Анализ безопасности и экологичности изделий из ПВХ

Поливинилхлорид как продукт сложного химического синтеза. Химический состав и его соответствие экологическим требованиям. Оценка качества профилей. Экструдер для производства строительных полимеров. Физико-механические испытания на образцах изделий.

Рубрика Строительство и архитектура
Вид лекция
Язык русский
Дата добавления 10.01.2014
Размер файла 292,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Анализ безопасности и экологичности изделий из ПВХ

1.1 Химический состав ПВХ, его соответствие экологическим требованиям

поливинилхлорид химический экструдер полимер

В наше время потребителю уже не достаточно просто высокого качества предлагаемого продукта. Современный человек, помимо соответствия товара необходимым потребительским требованиям, стал обращать пристальное внимание на соответствие его экологическим нормам, причем не только при эксплуатации, но и при производстве продукта.

Сознавая это, производители высокотехнологичной продукции уделяют большое внимание экологической чистоте своего товара и стремятся широко информировать потребителей о его качестве и свойствах. В полной мере это относится и к производителям оконных профилей из ПВХ, которые чрезвычайно востребованы на сегодняшнем рынке.

ПВХ (поливинилхлорид) - это продукт сложного химического синтеза. Основой для его производства является нефть и каменная соль. Однако благодаря своим уникальным свойствам этот материал химически инертен, долговечен и очень стоек, что делает его незаменимым в самых разных областях человеческой жизни. В частности, более чем 50-летний опыт эксплуатации ПВХ-трубопроводов питьевой воды в Германии позволил сделать вывод, что здоровью людей не наносится вреда - посторонних химических примесей в воде не обнаружено.

С другой стороны использование "природных" материалов, в большинстве случаев, сегодня невозможно (по соображениям безопасности и качества) без предварительной обработки различными реагентами, как это происходит, например, с деревом. После подобной обработки всерьез говорить о "натуральности" продукта уже нельзя.

Чистый поливинилхлорид (ПВХ), как уже было указано, не выделяет в окружающую среду никаких вредных веществ, однако при этом не обладает достаточными потребительскими свойствами. Для того чтобы привести его в соответствие с требованиями производства, ПВХ модифицируют, применяя самые разные добавки - стабилизаторы, пластификаторы, пигменты и ряд других. Подавляющее большинство из них инертно, но до недавнего времени в качестве термостабилизаторов в производстве профиля из ПВХ в небольших количествах использовали органические соли свинца, которые могут представлять опасность для окружающей среды на стадиях производства и переработки профилей. В готовом изделии они абсолютно безопасны и уже не несут никакой угрозы для природы и человека. Высокая культура производства тоже являлась достаточной гарантией от вредного воздействия на окружающую среду.

Однако, в рамках сокращения применения тяжелых металлов и их соединений в промышленности, Комиссия по охране окружающей среды Евросоюза предложила производителям существенно сократить использование свинца уже к концу 2005 года.

ПВХ-индустрия (производители профиля, производители стабилизаторов и т.д.) выступили с собственной инициативой полностью запретить свинец к использованию в промышленности. Эта инициатива была принята в Брюсселе, в комиссии по делам окружающей среды Евросоюза. До 2015 года должен быть принят и вступить в силу соответствующий закон. В некоторых европейских странах, таких как Дания, Австрия и Швейцария, полный запрет на свинец уже введен.

В связи с этим, замена стабилизаторов на основе солей свинца на соединения кальция и цинка становится новейшим экологическим стандартом Европы, на который ведущие компании, занимающиеся экструзией ПВХ, только начинают переводить свои производства.

1.2 Оценка качества ПВХ профилей

Контроль качества ПВХ профилей осуществляется в двух направлениях: соответствие формы и размеров профиля установленным допускам и оценка физико-механических свойств, зависящих от исходных свойств сырья и технологических параметров процесса, определяющих уровень качества материала.

Первый вид контроля обычно осуществляется на заводе-изготовителе (рис. 1.1), хотя выборочный контроль может проводить и потребитель.

Рисунок 1.1- Экструдер для производства ПВХ профилей

Второй вид контроля проводят в специализированных лабораториях у изготовителя или потребителя. Изготовитель периодически контролирует внешний вид экструдируемого профиля (отсутствие продольных рисок, вмятин, загрязнения, изменения цвета и пр.), прямолинейность отрезков (отклонение от прямолинейности не должно быть более 0,15% от длины отрезка), отсутствие скручивания (допускается скручивание не более 0,1 мм на 1 м длины), плоскостность основных поверхностей (отклонение не должно превышать 0,2 мм), перпендикулярность наружных и внутренних стенок к главным поверхностям (оценивается с помощью шаблонов).

Кроме того, внутренние размеры камер профиля должны соответствовать размерам металлических усиливающих профилей, для чего производится контроль с помощью отрезка такого профиля. Фактические размеры профиля заносят в специальные карты, на которых изображено поперечное сечение профиля со всеми размерами и контролируемыми допусками. Допуски на размеры могут изменяться в зависимости от типа и размеров профиля, но для толщины стенок действует единое правило: +0,3 и -0,1 мм - для наружных стенок, +0,1 и -0,3 мм - для внутренних стенок. Прямолинейность, угол скручивания, плоскостность, перпендикулярность сторон, лёгкая установка усиливающего металлического профиля - обязательные испытания для главных камерных профилей оконной системы.

В некоторых случаях проверяют цвет профиля (с помощью, например, лазерного колориметра), установку уплотнительных профилей, крепление арматуры и т.д.

Физико-механические испытания проводятся на образцах профилей,отбираемых дважды в день от всех производственных экструзионных линий, для контроля конкретной партии изделий. Кроме того, проводится периодический контроль (раз в неделю или в месяц) соответствия факультативным показателям для оценки стабильности производства.

При ежедневном контроле визуально оценивают внешний вид профиля, массу 1 пог/м (допускаютя колебания в пределах 4% от средней массы), для основных профилей оконной системы (створка, рама, импост, штульп) проводится ацетоновая проба (образец погружается в ацетон и наблюдают за его измененим во времени). Хороший профиль не должен подвергаться заметным изменениям в течение 5 часов, усадка при прогреве при 100° в течение 1 часа (продольная) - не должна превышать 2%, прочность на удар падающим грузом (экспресс-метод,позволяющий оценить как конструкцию самого профиля, так и правильность поддержания параметров технологического процесса). Оценивают число разрушенных образцов из десяти испытываемых. При температуре 0°С или -10°С для груза 1 кг, падающего с высоты 1 м, допускается только один разрушенный образец. Возможны вариации условий испытания: другая температура (-15°С), или 23°С; другая масса или высота падения; изменение расстояния между опорами, радиуса полусферического груза; испытания при изменении высоты падения груза и т.д.).

Выбор условий испытания падающим грузом определяется самим контроллёром в зависимости от имеющихся возможностей.

Иногда проводят другие испытания на удар; испытания по Шарпи надрезанного образца (широко распространён в Германии: этот метод хорошо оценивает концентрацию и распределение полимерного модификатора; результаты сильно зависят от радиуса надреза); испытание на ударное растяжение (метод чувствителен к случайным царапинам, царапинам, микротрещинам). Однако эти методы не являются обязательными и проводятся большей частью в исследовательских лабораториях для накопления знания и опыта применительно к конкретному материалу.

К периодическим испытаниям, проводимым в специальных лабораториях, оснащённых соответствующим оборудованием, относятся также определение плотности материала, точка Вика, оценка времени термостабильности. Эти испытания характеризуют правильность состава композиции.

На готовых ПВХ оконных рамах (или дверных блоках) изготовитель, или потребитель оценивает эксплуатационные показатели изделия, проверяет величину коэффициента температуропроводности, водонепроницаемость, тепло и звукоизоляцию, стойкость к старению. Последний метод испытания проводится как в натурных условиях (например, при интенсивном воздействии солнечного света в течение длительного времени), так и в условиях лаборатории на приборах, имитирующих эксплуатационные условия (ксенотесты). В Австрии и в Германии такие испытания проводятся в соответствие с DIN 53387. Интенсивность облучения в приборе устанавливается на уровне 1 кВт/м2 при длине волн излучения в пределах 300 - 380 нм. Температура испытания +45°С, пробы материала каждые 17 минут подвергаются искусственному дождеванию в течение 3 минут. Относительная влажность воздуха 60-80%. Испытания проводятся до суммарного облучения 0,8 МВт·м/с. Общая продолжительность облучения составляет 45000 часов, проба в процессе испытания должна вращаться. В процессе испытания оценивают изменение цвета с помощью, так называемого, серого масштаба по DIN 54001. Изменение окраски не должно выходить за пределы третьей ступени серого масштаба.

При испытании в ксенотесте оценивают также изменение прочности на удар. Начальная прочность должна уменьшаться не более, чем на 30%. Такие испытания проводят только в Германии (на настоящий момент это самая жёсткая методика оценки качества ПВХ изделий в мире).

Если какому-либо отечественному экструзионному предприятию в Россие удаётся получить немецкий сертификат качества от IFT (Институт оконной техники в Розенхайме) по вышеупомянутым характеристикам - то это повод для заслуженной гордости такого предприятия за качество своего товара (экструдированные ПВХ профили и изделия из них), а для потребителя гарантия правильного выбора. Нормы испытания отличаются только временем кондиционирования образцов и самой температурой испытания, о чём говорилось выше. Качество сварки рамы оценивается путём растяжения, удара, или сжатия.

Обязательны также многочисленные испытания рамы на совместную работу ПВХ профиля и металлической фурнитуры (прочность сцепления армирующего внутреннего металлопрофиля с ПВХ профилем, усилие выдёргивания шурупов, болтов, прочность механических тяг и штанг фурнитуры, петель, замков, ручек и т.п.).

1.3 Окна из профиля ПВХ в эксплуатации

Срок службы пластиковых окон без потери потребительских качеств очень велик - до 50 лет. В качестве примера можно привести опыт Германии, где в 1990 году в рамках реконструкции были демонтированы пластиковые окна, установленные еще в 1964 г. После 26 лет эксплуатации окна полностью сохранили свои характеристики.

ПВХ-профили очень удобны для вторичной переработки. Их можно пускать в производственный цикл до 5 раз! Да и после этого полимер находит применение в промышленности. В сочетании со сроком службы это делает использование ПВХ-профилей вполне безопасным для окружающей среды.

Проводилось огромное количество исследований поведения ПВХ-материалов в огне. В результате этих исследований были получены основные характеристики ПВХ при горении.

Все органические вещества при горении выделяют вредные вещества, например, угарный газ. Особенностью ПВХ является его неспособность поддерживать горение. При воздействии открытого пламени поливинилхлорид выделяет хлороводород - вещество, безусловно, вредное, но образующее при контакте с парами воды (которая тоже выделяется при термическом разрушении всех органических веществ) соляную кислоту, препятствующую возгоранию.

Кроме того, в отличие от монооксида углерода (угарного газа) хлороводород обладает едким характерным запахом, что позволяет вовремя заметить возгорание.

Недостаточно вовремя заметить возгорание - его нужно еще и быстро ликвидировать. Для этих целей используют разные средства пожаротушения, при выборе которых важно учитывать не только эффективность воздействия на пламя, но и безопасность для здоровья человека, а также способность при тушении огня наносить минимальный ущерб отделке, мебели, бытовой технике.

Из средств пожаротушения наиболее эффективными и безопасными являются огнетушители.

По видам огнегасящего вещества огнетушители делятся на:

- водные (с зарядом воды или воды с добавками);

- пенные (с зарядом пенообразователи разнообразных видов);

- воздушно-пенные (с зарядом водного раствора пенообразующих добавок);

- химически-пенные (с зарядом химических веществ, которые на момент приведения огнетушителя в действие вступают в реакцию с образованием пены и чрезмерного давления);

- порошковые (с зарядом огнетушащего порошка);

- углекислотные (с зарядом диоксида углерода);

- хладонные (с зарядом огнетушащего вещества на основе галогенизированных углеводородов);

- комбинированные (с зарядом двух и более огнетушащих веществ).

Существуют стационарные устройства огнетушения, срабатывающие автоматически, при выявлении датчиком возгорания повышенного тепла или, например, дыма.

Тушение пожара может быть поверхностным (подача огнетушащих веществ непосредственно на очаг горения) и объемным - за счет создания в зоне пожара среды, не поддерживающей горение. Для поверхностного тушения применяют составы, которые можно подавать в очаг пожара на расстоянии (жидкости, пены, порошки), для объемного тушения - вещества, которые могут распределяться в защищаемом объеме в необходимой концентрации (газовые и порошковые составы).

Самыми опасными местами в коттедже при пожаре являются гараж и котельная. Именно здесь находятся мощные источники возгорания: газ, масла, бензин и т. д. В любом случае в этих помещениях рекомендуется установить систему автоматического пожаротушения.

Различают спринклерные и дренчерные «водяные» установки. Системы на основе спринклеров представляет собой сеть укрепленных под перекрытием помещения труб с ввинченными в них водораспыливающими насадками (спринклерами). Выходное отверстие спринклера перекрыто клапаном, который удерживается в закрытом состоянии так называемым тепловым замком. При повышении температуры в помещении до расчетного значения замок разрушается и клапан отходит, открывая доступ воде.

Дренчер, в отличие от спринклера, не имеет легкоплавкого замка и автоматической системы включения клапанов водяной сети.

Присутствие людей в момент срабатывания автоматической установки допускает только один из всех существующих видов пожаротушения - водяное. В случае защиты порошковыми и иными средствами помещения, в котором находятся люди, в проект системы автоматического пожаротушения необходимо включать средства оповещения, которые позволят покинуть помещение до запуска системы.

После исследований в Испытательном центре "Огнестойкость" (ЦНИИСК им. Кучеренко) ПВХ-профили были отнесены к классу "трудновозгораемых, горючих материалов с малой дымообразующей способностью". ПВХ при горении, страховые компании рассматривают этот материал как не отличающийся от других материалов по степени создаваемого им дополнительного риска во время аварий, пожаров и стихийных бедствий.

Общепринятым критерием экологичности промышленных продуктов являются энергозатраты на их изготовление, то есть определение нагрузки на окружающую среду в плане затраченных ресурсов и выбросов в атмосферу углекислого газа. Особенностью производства окон из ПВХ-профилей является то, что 95% энергозатрат приходится собственно на материал (поливинилхлорид) и лишь 5% составляют затраты на изготовление самих окон. С учетом многократной переработки профилей суммарная нагрузка на окружающую среду снижается еще больше.

Само по себе производство ПВХ-профилей и изделий из них не является вредным. Потенциальную опасность для окружающей среды может представлять лишь та часть технологического цикла, где производится сварка профилей, во время которой они нагреваются до высокой температуры (240-250°С).

Для изготовления окон из пластика используются простые технологические операции: резка профиля, его усиление металлом, сварка рам, зачистка сварных швов, монтаж фурнитуры и стеклопакетов, что гарантирует стабильно высокое качество продукта, что особенно важно для массового жилого строительства.

Жесткость профиля зависит в значительной степени от модуля упругости материала и момента инерции геометрии профиля. При этом модуль упругости и другие механические свойства зависят не только от температуры, но и от величины и длительности воздействия соответствующей нагрузки.

В связи с малой величиной модуля упругости ПВХ, в одну из камер профиля, начиная с определенных размеров окна, вставляется усилительный вкладыш из оцинкованной стали (рис 1.2)

Рисунок 1.2 - Профиль ПВХ

Огромное значение для практической работы изготовителей окон имеют угловые соединения профиля из ПВХ. Прочность сварного углового соединения зависит от свойств используемого материала, конфигурации профиля и правильности сварки.

Кроме того:

- установка пластиковых окон существенно уменьшает энергопотери здания, что снижает затраты на его отопление. Как следствие, уменьшается количество вредных выбросов в атмосферу;

- установка каждого окна из ПВХ-профилей явлеется вкладом в сохранение окружающей среды, так как каждое установленное ПВХ-окно - это сохраненное в лесу высококачественное дерево.

Уход за пластиковыми окнами очень прост и ничем не отличается от обслуживания обычных окон. Кроме того, благодаря очень гладкой поверхности профиля грязь на них скапливается меньше и легче удаляется обычной теплой водой. Существуют специальные средства по уходу за пластиком, но они отличаются от обычных моющих средств только отсутствием абразивов и наличием в своем составе безвредных добавок для придания блеска рамам.

ПВХ обладает высокой устойчивостью к химическому воздействию на него химически активных веществ, таких как спирт, моющие средства, кислоты, щелочи, бензин, дезинфицирующие средства.

Однако из-за герметичности помещений может значительно повыситься влажность, что не слишком хорошо для здоровья.

Влага в помещениях выделяется из различных источников, главным из которых является человек; в результате его дыхания влажность воздуха существенно повышается. При этом влагообразование увеличивается в процессе активной жизнедеятельности жильцов, т.к. во время разнообразных действий дыхание учащается и увеличивается потовыделение. Большие объемы влаги выделяются в результате стирки, готовки, уборки помещений и принятия душа. Дополнительными источниками влагообразования являются комнатные растения.

Таблица 1.1 Оценка источника влагообразования

Источник влагообразования

Кол-во влаги г/час

Человек, в состоянии покоя

40 г/час

Человек, занятый хозяйством

90 г/час

Цветок в горшке (сред. размера)

10 г/час

Готовка и уборка, мытье

1000 г/час

Стиральная машина

300 г/час

Душ / Ванная

2600 г/час

свободная водная поверхность

200 г/час

Если нет современной системы приточно-вытяжной вентиляции, выход в этой ситуации один - проветривание. Благо, что у современных оконных систем есть много возможностей для наиболее оптимального осуществления этого нехитрого процесса. Здесь и удобные системы открывания створок (в нескольких плоскостях) и специальные приспособления для вентиляции через полости в рамах, позволяющие проветривать помещения, вообще не открывая окон. Это очень удобно, если, по ряду причин, нужно вообще избегать возможных сквозняков (например, в детских комнатах).

На сегодняшний день пластиковые окна -- это оптимальный выбор для большинства людей, решающих проблему остекления.

Любое строительство или ремонт не обходятся без установки окон.

Размещено на Allbest.ru

...

Подобные документы

  • Выбор методов производства строительных работ, спецификация сборных железобетонных изделий. Технология строительных процессов и технология возведения зданий и сооружений. Требования к готовности строительных конструкций, изделий и материалов на площадке.

    курсовая работа [115,1 K], добавлен 08.12.2012

  • Основные способы осуществления контроля качества строительных материалов, изделий и конструкций, их характеристика, оценка преимуществ и недостатков. Использование геодезических приборов и инструментов при освидетельствовании и испытании конструкций.

    реферат [28,3 K], добавлен 25.01.2011

  • Осуществление контроля качества производства бетонных и железобетонных изделий отделом технического контроля лаборатории. Определение коэффициента вариации прочности бетона. Состав тяжёлого бетона. Уменьшение расхода цемента до определённых значений.

    реферат [81,3 K], добавлен 18.12.2010

  • Характеристика сырьевых материалов, номенклатура продукции и сфера ее применения. Химический состав глин. Сырье для производства керамических материалов. Месторождения и показатели химического состава каолина при производстве керамических изделий.

    дипломная работа [545,4 K], добавлен 11.04.2016

  • Зерновой и химический состав глин. Дробление непластичных сырьевых материалов. Особенности приготовления шамота. Добыча глины роторным экскаватором. Техническая характеристика пресс-вальцов. Подготовительные и вскрышные работы в глиняном карьере.

    курсовая работа [4,3 M], добавлен 13.09.2009

  • Краткая характеристика предприятия "ЖБИ-1" города Тверь. Технологический процесс производства сборных бетонных и железобетонных изделий и описание рабочего дня. Основные типы изделий: плиты ленточных фундаментов, железобетонные лестничные ступени.

    отчет по практике [3,7 M], добавлен 10.08.2014

  • Характеристика газобетонных блоков. Анализ технологических решений и приемов производства газобетонных изделий. Газобетон автоклавного способа изготовления. Резка массива на изделия. Затвердевание смеси, пропарка изделий в автоклаве и упаковка.

    курсовая работа [1,7 M], добавлен 22.10.2013

  • Технология производства изделий для жилых, гражданских и промышленных зданий, а также для инженерных сооружений. Способы производства и контроль качества железобетонных монолитных и сборных конструкций. Транспортирование и складирование изделий.

    контрольная работа [38,0 K], добавлен 16.10.2011

  • Основные свойства строительных материалов: физические, химические, механические и технологические. Оценка качества эффективных кровельных рулонных материалов. Материалы, используемые для покрытия пола в цехах химического и механического производств.

    курсовая работа [190,1 K], добавлен 18.03.2015

  • Пути повышения качества производства работ и снижения брака при выпуске строительных материалов и изделий. Анализ возможности роботизации технологии производства. Особенности роботизации в сфере индивидуального малоэтажного жилищного строительства.

    контрольная работа [3,1 M], добавлен 08.12.2022

  • Разработка индивидуального интерьера для гостиницы. Соответствие комплекта мебели требованиям, предъявляемым к гостинице. Анализ стилевых направлений. Антропометрические факторы и конструирование мебели. Эскизы разрабатываемых изделий, выбор материалов.

    дипломная работа [653,8 K], добавлен 27.07.2013

  • Технологии и способы производства сборных железобетонных колонн. Описание технологического оборудования. Режим работы предприятия, проектирование бетоносмесительного цеха. Расчет склада арматурных изделий. Производственный контроль качества продукции.

    курсовая работа [151,3 K], добавлен 19.03.2011

  • Особенности требований к источникам сырья относительно его количества, технологичности, пригодности для производства строительных материалов. Порядок использования шлаков как основного заполнителя и различных примесей при изготовлении бетонных смесей.

    реферат [15,2 K], добавлен 21.02.2011

  • Состав и механические характеристики портландцемента. Технологический процесс его производства. Расчет состава двухкомпонентной шихты. Определение потребности цеха в сырье для выполнения производственной программы. Описание работы основного оборудования.

    курсовая работа [1,2 M], добавлен 08.03.2014

  • Основные материалы, применяемые для отделки строительных конструкций и сооружений, домов и квартир. Номенклатура основных асбестоцементных изделий. Технологическая схема производства асбестоцементных листов. Контроль качества сырья и готовой продукции.

    курсовая работа [80,6 K], добавлен 18.12.2010

  • Свойства строительных материалов, области их применения. Искусство изготовления изделий из глины. Классификация керамических материалов и изделий. Цокольные глазурованные плитки. Керамические изделия для наружной и внутренней облицовки зданий.

    презентация [242,9 K], добавлен 30.05.2013

  • Изготовление штучных строительных конструкционных изделий и монолитов. Использование легкого пористого высокопрочного саморастущего бетона с регулируемой активностью. Улучшение физико-механических характеристик, упрощение технологии приготовления бетона.

    статья [208,2 K], добавлен 01.05.2011

  • Характеристика материалов (с расчетом состава бетона) и габаритные размеры изделий. Конструкция установки и порядок её работы. Определение часовых расходов теплоты и теплоносителя. Расход пара сужающими устройствами. Расчёт системы теплоснабжения.

    курсовая работа [683,8 K], добавлен 29.11.2014

  • Сущность морозостойкости, методы её определения. Область применения пустотелых стеклянных блоков. Получение строительного гипса. Методы испытания бетона в конструкциях без его разрушения. Характеристика акустических изделий "акмигран" и "акминит".

    контрольная работа [22,9 K], добавлен 02.11.2009

  • Виды сырья для глиноземистого цемента, бокситы и чистые известняки. Химический состав, внешние параметры, марки, физико-механические показатели глиноземистого цемента. Способы производства цемента: метод плавления сырьевой шихты и обжиг до спекания.

    реферат [21,7 K], добавлен 09.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.