Проводимые нашими специалистами опыты по ускорению твердения бетона в различных конструкциях показывают, что термоматами можно прогреть бетонные конструкции толщиной 60 см., время прогрева бетона -- набора прочности зависит от марки бетона и начальных условий (температуры окружающей среды). На практике опыты показали, что при температуре воздуха -5С°, за 8-10 часов происходит набор прочности бетона до 70%, т.е. равного прочности набираемой бетоном при твердении нормальным способом за 28 дней.

Сегодня многие заводы и предприятия, изготавливающие ЖБИ применяют инфракрасные обогреватели для «пропарки» бетона в опалубке, плит нестандартных размеров и ускорения твердения таких изделий как тротуарная плитка, сваи т.п. При этом термоматы используют для прогрева больших конструкций, имеющих ровную поверхность, а для нагрева опалубки используют нагреватели поверхностные промышленные в стекловолокне (НППС). Инфракрасные нагреватели изготавливаются по размерам используемых на предприятии опалубок и имеют терморегуляторы и дополнительную термоизоляцию для создания направленного потока тепла в сторону обогреваемого объекта (экономия до 40% электричества). На строительных объектах термоматы применяются для прогрева горизонтальных и вертикальных поверхностей, стыков блоков и колонн. Также эти термоматы можно использовать для прогрева грунта перед проведением земельных работ в зимнее время и в условиях вечной мерзлоты.

3. Индукционный прогрев бетона

Индукционный нагрев бетона -- способ термообработки бетона, основанный на использовании магнитной составляющей и переменного электромагнитного поля для нагрева стали под действием электрического тока, наводимого электромагнитной индукцией. При индукционном нагреве бетона энергия переменного электромагнитного поля преобразуется в арматуре или стальной опалубке в тепловую и передается тепловым излучением бетону. Индукционный способ может применяться как для термообработки бетона некоторых типов монолитных конструкций в условиях строит, площадки, так и для ускорения твердения бетона конструкций при изготовлении их в условиях припостроечных полигонов.

Индукционный нагрев бетона. позволяет вести термообработку бетона монолитных ж.-бет. каркасных конструкций (колонны, ригели, балки, прогоны, элементы рамных конструкций, отдельные опоры); замоноличивание стыков каркасных конструкций; омоноличивание каркаса и усиление каркасных конструкций; термообработку монолитных ж.-бет. сооружений, возводимых в скользящих, подъемно-переставных и кату чих опалубках (стволы труб, силосы, ядра жесткости, коллекторы и т.п.); термообработку ж.-бет. изделий в условиях припост-роечных полигонов (ригели, балки, колонны, перемычки, сваи, опоры, трубы, колодцы, элементы элеваторов и т.п.).

Индукционный нагрев насыщенных арматурой каркасных конструкций и конструкций, возводимых в стальной опалубке, обладает рядом достоинств: органически просто осуществляется собственно прогрев бетона насыщенных металлом конструкций; обеспечивается равномерное по сечению и длине конструкций температурное поле; легко и быстро без дополнит, источников теплоты осуществляется обогрев арматуры, жесткого каркаса, металлической опалубки, а также при необходимости отогрев ранее уложенного и замороженного бетона; обеспечивается возможность круглогодичного использования металлической опалубки; исключается расход стали на электроды.

Частным случаем является термообработка бетона в электроиндукционных камерах со стальными стенками, нагреваемыми до 200--300 °С, от которых теплота передается обрабатываемым изделиям за счет излучения и конвекции; при этом температура среды в камере достигает 120-- 150 °С.

С применением индукционного нагрева велась термообработка бетона при строительстве здания института Гидропроект, высотных корпусов на Новоарбатском проспекте, гостиниц "Россия" и "Националь", Государственной картинной галереи на Крымском валу, спорткомплекса "Олимпийский" (Москва), здания цирка (Новосибирск), а также на множестве объектах промышленного строительства.

4. Прогрев бетона в греющей опалубке

Электрообогрев бетона монолитных конструкций в греющей опалубке заключается в непосредственной передаче тепла от греющих поверхностей опалубки к прогреваемому бетону. Распространение тепла в самом бетоне происходит путем теплопроводности.

В качестве нагревателей для греющей опалубки применяются ТЭНы, слюдопластовые нагреватели, греющие кабели, углеграфитовая ткань, сетчатые нагреватели. Областью применения электрообогрева монолитных конструкций в греющей опалубке в соответствии с положениями СНиП 3.03.01-87 "Несущие и ограждающие конструкции" являются фундаменты под конструкции зданий и оборудование, массивные стены и т.п. конструкции с модулем поверхности 3-6; колонны, балки, прогоны, элементы рамных конструкций, свайные ростверки, стены, перекрытия с модулем поверхности 6-10; полы, перегородки, плиты перекрытий, тонкостенные конструкции с модулем поверхности 10-20, бетонирование которых производится при температуре воздуха до -40°С.

5. Электросварочное оборудование

Сварка является одним из ведущих технологических процессов обработки металлов. Сварка широко применяется в основных отраслях производства, потребляющих металлопрокат, т.к. резко сокращается расход металла, сроки выполнения работ и трудоёмкость производственных процессов. Выпуск сварных конструкций и уровень механизации сварных процессов постоянно повышается. Успехи в области автоматизации сварочных процессов позволили коренным образом изменить технологию изготовления важных хозяйственных объектов, таких как доменные печи, турбины, химическое оборудование.

Сварка -- технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их местном или пластическом деформировании, или совместным действием того и другого. Сваркой соединяют однородные и разнородные металлы и их сплавы, металлы с некоторыми неметаллическими материалами (керамикой, графитом, стеклом и др.), а также пластмассы.

Сварка -- экономически выгодный, высокопроизводительный и в значительной степени механизированный технологический процесс, широко применяемый практически во всех отраслях машиностроения.

Физическая сущность процесса сварки заключается в образовании прочных связей между атомами и молекулами на соединяемых поверхностях заготовок. Для образования соединений необходимо выполнение следующих условий: освобождение свариваемых поверхностей от загрязнений, оксидов и адсорбированных на них инородных атомов; энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом; сближение свариваемых поверхностей на расстояния, сопоставимые с межатомным расстоянием в свариваемых заготовках.

6. Электродуговая сварка

Дуга - мощный стабильный разряд электричества в ионизированной атмосфере газов и паров металла. Ионизация дугового промежутка происходит во время зажигания дуги и непрерывно поддерживается в процессе ее горения. Процесс зажигания дуги в большинстве случаев включает в себя три этапа: короткое замыкание электрода на заготовку, отвод электрода на расстояние 3-6 мм и возникновение устойчивого дугового разряда. Короткое замыкание выполняется для разогрева торца электрода и заготовки в зоне контакта с электродом. После отвода электрода с его разогретого торца (катода) под действием электрического поля начинается термоэлектронная эмиссия электронов. Столкновение быстродвижущихся по направлению к аноду электронов с молекулами газов и паров металла приводит к их ионизации. По мере разогрева столбца дуги и повышение кинетической энергии атомов и молекул происходит дополнительная ионизация за счет их соударения. Отдельные атомы также ионизируются в результате поглощения энергии, выделяемой при соударении других частиц. В результате дуговой промежуток становится электропроводным и через него начинается разряд электричества. Процесс зажигания дуги заканчивается возникновением устойчивого дугового разряда. Источником теплоты при дуговой сварке служит электрическая дуга, которая горит между электродом и заготовкой. В зависимости от материала и числа электродов, а также способа включения электродов и заготовки в цепь электрического тока различают следующие способы дуговой сварки:

а) Сварка неплавящимся (графитным или вольфрамовым) электродом, дугой прямого действия, при которой соединение выполняется путем расплавления только основного металла, либо с применением присадочного металла. б) Сварка плавящимся (металлическим) электродом, дугой прямого действия, с одновременным расплавлением основного металла и электрода, который пополняет сварочную ванну жидким металлом.

Условия процесса сварки в основном и определяют требования, предъявляемые к источникам питания сварочной дуги. Для обеспечения устойчивого процесса сварки источники питания дуги должны удовлетворять следующим требованиям:

Напряжение холостого хода должно быть достаточным для легкого возбуждения дуги и в то же время не должно превышать нормы безопасности. Максимально допустимое напряжение холостого хода установлено для источников постоянного тока - 90 В, а для источников переменного тока - 80 В; напряжение устойчивого горения дуги (рабочее напряжение) должно быстро устанавливаться и изменяться в зависимости от длины дуги. С увеличением длины дуги напряжение должно быстро возрастать, а с уменьшением - быстро падать. Время восстановления рабочего напряжения от О до 30 В после каждого короткого замыкания (при капельном переносе металла от электрода к свариваемой детали) должно быть менее 0,05 с; ток короткого замыкания не должен превышать сварочный ток более чем на 40...50%. При этом источник тока должен выдерживать продолжительные короткие замыкания сварочной цепи. Это условие необходимо для предохранения обмоток источника тока от перегрева и повреждения; мощность источника тока должна быть достаточной для выполнений сварочных работ. Кроме того, необходимы устройства, позволяющие регулировать сварочный ток в требуемых пределах. Промышленностью выпускаются следующие типы источников питания сварочной дуги; сварочные преобразователи, сварочные аппараты переменного тока, сварочные выпрямители. Сварочные аппараты состоят из понижающего трансформатора и устройства-дросселя, подвижного магнитного шунта, подвижной обмотки для создания падающей внешней характеристики и регулирования сварочного тока. Трансформатор обеспечивает питание дуги переменным током напряжением 60...70 В.

Сварочные аппараты с отдельным дросселем состоят из понижающего трансформатора и дросселя (регулятора тока). Трансформатор Тр имеет сердечник (магнитопровод) из пластин, отштампованных из тонкой трансформаторной стали толщиной 0,5 мм. На сердечнике расположены первичная и вторичная обмотки. Первичная обмотка из изолированной проволоки подключается к сети переменного тока напряжением 220 или 380 В. Во вторичной обмотке, изготовленной из медной шины, индуцируется напряжение 60...70 В. Небольшое магнитное рассеивание и малое омическое сопротивление обмоток обеспечивают незначительное внутреннее падение напряжения и высокий к. п. д. трансформатора. Последовательно с вторичной обмоткой в сварочную цепь включена обмотка (из голой мерной шины) дросселя Др. Обмотка имеет асбестовые прокладки, пропитанные теплостойким лаком. Сердечник дросселя также набран из пластин тонкой трансформаторной стали и состоит из двух частей: неподвижной, на которой расположена обмотка дросселя, и подвижной, перемещаемой с помощью винтовой пары. При вращении рукоятки по часовой стрелке воздушный зазор а увеличивается, против часовой стрелки - уменьшается.

При возбуждении дуги (при коротком замыкании) большой ток, проходя через обмотку дросселя, создает мощный магнитный поток, наводящий э. д. с. дросселя, направленную против напряжения трансформатора. Вторичное напряжение, развиваемое трансформатором, полностью поглощается падением напряжения в дросселе. Напряжение в сварочной цепи почти достигает нулевого значения.

При возникновении дуги сварочный ток уменьшается; вслед за ним уменьшается э. д. с. самоиндукции дросселя, направленная против напряжения трансформатора, и в сварочной цепи устанавливается рабочее напряжение, необходимое для устойчивого горения дуги, меньшее, чем напряжение холостого хода. Изменяя зазор а между Неподвижным, и подвижным магнитопроводами, изменяют индуктивное сопротивление дросселя и тем самым ток в сварочной цепи. При увеличении зазора магнитное сопротивление магнитопровода дросселя увеличивается, магнитный поток ослабляется, уменьшается э. д. с. самоиндукции катушки и ее индуктивное сопротивление. Это приводит к возрастанию сварочного тока. При уменьшении зазора сварочный ток уменьшается. Один оборот рукоятки винтовой пары изменяет сварочный ток примерно на 20 А. По этой схеме изготовлены сварочные трансформаторы типа СТЭ. Трансформаторы СТЭ-24-У и СТЭ-34-У не сложны по устройству и безопасны в работе и поэтому их широко применяют при ручной дуговой сварке.

Трансформатор и регулятор заключены в отдельные кожухи из тонкой листовой стали с жалюзи для естественного охлаждения и установлены на колесики для перемещения. Первичная обмотка из изолированной проволоки размешена на двух. катушках.

Для включения трансформатора в сеть с напряжением 220 В обмотки катушек соединяют параллельно, а Для сети напряжением 380 В - последовательно.

Вторичная обмотка из голой медной шины расположена поверх первичной обмотки на тех же катушках. При этом вторичная обмотка соединена всегда последовательно. На торцовой стенке Кожуха на клеммовой доске расположены выводы первичной обмотки, на Другой торцовой стенке - выводы вторичной обмотки.

Сварочные аппараты со встроенным дросселем имеют электромагнитную схему, разработанную акад.В.П. Никитиным. Магнитопровод трансформатора состоит из основного сердечника, на котором расположены первичная и вторичная обмотки собственно трансформатора, и добавочного сердечника с обмоткой дросселя (регулятора тока). Добавочный магнитопровод расположен над основным и состоит из неподвижной и подвижной частей, между которыми с помощью винтовой пары устанавливается необходимый воздушный зазор а.Магнитный поток, создаваемый обмоткой дросселя, может иметь попутное или встречное направление с потоком, создаваемым вторичной обмоткой трансформатора, в зависимости от того, как включены эти обмотки.

При встречном соединении магнитные потоки, возникающие при прохождении тока во вторичной обмотке трансформатора Фт и обмотке дросселя Фд, будут направлены навстречу друг другу. При этом напряжение холостого хода

Uхх = Uтх-Uдх,

где Uтх - напряжение во вторичной обмотке трансформатора, В; Uдх - напряжение в обмотке дросселя, В. При попутном включении магнитные потоки Фт и Фд будут иметь одинаковое направление и напряжение холостого хода

Uхх=Uтх+Uдх.

Сварочный ток регулируют, изменяя воздушный зазор а; чем больше зазор а, тем больше сварочный ток.

Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом имеют целый замкнутый магнитопровод, у которого на одном стержне расположены первичная и вторичная обмотки трансформатора, а на другом - реактивная обмотка. Между ними находится стержень - магнитный шунт. Шунт замыкает магнитные потоки, создаваемые первичной и реактивной обмотками. При этом образуются магнитные потоки рассеяния, которые создают значительное индуктивное сопротивление. Таким образом обеспечивается падающая внешняя характеристика трансформатора.

Сварочный ток регулируют, перемещая магнитный шунт вдоль направления магнитного потока. При выдвижении шунта рассеяние магнитных потоков первичной и реактивной обмоток уменьшается, вследствие чего уменьшается индуктивное сопротивление трансформатора. При этом сварочный ток возрастает. По такому принципу работают сварочные аппараты типа СТАН и СТШ.

Сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Трансформатор имеет магнитопровод, на обоих стержнях которого расположены по две катушки: одна с первичной обмоткой, а вторая - со вторичной обмоткой. Катушки первичной обмотки закреплены неподвижно в нижней части сердечника, а катушки вторичной обмотки перемещаются по стержню с помощью винтовой пары. Сварочный ток регулируют изменением расстояния между первичными и вторичными обмотками. При увеличении этого расстояния магнитный поток рассеяния возрастает, а сварочный ток уменьшается.

Трехфазные сварочные аппараты применяют при сварке трехфазной дугой спаренными электродами. Процесс сварки осуществляется сварочными дугами, которые возбуждаются между каждым электродом и свариваемой деталью и между электродами. Аппарат состоит из трехфазного трансформатора, регулятора сварочного тока и магнитного контактора. Первичная обмотка включается в силовую сеть напряжением 220 В (соединение обмоток в треугольник) или 380 В (соединение обмоток в звезду). Вторичная обмотка имеет по две катушки на каждом стержне и выполнена из голой медной шины. Регулятор сварочного тока состоит из двух дросселей и трех обмоток. Две обмотки расположены на одном магнитопроводе и подключены к спаренным в едином электрододержателе, но изолированным друг от друга электродам. Третья обмотка расположена на втором магнитопроводе и подключена к свариваемой детали. Регулятор вмонтирован в общий корпус и снабжен двумя рукоятками, с помощью которых (изменением воздушных зазоров в магнитопроводах) регулируется сварочный ток. Одной рукояткой регулируют ток одновременно в обеих фазах, подключенных к электродам, а второй рукояткой - в фазе, подсоединенной к изделию. Магнитный контактор служит для включения цепи спаренных электродов. В начальный момент при возбуждении дуги сварочная цепь замыкается через свариваемую деталь и один из электродов. Ток проходит по обмотке регулятора и обмотке контактора. Контактор включает обмотку регулятора. Возникает вторая дуга. При отводе электродов от детали ток в обмотках прекращается и контактор выключает цепь обмотки, гасит дугу между электродами.

Трехфазные сварочные аппараты обеспечивают высокую производительность, экономию электроэнергии (к. п. д. достигает 0,9) и равномерную загрузку фаз сети при высоком коэффициенте мощности (соs ц= 0,8), однако ввиду сложности сварочного оборудования и трудностей при сварке потолочных вертикальных швов применяются ограниченно. При необходимости обеспечить большой сварочный ток и при отсутствии сварочных аппаратов достаточной мощности можно применять параллельное включение трансформаторов. Схема такого включения сварочных аппаратов представлена на. Для параллельной работы нужно применять трансформаторы с одинаковыми внешними характеристиками и напряжениями первичной и вторичной цепей. Одноименные концы первичных обмоток а соединяют между собой и общие клеммы включают в силовую сеть переменного тока. Одноименные концы вторичной обмотки b также соединены между собой: клеммы подключают к дросселям Др, а клеммы - к детали. Дроссели соединяют между собой также параллельно. Сварочный ток регулируют вращением рукояток дросселей так, чтобы обеспечить равенство нагрузок на трансформаторы. Равенство нагрузок проверяют амперметром. бетон сварка опалубка

В некоторых случаях для повышения устойчивости горения дуги, питаемой переменным током, применяют способ наложения на сварочный ток частотой 50 Гц токов высокой частоты (150...500 кГц) и высокого напряжения (1500...6000 В). Такие меры предпринимают при сварке тонкостенных изделий дугой малой мощности и при сварочном токе 20...40 А, а также при сварке в защитных газах, сварке специальных сталей и некоторых цветных металлов.

Для получения токов высокой частоты и высокого напряжения применяют осцилляторы, параллельного и последовательного включения. Осциллятор ОСПЗ-2М включают непосредственно в питающую сеть напряжением 220 В. Он состоит из повышающего (с 220 В до 6000 В) трансформатора ПТ и колебательного контура. Колебательный контур, состоящий из высокочастотного трансформатора ВЧТ, конденсатора С5 и разрядника Р,вырабатывает высокочастотный ток. Контур связан со сварочной цепью индуктивно через трансформатор ВЧТ, выводы вторичной обмотки которого присоединяют: один - к клемме "земля" выводной панели, а другой - ко второй клемме через конденсатор С6 и предохранитель Пр2. Конденсатор С6 препятствует прохождению тока высокого напряжения и низкой частоты в сварочную цепь и служит для защиты сварщика в случае пробоя конденсатора С5. Предохранитель Пр2 выключает осциллятор в случае пробоя конденсатора С6. Для устранения радиопомех в питающей сети осциллятор снабжен фильтром из двух защитных дросселей Др1 и Др2. и четырех конденсаторов С1, С2, С3 и с4. Фильтр защищает цепь питания от токов высокой частоты. Для общей защиты от радиопомех осциллятор имеет экранирующий металлический кожух. Осцилляторы последовательного включения (М-3, ОС-1) применяют в установках для дуговой сварки в защитных газах. Они обеспечивают более надежную защиту генератора (или силового выпрямительного блока) от пробоя высокочастотным напряжением осциллятора. При применении осциллятора дуга загорается легко, даже без прикосновения электрода к изделию (при зазоре 1...2 мм), что объясняется предварительной ионизацией воздушного промежутка между электродом и свариваемой деталью. Институтом электросварки им. Е.О. Патона разработан импульсный генератор ГИ-1, который подает ток высокого напряжения (200...300 В) импульсами в те моменты, когда напряжение в сварочной цепи переходит через нулевое значение. Такие генераторы более надежны в работе и более экономичны, чем осцилляторы, так как требуют меньше энергии.

7. Сварочные выпрямители

Сварочные выпрямители получили большое распространение. Основные их преимущества следующие: высокий к. п. д. и относительно небольшие потери холостого хода; высокие динамические свойства при меньшей электромагнитной индукции; отсутствие вращающихся частей и бесшумность в работе, равномерность нагрузки фаз, небольшая масса, возможность замены медных проводов алюминиевыми. Однако следует иметь в виду, что для выпрямителей продолжительные короткие замыкания представляют большую опасность, так как могут выйти из строя диоды. Кроме того, сварочные выпрямители чувствительны к колебаниям напряжения в сети. Все же по основным технико-экономическим показателям сварочные выпрямители являются более прогрессивными, чем, например, сварочные преобразователи. Сварочные выпрямители состоят из двух основных блоков: понижающего трехфазного трансформатора с устройствами для регулирования напряжения или тока и выпрямительного блока. Кроме того, выпрямитель имеет пускорегулирующее и защитное устройства, обеспечивающие нормальную его эксплуатацию. Для выпрямления тока используется свойство полупроводникового вентиля проводить ток только в одном направлении. Наибольшее применение получили селеновые и кремниевые вентили. Селеновые вентили дешевы и выдерживают перегрузки. Кремниевые вентили обладают высокими энергетическими показателями и высоким к. п. д., но очень чувствительны к перегрузкам по току и поэтому требуют защитных устройств и интенсивного охлаждения. Выпрямление тока осуществляется по трехфазной мостовой схеме Ларионова. Мост состоит из шести плеч, в каждом из которых установлены вентили, обеспечивающие выпрямление обоих полупериодов переменного тока в трех фазах. Сварочные выпрямители с жесткой внешней характеристикой типа ВС и ВДГ предназначены для сварки в защитном газе плавящимся электродом, автоматической и полуавтоматической сварки под флюсом, порошковой проволокой и др. Они просты в устройстве и надежны в работе. Имея общую принципиальную схему, выпрямители этого типа отличаются в основном мощностью и числом ступеней регулирования. Выпрямители состоят из понижающего трехфазного трансформатора, выпрямительного блока, двух универсальные, переключателей для переключения витков первичной обмотки трансформатора (для грубой и точной регулировки), дросселя (для обеспечения нарастания тока короткого замыкания и сглаживания пульсаций) и вентилятора.

Сварочные выпрямители с падающей внешней характеристикой выпускаются типа ВСС, ВКС и ВД. Сварочные выпрямители типа ВСС состоят из понижающего трехфазного трансформатора с подвижными обмотками, выпрямительного селенового блока с вентилятором, пускорегулирующей и защитной аппаратурой. Понижающий трансформатор выполнен с повышенным магнитным рассеянием, которое регулируется изменением расстояния между первичной и вторичной обмотками. Два диапазона регулирования сварочного тока получают, Соединяя первичную и вторичную обмотки звездой (малые токи) и треугольником (большие токи). В пределах каждого диапазона ток плавно регулируют, изменяя расстояние между катушками первичной (нижней подвижной) и вторичной (верхней неподвижной) обмоток с помощью рукоятки. При вращении рукоятки по часовой стрелке катушки обмоток сближаются, индуктивность рассеяния уменьшается, сварочный ток увеличивается. Обмотки трансформатора выполнены из алюминия. Выпрямительный блок собран из селеновых пластин 100Х400 мм, охлаждается вентилятором. Сварочные выпрямители типа ВКС имеют следующие основные отличия от типа ВСС: выпрямительный блок составлен из кремниевых вентилей ВК-200; сварочный ток регулируют, перемещая катушки обмоток с помощью асинхронного двигателя с дистанционным управлением. Широкое применение получили сварочные выпрямители ВД-101 и ВД-301 с кремниевыми вентилями и ВД-102 и ВД-302 с селеновыми вентилями. Они несложны по устройству, обладают достаточно высоким коэффициентом полезного действия и имеют небольшую массу. Сварочные выпрямители типа ВСУ, и ВДУ являются универсальными источниками питания дуги. Они предназначены для питания дуги при автоматической и полуавтоматической сварке под флюсом, в защитных газах, порошковой проволокой, а также при ручной сварке. Выпрямители ВСУ, кроме обычных - блока трехфазного понижающего трансформатора и выпрямительного блока, имеют дроссель насыщения с четырьмя обмотками. Переключением этих обмоток можно получать жесткую, пологопадающую и крутопадающую внешние характеристики. Выпрямители ВДУ основаны на использовании в выпрямляющих силовых обмотках управляемых вентилей-тиристоров. Схема управления тиристорами позволяет получать необходимый для сварки вид внешней характеристики, обеспечивает широкий диапазон регулирования сварочного тока и стабилизацию режима сварки при колебаниях напряжения, питающей сети.

Список литературы

· http://www.tyumfair.ru

· http://stroy-technics.ru

· http://zimbeton.narod.ru

· http://www.baurum.ru

· http://www.stroyisdat.ru

· http://websvarka.ru

Размещено на Allbest.r

...

Подобные документы

  • Применение заполнителей при производстве бетона; подбор оборудования для изготовления керамзитового гравия. Расчет производительности цеха, сырьевых материалов, электроэнергии. Экономические показатели; контроль качества продукции; техника безопасности.

    курсовая работа [59,9 K], добавлен 25.09.2012

  • Достоинства и недостатки монолитного домостроения. Проектирование состава бетона. Технология возведения монолитных конструкций (опалубочные и арматурные работы, бетонирование). Интенсификация работ при отрицательной температуре. Оценка прочности изделий.

    курсовая работа [1,7 M], добавлен 18.10.2013

  • Расчет номинального и производственного состава бетона методом абсолютных объемов. Коэффициент выхода бетона; расход материалов на один замес. Модуль крупности песка. Прочность бетона при использовании пропаривания, как способа ускорения твердения.

    контрольная работа [643,5 K], добавлен 17.12.2013

  • Изучение порядка определения требуемой прочности и расчет состава тяжелого бетона. Построение графика зависимости коэффициента прочности бетона и расхода цемента. Исследование структуры бетонной смеси и её подвижности, температурных трансформаций бетона.

    курсовая работа [1,9 M], добавлен 28.07.2013

  • Обзор сырьевых материалов и проектирование подбора состава тяжелого бетона. Расчет химической добавки тяжелого бетона, характеристика вещества. Разработка состава легкого бетона. Область применения в строительстве ячеистых теплоизоляционных бетонов.

    реферат [110,6 K], добавлен 18.02.2012

  • Концепция развития бетона и железобетона, значение этих материалов для прогресса в области строительства. Особенности технологий расчета и проектирования железобетонных конструкций. Направления и источники экономии бетона и железобетона в строительстве.

    реферат [30,2 K], добавлен 05.03.2012

  • Экология бетона. Характеристика ячеистого бетона (газобетона): теплоизоляция, огнестойкость, звукоизоляция, экология, обрабатываемость и экономичность. Проблема утилизации строительных отходов и переработка за рубежом. Вторичное использование бетона.

    реферат [1,7 M], добавлен 23.10.2008

  • Механические свойства бетона и состав бетонной смеси. Расчет и подбор состава обычного бетона. Переход от лабораторного состава бетона к производственному. Разрушение бетонных конструкций. Рациональное соотношение составляющих бетон материалов.

    курсовая работа [113,6 K], добавлен 03.08.2014

  • Классификация бетона по маркам и прочности. Сырьевые материалы для приготовления бетонов. Суперпластификаторы на основе поликарбоксилатов. Проектирование, подбор и расчет состава бетона с химической добавкой. Значения характеристик заполнителей бетона.

    курсовая работа [52,7 K], добавлен 13.03.2013

  • Контролируемые параметры для железобетонных конструкций. Прочностные характеристики бетона и их задание. Количество, диаметр, прочность арматуры. Контролируемые параметры дефектов и повреждений железобетонных конструкций. Основные методы испытания бетона.

    презентация [1,4 M], добавлен 26.08.2013

  • Первые бетонные постройки. Основные этапы развития технологии бетона в Древнем Риме. Жесткие и малоподвижные бетонные смеси. Применение силикатного, цементно-полимерного, декоративного бетона и фибробетона. Процесс создания новых видов бетонов.

    реферат [43,9 K], добавлен 21.07.2011

  • Структура бетона и ее влияние на прочность и деформативность. Усадка бетона и начальные напряжения. Структура бетона, обусловленная неоднородностью состава и различием основных способов приготовления. Деформативность бетона и основные виды деформаций.

    реферат [22,4 K], добавлен 25.02.2014

  • Выбор способа производства сборного и монолитного бетона. Конвейерный и стендовый способы производства железобетонных изделий. Расчет состава керамзитобетона, состава тяжелого бетона и усредненно-условного состава бетона. Проектирование арматурного цеха.

    курсовая работа [912,7 K], добавлен 18.07.2011

  • Технология процессов монолитного бетона и железобетона. Содержание и структура комплексного процесса бетонирования. Опалубочные и арматурные работы. Уплотнение бетонных смесей. Подбор монтажных кранов. Калькуляция затрат труда и машинного времени.

    курсовая работа [32,0 K], добавлен 22.02.2012

  • Проектирование монолитного коммуникационного тоннеля для стоков. Расчёт объёмов работ: установка арматуры, устройство опалубки, бетонирование, укрытие неопалубленных поверхностей конструкций, выдерживание бетона, снятие утеплителя, контроль температуры.

    курсовая работа [381,0 K], добавлен 09.12.2014

  • Назначение марки цемента в зависимости от класса бетона. Подбор номинального состава бетона, определение водоцементного отношения. Расход воды, цемента, крупного заполнителя. Экспериментальная проверка и корректировка номинального состава бетона.

    контрольная работа [46,7 K], добавлен 19.06.2012

  • Определение и уточнение требований, предъявляемых к бетону и бетонной смеси. Оценка качества и выбор материалов для бетона. Расчет начального состава бетона. Определение и назначение рабочего состава бетона. Расчет суммарной стоимости материалов.

    курсовая работа [84,9 K], добавлен 13.04.2012

  • История бетона и железобетона. Изготовление монолитных конструкций. Способы натяжения арматуры. Ползучесть и усадка железобетона. Коррозия и меры защиты от нее. Три категории требований к трещиностойкости. Конструктивные схемы компоновки конструкций.

    контрольная работа [5,5 M], добавлен 07.01.2014

  • Характеристика цемента, песка, щебня. Нормируемая отпускная прочность бетона. Форма и размеры арматурных изделий и их положение в балках. Материалы пониженного качества. Расход крупного и мелкого заполнителя. Расчет состава бетона фундаментной балки.

    курсовая работа [25,4 K], добавлен 08.12.2015

  • Динамическая прочность бетона при сжатии и при растяжении. Чувствительность к скорости деформирования. Исследование напряженно-деформированного состояния несущих железобетонных конструкций зданий и сооружений при действии динамических нагрузок.

    реферат [1,4 M], добавлен 29.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.