Чисельний аналіз деформування елементів тришарових конструкцій з урахуванням еволюції розшарувань

Методика чисельного дослідження нелінійного деформування і стійкості тришарових елементів конструкцій з урахуванням еволюції міжшарових дефектів типу розшарувань і однобічної взаємодії між шарами в межах дефектних ділянок при статичному навантаженні.

Рубрика Строительство и архитектура
Вид автореферат
Язык украинский
Дата добавления 25.02.2014
Размер файла 96,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Київський національний університет будівництва і архітектури

Автореферат

дисертації на здобуття наукового ступеня

кандидата технічних наук

ЧИСЕЛЬНИЙ АНАЛІЗ ДЕФОРМУВАННЯ ЕЛЕМЕНТІВ ТРИШАРОВИХ КОНСТРУКЦІЙ З УРАХУВАННЯМ ЕВОЛЮЦІЇ РОЗШАРУВАНЬ

05.23.17 - будівельна механіка

Якімкін Олександр Вікторович

Київ - 2000

Дисертацією є рукопис.

Робота виконана в Київському національному університеті будівництва і архітектури Міністерства освіти і науки України.

Науковий керівник:

доктор технічних наук, старший науковий співробітник Оглобля Олександр Іванович, ВАТ “Укрндіпроектстальконструкція”, завідувач науково-дослідного відділу технічного розвитку.

Офіційні опоненти:

доктор технічних наук, професор Піскунов Вадим Георгійович, Національний транспортний університет, завідувач кафедри опору матеріалів і машинознавства;

кандидат технічних наук, доцент Гуртовий Олексій Григорович, Рівненський державний технічний університет, доцент кафедри опору матеріалів та будівельної механіки.

Провідна установа:

Придніпровська державна академія будівництва та архітектури, кафедра опору матеріалів та будівельної механіки, Міністерство освіти і науки України, м. Дніпропетровськ.

Захист відбудеться 16 лютого 2001р. о 13 годині на засіданні спеціалізованої вченої ради Д 26.056.04 Київського національного університету будівництва і архітектури за адресою: 03037, Київ - 37, Повітрофлотський проспект, 31.

З дисертацією можна ознайомитись у бібліотеці Київського національного університету будівництва і архітектури за адресою: 03037 Київ - 37, Повітрофлотський проспект, 31.

Автореферат розісланий 28 грудня 2000 р.

Вчений секретар спеціалізованої вченої ради, кандидат технічних наук, старший науковий співробітник Кобієв В.Г.

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Значне розповсюдження в різних галузях сучасної техніки отримали тришарові оболонкові конструкції. Поєднуючи в собі високу міцність, жорсткість і стійкість з відносно малою масою, маючи тепло - і звукоізоляційні властивості, вони скрізь використовуються в будівництві, починаючи з оболонок трубопроводів, ємкостей, підземних споруд і закінчуючи стіновими панелями та плитами покриття. У більшості випадків тришарові конструкції становлять собою “шаровий пиріг”, в якому зовнішні шари високої міцності з'єднуються з більш м'яким шаром - заповнювачем. При цьому зовнішні несівни шари призначені для сприйняття навантажень, а заповнювач - для утворення монолітної конструкції, забезпечення перерозподілу зусиль між шарами і виконання функції звуко- і теплоізоляції.

Характерними особливостями роботи зазначених конструктивних елементів є висока поперечна деформативність і піддатливість поперечному зсуву, а також значна чутливість до наявності міжшарових дефектів, які можуть виникнути в процесі виготовлення (непроклеї, усадочні і температурні напруження при нестаціонарних та неоднорідних режимах обробки), при транспортуванні (удари) чи в момент монтажу. В період експлуатації в результаті впливу температурних факторів, зовнішніх локальних навантажень, вібрації процес дефектоутворення здатний отримати подальший розвиток або призвести до утворення нових областей, які містять недосконалості. Це викликає зниження несучої здатності конструкції, що може спричинити втрату стійкості ії окремих елементів або вихід з ладу споруди в цілому.

Традиційні методи розрахунку тришарових просторових конструкцій, як правило, не враховують еволюції дефектів типу розшарувань. На сьогодні досить досліджені, в основному, одномірні і вісесиметричні конструкції. Практично не розглянуті питання нелінійного деформування і стійкості таких конструкцій. Як правило, проведені дослідження виконані в лінійної постановці і не враховують однобічного контакту між шарами. Врахування цих факторів при розрахунку реальних конструкцій значно ускладнює постановку задачі, роблячи ії одночасно геометрично і конструктивно нелінійною.

Таким чином, можна зробити висновок, що розробка методів і алгоритмів розрахунку тришарових конструкцій з урахуванням еволюції розшарувань і однобічного контакту між шарами є на сьогодні актуальною задачею будівельної механіки.

Зв'язок роботи з науковими програмами, планами, темами. Дисертаційна робота виконана відповідно до загального плану наукових досліджень, які проводились у Київському національному університеті будівництва і архітектури та у Науково - дослідному інституті будівельної механіки Міністерства освіти і науки України за напрямком 04 “Екологічно чиста енергетика та ресурсозберігаючі технології”, тема 1ГБ-96 “Створення загальної теорії і методів чисельного дослідження деформування складних механічних систем при комплексних навантаженнях з урахуванням взаємодії різних фізичних процесів”, номер держреєстрації 0195U016050.

Мета і задачі дослідження. Метою дисертаційної роботи є розробка і реалізація ефективної методики чисельного дослідження нелінійного деформування і стійкості тришарових елементів конструкцій з урахуванням еволюції міжшарових дефектів типу розшарувань і однобічної взаємодії між шарами в межах дефектних ділянок при статичному навантаженні.

Досягнення цієї мети здійснюється послідовним виконанням таких основних задач:

1) побудова розрахункової моделі для аналізу нелінійного деформування тришарових пластинчастих та оболонкових конструкцій загального виду з урахуванням еволюції розшарувань;

2) розроблення алгоритмів чисельного дослідження стійкості тришарових просторових конструкцій з урахуванням однобічного контакту між суміжними шарами в межах розшарування;

3) реалізація розроблених алгоритмів на ПЕОМ у вигляді обчислювального комплексу програм;

4) застосування цього комплексу для розв'язання розповсюджених в різних галузях сучасної техніки задач деформування і стійкості тришарових пластинчастих та оболонкових елементів конструкцій з урахуванням можливого утворення і еволюції дефектів типу розшарувань.

Об'єкти досліджень. Об'єктом дослідження є процес нелінійного деформування і явище втрати стійкості тришарових елементів просторових конструкцій несиметричної по товщині структури з різними фізико-механічними характеристиками шарів, з урахуванням еволюції розшарувань при дії статичного навантаження.

Предмет дослідження. Предметом дослідження є вплив еволюції розшарувань і однобічного контакту між шарами на критичні параметри і форми втрати стійкості тришарових пластин і оболонок.

Методи досліджень. В основу розробленої методики чисельного дослідження нелінійно-деформованого стану і стійкості тришарових конструкцій з урахуванням еволюції розшарувань покладено дискретний підхід, який базується на використанні класичних та некласичних моделей оболонок, ефективного варіанту методу скінченних різниць (методу криволінійних сіток), а також кроково-ітераційний алгоритм, що об'єднує концепції методу продовження розв'язання по параметру, методу Ньютона - Канторовича та ітераційного методу.

Наукова новизна одержаних результатів. Наукова новизна результатів полягає в такому:

- розвинута методика чисельного аналізу нелінійного деформування тришарових елементів конструкцій, яка дозволяє враховувати можливість утворення і подальшого розвитку дефектів типу розшарувань;

- розроблено ефективний алгоритм дослідження стійкості тришарових пластин та оболонок з урахуванням однобічного контакту між шарами і створено комплекс програм, що його реалізує;

- на тестових задачах підтверджена достовірність розробленої розрахункової моделі тришарової оболонки, досліджена ефективність методики та визначені межі ії застосування;

- на основі запропонованого підходу одержані чисельні розв'язки ряду нових задач нелінійного деформування і стійкості тришарових елементів пластинчастих та оболонкових конструкцій. Досліджено вплив еволюції різних типів розшарувань і однобічного контакту між шарами на критичні параметри і форми втрати стійкості розглянутих об'єктів.

Достовірність одержаних результатів підтверджується прийняттям апробованих розрахункових моделей для шарів конструкцій, вибором обгрунтованих методів чисельного аналізу, розв'язанням тестових задач, а також збігом чисельних розв'язків.

Практичне значення одержаних результатів. Розроблена методика і створений на ії основі комплекс програм можуть бути використані при дослідженні і проектуванні широкого класу тришарових конструкцій, які розповсюджені в різних галузях сучасної техніки. Результати дисертаційної роботи використані при проведенні науково-технічних робіт, які виконувались в ВАТ “Енергопроект” і були пов'язані з аналізом безпеки будівельних конструкцій і технічного обладнання об'єктів атомної енергетики та в ВАТ “Укрндіпроектстальконструкція” при виконанні проектно-конструкторських робіт.

Особистий внесок здобувача визначається:

- побудовою розрахункової моделі для чисельного аналізу нелінійного деформування тришарових елементів конструкцій з урахуванням еволюції розшарувань;

- розробкою алгоритму дослідження стійкості тришарових пластин і оболонок, який враховує однобічний контакт між шарами, його програмною реалізацією;

- підтвердженням достовірності та ефективності запропонованого підходу до розв'язку задач, які розглядаються;

- чисельним розв'язанням ряду нових задач нелінійного деформування і стійкості тришарових елементів пластинчастих та оболонкових конструкцій, дослідженням впливу еволюції різних типів розшарувань і однобічного контакту між шарами на критичні параметри та форму втрати стійкості розглянутих об'єктів.

Апробація результатів дисертації. Основні результати роботи доповідалися на 58-61 науково - практичних конференціях Київського національного університету будівництва і архітектури в 1997 - 2000 рр.

Публікації. По темі дисертації опубліковано шість робіт [1, 2, 3, 4, 5, 6], в тому числі чотири роботи у фахових виданнях.

Структура і обсяг роботи. Дисертаційна робота складається із вступу, чотирьох розділів, висновків, бібліографії та додатку. Вона викладена на 152 сторінках, з них 135 основного тексту, і містить 25 рисунків, 10 таблиць, список використаних джерел з 159 найменувань на 13 сторінках, додатка на 2 сторінках.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі обгрунтовано вибір теми роботи, ії актуальність, сформульована мета та задачі дослідження. Наведено дані про наукову новизну, теоретичне та практичне значення одержаних результатів.

У першому розділі наведено огляд попередніх досліджень за визначеною тематикою і зроблено висновок щодо необхідності їх розвитку.

Вивчення ряду оглядових статей, а також аналіз великої кількості наукових робіт показують, що в розвитку методів розрахунку тришарових конструкцій існують три основні підходи. Перший з них базується на використанні методів осереднення характеристик шарів і введення для всього шаруватого пакету загальних гіпотез типу Кірхгофа-Лява, Тимошенка і т.п. Такий підхід до побудови теорії є коректним для тонких пластин і оболонок, у яких жорсткості шарів приблизно одного порядку. Другий підхід засновано на побудові точних рішень для шаруватих конструкцій, який використовується, як правило, лише при розгляді простих типів конструкцій. Третій підхід - дискретно-континуальний, при якому для кожного із шарів приймаються різні гіпотези з вибором загальної для всього пакету координатної поверхні. При цьому однією з найбільш розповсюджених є схема, в якій використовується гіпотеза ломаної лінії. З використанням цих підходів досить докладно досліджені процеси деформування бездефектних тришарових пластин і оболонок.

Число публікацій, присвячених дослідженню деформування тришарових елементів конструкцій з урахуванням дефектів типу розшарувань, незначне. До них можна віднести роботи А.В. Андреєва, В.В. Болотіна, Е.І. Григолюка, Б.Я. Кантора, В.А. Лазько, В.І. Мосаковського, В.П. Трошина, Г.Дж. Чена, З. Сімітсена та ін. Методика розрахунку і результати чисельного аналізу напружено - деформованого стану і стійкості тришарових пластин і оболонок з дефектами типу розшарувань в геометрично нелінійній постановці наведені в монографії В.А. Баженова, О.І. Оглоблі, О.В. Геращенко. Проте у цих роботах авторами або не враховується еволюція розшарування, або вони обмежуються розглядом окремих класів задач. Дослідження, присвячені аналізу стійкості тришарових оболонкових конструкцій з урахуванням еволюції дефектів типу розшарувань в основному орієнтовані на розгляд плоских або вісесиметричних об'єктів. При цьому побудова розрахункових моделей для них, як правило, базується на використанні геометрично лінійних теорій без врахування однобічного контакту між шарами. тришарова конструкція деформування розшарування

Звертає на себе увагу мала кількість систематизованих чисельних і експериментальних результатів, присвячених аналізу впливу різних параметрів конструкцій з розшаруваннями на характеристики їх несучої здатності. Необхідна експериментальна перевірка різних моделей розшарувань, створення науково - обґрунтованих методик і розробка на їх основі пакетів прикладних програм для чисельного аналізу нелінійного деформування і стійкості шаруватих конструкцій з урахуванням еволюції розшарувань. Невеликий обсяг публікацій з цієї тематики обумовлюється складністю розв'язання таких задач, бо вони є одночасно геометрично і конструктивно нелінійними.

Розробці нової моделі тришарової оболонки, яка враховує геометричну нелінійність і дозволяє досліджувати в двомірній постановці елементи тришарових конструкцій з урахуванням еволюції розшарувань і однобічного контакту між суміжними шарами при дії статичного навантаження, присвячена дисертаційна робота.

У другому розділі на основі дискретного підходу формулюється постановка задачі, описується послідовність побудови розрахункових моделей для шарів конструкції.

Розглядається тришарова оболонкова конструкція несиметричної по товщині структури з ізотропними пружними шарами. Зовнішні шари приймаються тонкими (згідно з класичною теорією оболонок), а заповнювач - тонким або середньої товщини, у той час як на загальну товщину пакету обмежень не накладається. При цьому передбачається, що кожен із шарів має різні фізико-геометричні параметри і є складною оболонкою постійної товщини. Для шарів вводяться локальні системи криволінійних координат, які розташовуються на серединній поверхні заповнювача і на лицьових контактних поверхнях зовнішніх шарів. На кожний шар з характерними для нього граничними умовами може діяти статичне навантаження довільного типу.

Досліджуються два типи розшарувань. Перший тип характеризується проковзуванням ділянок зовнішніх шарів по заповнювачу без відриву від нього, а другий - повним відривом ділянок від заповнювача. Процес зміни типів та розмірів розшарувань виконується з урахуванням однобічного контакту суміжних шарів в межах дефектних ділянок. Тертя між шарами не враховується.

Побудова розрахункової моделі для тришарової оболонки базується на використанні підходу, який включає два основних етапи. На першому етапі з позицій класичної теорії оболонок для зовнішніх шарів (приймається гіпотеза Кірхгофа-Лява), а для заповнювача - некласичної (приймається гіпотеза про лінійний розподіл переміщень по його товщині, враховуються деформації поперечного зсуву і стиску) формуються повні системи геометрично нелінійних диференціальних співвідношень, а потім з використанням методу криволінійних сіток будуються системи скінченнорізницевих рівнянь у вузлах сіткової області з урахуванням граничних умов і зовнішніх навантажень. Другий етап відповідає побудові системи розв'язуючих рівнянь для шаруватої оболонки в цілому з урахуванням різних умов з'єднання шарів у вузлах сіткової області. Порядок системи рівнянь залежить від умов сполучення шарів і змінюється в результаті еволюції розшарувань. Застосування такого підходу для побудови розрахункової моделі дозволяє з точністю до розміру елемента скінченнорізницевої сітки описувати локальні зони неідеального контакту шарів.

Нелінійні диференціальні співвідношення для шарів формуються на основі нелінійної теорії скінченних прогинів з урахуванням поворотів векторів внутрішніх зусиль і напружень деформованої поверхні. Рівновага зовнішніх шарів в системі криволінійних координат х1, х2 описується рівняннями

, , (1)

де - контраваріантні вектори внутрішніх зусиль з компонентами , які є тангенціальними зусиллями і перерізуючими силами ; - контраваріантний вектор внутрішніх моментів; - вектори основного локального базису деформованої серединної поверхні. Внутрішні зусилля та моменти визначаються співвідношеннями, які записуються відносно систем координат, розміщених на лицьових контактних поверхнях шарів.

З урахуванням специфіки деформування тонких оболонок компоненти тензору тангенціальних деформацій описуються виразом

. (2)

Вихідне рівняння рівноваги для шару заповнювача має вигляд

. (3)

Для перетворення тривимірного рівняння заповнювача до двомірного застосовуються поліноми Лежандра , на основі яких компоненти вектора напружень розкладаються в ряд

. (4)

У відповідності з прийнятими гіпотезами при побудові наближеного розв'язку для рівняння (3) обмежувались утриманням в (4) перших двох поліномів Лежандра. В результаті було одержано систему рівнянь

; (5)

, (6)

де компоненти характеризують напруження на лицьових поверхнях шару, а моменти компонент тензора напружень виражаються залежностями

, ,

, (n=0, 1). (7)

Вирази для моментів компонент тензора деформацій враховують добутки кутів повороту нормалі навколо дотичних векторів локального базису

, ,

, ,

, . (8)

Таким чином, були одержані системи диференціальних рівнянь, які є нелінійними відносно шуканих переміщень. Інтегрування диференціальних рівнянь за методом криволінійних сіток зводиться до розгляду скінченнорізницевих систем для вузлів (i; j) дискретних моделей шарів.

У третьому розділі розглядається послідовність виведення системи розв'язуючих рівнянь рівноваги для тришарової оболонки в цілому з урахуванням різних умов з'єднання шарів у вузлах дискретної моделі, описуються алгоритми, що реалізують еволюцію розшарувань і враховують однобічний контакт між шарами.

Побудова розв'язуючих рівнянь для тришарової оболонки базується на використанні дискретних співвідношень шарів і відповідних кінематичних і статичних умов в'язі між ними. Умови в'язі формулюються з урахуванням зміни метрики координатних поверхонь шарів по товщині тришарового пакету.

Кінематичні умови в'язі записуються як залежності між контактними переміщеннями і , а статичні - як залежності між напруженнями і.

У разі наявності розшарування, коли зв'язок між верхнім несучим шаром і заповнювачем є жорстким, а третій шар має можливість проковзувати без відриву або з відривом від заповнювача, умови в'язі і відповідні їм рівняння рівноваги для вузла (і, j) мають вигляд

, , ,

, , ; (9)

,

, (10)

де , , - оператори скінченнорізницевих рівнянь.

Аналогічні залежності формулюються для вузла (i; j) у випадку повного відриву третього шару від заповнювача, проковзування без відриву або з відривом верхнього шару, а також у випадках спільного проковзування зовнішніх шарів без відриву або з відривом від заповнювача. Таким чином будується розв'язуюча система рівнянь для тришарової оболонки, яка враховує різні умови сполучення шарів у вузлах дискретної моделі і є геометрично нелінійною.

Для розв'язання геометрично нелінійних рівнянь використовується метод продовження по параметру з корекцією розв'язку на кожному кроці за методом Ньютона - Канторовича. При цьому процесі розв'язок вихідних нелінійних рівнянь зводиться до послідовного розв'язання лінеаризованих рівнянь. Побудова ціх рівнянь здійснюється з урахуванням зміни векторів локального базісу векторів в точках деформованих поверхонь шарів

, , (11)

де - вихідни вектори локального базису для зовнішніх шарів та заповнювача відповідно; - приріст векторів локального базису для зовнішніх шарів та заповнювача відповідно. Умовою втрати стійкості тришарової оболонки є обернення в нуль визначника лівої частини системи лінеаризованих рівнянь.

Вибір критерія оцінки еволюції розшарувань базується на допущенні, що ініціатором їх росту може бути концентрація напружень в околі дефекту або втрата матеріалом зв'язуючого шару (заповнювачем) первісних характеристик в результаті довготривалої експлуатації конструкції. За критерій розповсюдження розшарувань прийнята умова

3t[R], (11)

де 3t- дотичні напруження у вузлах на лицьових поверхнях заповнювача; [R] - розрахунковий опір зсуву шару заповнювача або клеєного з'єднання.

На кожному кроці алгоритму розв'язання нелінійної задачі виконується аналіз дотичних напружень 3t на лицьових поверхнях у вузлах дискретної моделі заповнювача і їх значення порівнюються з значенням [R]. У разі виконання нерівності (11) розрахункова модель шаруватої конструкції уточнюється відповідно умовам з'єднання суміжних шарів.

Область контактної взаємодії між суміжними шарами в межах розшарування визначається за допомогою аналізу на кожному кроці алгоритму розв'язання нелінійної задачі виконання кінематичної умови взаємного непроникнення шарів

u3()- u30, (12)

де u3() і u3 - накопичені прогини відповідно несучого шару і заповнювача. У вузлах дискретної моделі, які належать до області контакту, обов'язковим є виконання на наступному кроці алгоритму кінематичної

u3()= u3 (13)

і статичної

, (14)

умов.

Відомо, що в тришарових конструкціях, які мають дефекти типу розшарувань, можлива наявність різних форм втрати стійкості (загальна, локальна і змішана форми). Всі перераховані форми можуть бути симетричні або кососиметричні. Для бездефектних конструкцій і конструкцій, які мають дефектні ділянки з проковзуванням несучих шарів по поверхні заповнювача без відриву від нього, характерними є загальні форми втрати стійкості. Для конструкцій з дефектними ділянками, в межах яких є можливим відрив несучого шару від заповнювача (повний або частковий), крім загальних можуть спостерігатися змішані і локальні форми. При цьому змішані форми часто відповідають меншому із критичних навантажень.

Для визначення реальної форми втрати стійкості з урахуванням умови (12) застосовується ітераційний процес. Спочатку знаходиться форма втрати стійкості для ділянки з розшаруванням як окремої оболонки. Надалі вона у відповідальності з умовою (12) коректується і уточнюється до тих пір, поки повністю не співпаде наступна форма з попередньою. Ця остання форма рівноваги і приймається за дійсну форму втрати стійкості, а відповідне значення навантаження - за дійсне критичне навантаження.

Запропонований підхід до розрахунку тришарових конструкцій реалізовано у вигляді програми, адаптованої до розрахункового комплексу TOSOR.

У четвертому розділі на основі розв'язання тестових і ряду нових задач підтверджується і обгрунтовується ступінь достовірності та ефективності запропонованого підходу до розрахунку тришарових пластинок і оболонок. Досліджується вплив еволюції розшарувань та однобічного контакту між суміжними шарами на процес нелінійного деформування і стійкості тришарових елементів конструкцій.

Порівняння результатів розрахунку напружено-деформованого стану бездефектних тришарових пластин, вільно обпертих по контуру і завантажених поперечним синусоїдальним тиском, з даними аналітичного розв'язку Л.Є. Брюккера показало, що використання гіпотези ломаної лінії для прийнятої моделі дозволяє одержувати узгоджувані результати в широкому діапазоні зміни геометричних параметрів (>10) при відмінності у модулях пружності шарів Е(±)до 104.

З метою оцінки достовірності запропонованої розрахункової моделі тришарової оболонки і алгоритмів ії дослідження виконано аналіз стійкості одношарових оболонок, що містять розшарування, з урахуванням еволюції розшарувань і однобічного контакту і проведено порівняння одержаних даних з результатами відомих чисельних розв'язків.

Розглядалися осесиметричні деформації цієї оболонки від дії рівномірно розподіленого навантаження. Порівняння одержаних результатів з розв'язками В.П. Трошина і В.В. Болотіна показало достатню точність розв'язуючих рівнянь. Дослідження розподілу і розмірів дефектних ділянок в залежності від величини навантаження для шарнірно опертого стержня, який складається з двох шарів однакової жорсткості, і узгодженість одержаних даних з аналогічним розв'язком Ю.Н. Новічкова підтверджує коректність роботи алгоритму, що враховує еволюцію розшарувань.

Можливості розробленої методики демонструються при розрахунку тришарової циліндричної і сферичної оболонок, колових арок, що містять розшарування, з урахуванням однобічного контакту між шарами, а також циліндричних панелей з урахуванням еволюції розшарувань.

Досліджено вплив дефектів типу розшарувань на стійкість шарнірно опертої по торцях тришарової циліндричної і замкнутої сферичної оболонок. Дефектні ділянки розташовані між внутрішнім несучим шаром і заповнювачем. Їх розміри обмежуються кутом розкриття дефекту . Встановлено, що для циліндричної оболонки зміна розміру дефекту у діапазоні /(2)=0.010.015 не знижує величину критичного навантаження. Кути розкриття дефекту, що перевішують розмір /(2)=0.015, приводять до зниження критичного навантаження на 1520% і локалізації форми втрати стійкості в межах ділянки з розшаруванням. Порівняння результатів розрахунків сферичної оболонки, одержаних з урахуванням однобічного контакту та без нього, показав, що однобічний контакт між шарами, збільшує кут розкриття дефекту, який не впливає на значення критичного навантаження, з /(2)=0.02 до /(2)=0.018. Крім того, спостерігається якісна зміна локальних форм втрати стійкості.

При дослідженні стійкості тришарових колових арок, що знаходяться під дією рівномірно розподіленого тиску, розглядаються три типи розташування вихідних ділянок з розшаруванням: в приопорній, в 1/3 і в центральній частинах прольоту арки. По товщині арки розшарування знаходились або між верхнім несучим шаром і заповнювачем, або між нижнім шаром і заповнювачем. Відношення модулів пружності несучих шарів до модуля пружності заповнювача Е() /Е варіювалося в межах від 1 до 100. Визначена ступінь впливу однобічного контакту між суміжними шарами в межах вихідних ділянок з розшаруваннями на форми втрати стійкості і величини критичного навантаження колових арок, що розглядалися. Можливість існування несиметричних форм втрат стійкості перевірялася в кожному окремому випадку шляхом дослідження повної арки. Встановлено, що найбільш істотний вплив на величину критичного навантаження в порівнянні з бездефектною аркою мають дефекти, які розташовані в 1/3 частині прольоту арки. При цьому в залежності від розміру дефектів і відношення Е() /Е критичне навантаження зменшується до 60%. Для випадків симетричного розташування дефектів спостерігається симетрична форма втрати стійкості для всієї арки в цілому і локальна кососиметрична для дефектної ділянки шару.

Достатньо помітний вплив на стійкість арок має зміна жорсткості заповнювача. Із збільшенням відношення Е()/Е значення критичного навантаження зменшується і в залежності від варіантів розташування дефектів і їх розмірів може змінюватися в діапазоні від 10% до 60%.

Достовірність одержаних результатів для циліндричної, сферичної оболонок і колових арок підтверджується порівнянням з відомими розв'язками для бездефектних елементів, а також шляхом сгущення кроку скінченнорізницевої сітки.

Аналіз впливу еволюції розшарувань на стійкость тришарових елемнтів конструкцій розглянуто на прикладі дослідження тришарової циліндричної панелі, завантаженої рівномірно розподіленим тиском. Розглядались два види граничних умов закріплення торців несучих шарів: шарнірне опирання і жорстке закріплення. Співвідношення модулів пружності зовнішніх шарів до модуля пружності заповнювача E()/E варіювалося від 1 до 100; співвідношення товщин шарів h(-):h:h(+) задавалося рівним 1:8:1. Величина розрахункового опору на зсув [R] змінювалося від 1.0МПа до 30.0МПа. За вихідні дефекти приймалися області, розташовані в центральній або в приопорній частині панелі. За розрахунковий фрагмент приймалася четвертина панелі, обмежена контурними лініями і лініями симетрії, на яку накладалася скінченнорізницева сітка розміром 11х15 вузлів.

Можливість існування несиметричних форм втрати стійкості визначалася шляхом дослідження повної панелі з подвійним числом різницевих відрізків.

Одержані результати дозволили зробити загальний висновок, що врахування еволюції розшарувань приводить в даних випадках до якісної зміни форми втрати стійкості і зниження величини критичного навантаження в порівнянні з бездефектною на 30-40%. Збільшення величини розрахункового опору зсуву [R] при фіксованому значенні відношення Е() /Е приводить до зменшення розмірів областей, що містять дефекти типу розшарувань.

Виконано дослідження нелінійного деформування тришарового сферичного купола, який є оболонкою покриття споруди культового призначення. Умовами закріплення конструкції в проектному положенні є шарнірно нерухоме опирання або жорстке защімлення.

За навантаження на купол прийнята вага його конструктивних шарів, яка моделюється рівномірно розподіленим тиском і прикладається до поверхні зовнішнього шару оболонки. Вага шпиля моделюється рівномірно розподіленим вертикальним навантаженням, що прикладається в кільцевому напрямку до зовнішнього шару оболонки в безпосередній близькості від зеніту. Матеріал зовнішнього шару - гіпсобетон, заповнювачем є пенополіуретанові плити, а внутрішній шар оболонки зроблено із гіпсокартону. Розглядалася бездефектна конструкція, конструкція з вихідними розшаруваннями, розташованими між внутрішнім несучим шаром і заповнювачем у приопорній частині та у зеніті купола. Враховувалась еволюція розшарувань.

Дослідження показало, що при розрахункових навантаженнях купол не втрачає стійкость, але вже при навантаженні, рівному 70% від розрахункового, у зонах, що прилягають до місць опирания шпиля, спостерігається утворення міжшарових дефектів. Вони характеризуються проковзуванням внутрішнього шару по поверхні заповнювача без відриву від нього. При досягненні навантаженням розрахункового значення дефектна ділянка, що містить розшарування, дорівнює 6% від площі розрахункового фрагмента. Розшарування, що утворилося, якісно не змінює форму деформування купола, а лише незначно (до 18%) змінює параметри напружено-деформованого стану.

ВИСНОВКИ

1. Розроблено методику чисельного дослідження нелінійного деформування і стійкості тришарових просторових конструкцій з урахуванням еволюції розшарувань при статичному навантаженні:

- на основі дискретного підходу побудована нова розрахункова модель для аналізу напружено-деформованого стану тришарових оболонок, що враховує їх геометричну і конструктивну нелінійність;

- розроблено ефективний алгоритм чисельного дослідження нелінійного деформування тришарових пластинчастих і оболонкових конструкцій з урахуванням еволюції міжшарових дефектних ділянок;

- запропоновано алгоритм чисельного дослідження стійкості тришарових пластин і оболонок з урахуванням однобічного контакту між суміжними шарами у межах ділянок із розшаруванням.

2. Розв'язано тестові задачі, які дали можливість обгрунтувати достовірність запропонованої розрахункової моделі тришарової оболонки і ефективність розроблених алгоритмів.

3. Одержано розв'язок ряду нових задач нелінійного деформування і стійкості тришарових елементів конструкцій, які дозволили дослідити вплив еволюції розшарувань і однобічного контакту між суміжними шарами на критичні параметри і форму їх втрати стійкості.

Показано, що врахування еволюції розшарувань приводить до істотного перерозподілу напружено-деформованого стану тришарових елементів конструкцій і значного зниження величини критичного навантаження. В залежності від геометричних і фізичних параметрів шарів конструкції, розмірів розшарувань, величина критичного навантаження змінюється на 25% - 60%.

Врахування однобічного контакту між суміжними шарами в межах ділянок із розшаруваннями приводить не тільки до зниження критичного навантаження на 15% - 50%, але і до появи якісно нових форм рівноваги. Спостерігалося перетворення загальної форми втрати стійкості в змішану або локальну і навпаки.

4. На основі виконаних досліджень створено прикладну програму, адаптовану до обчислювального комплексу TOSOR. Комплекс програм забезпечує повну автоматизацію розв'язання задачі, включаючи опрацювання і аналіз результатів розрахунку.

Результати досліджень використані зацікавленими організаціями при проектуванні і розрахунках несучих елементів тришарових конструкцій.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ

1. А.И.Оглобля, О.В.Геращенко, А.В.Якимкин. Анализ влияния дефектов типа расслоений на устойчивость трехслойных цилиндрических панелей // Опір матеріалів і теорія споруд. -К.: КДТУБА. - 1997. - №63. - С.147-151.

2. О.І.Оглобля, О.В.Якімкін. Розрахунок тришарових єлементів конструкцій з урахуванням еволюції розшарувань // Опір матеріалів і теорія споруд. -К.: КДТУБА. - 1999. - №66. - С.69-73.

3. А.И.Оглобля, А.В.Якимкин. Численное моделирование процессов деформирования трехслойных конструкций с учетом дефектов типа расслоений. // Науково-практичні проблеми моделювання та прогнозування надзвичайних ситуацій. -К.: КНУСА. -1999. -Вип. 3. - С.139-143.

4. Баженов В.А., А.И.Оглобля, А.В.Якимкин. Устойчивость трехслойных композитных конструкций, содержащих расслоения // Будівельні конструкції. --К.: НДІБК. - 2000. -Вип.52. -С.20-30.

5. Баженов В.А., А.И.Оглобля, А.В.Якимкин. Дослідження стійкості тришарових конструкцій з урахуванням еволюції розшарувань // Будівництво України. - 2000. -№5. - С.41-46.

6. О.І.Оглобля, О.В.Якімкін. Аналіз впливу дефектів типу розшарувань на стійкість циліндричних панелей // Доповіді на 58-ї наук. -практ. конф. Київ. держ. техн. ун-та буд.-ва і ар-ри. -КДТУБА. -1997. - С.34 - 35.

В публікаціях [1, 2, 6] автором запропонована розрахункова модель тришарової оболонки, що враховує еволюцію розшарувань та виконано розв'язок наведених чисельних прикладів.

В публікаціях [3, 4] автором виконано розв'язання наведених чисельних прикладів.

В публікації [5] автору належить розробка алгоритмів і програмного забезпечення, а також розв'язок наведених тестових задач і чисельних прикладів.

АНОТАЦІЯ

Якімкін Олександр Вікторович. Чисельний аналіз деформування елементів тришарових конструкцій з урахуванням еволюції розшарувань. - Рукопис.

Дисертація на здобуття наукового ступеня кандидата технічних наук по спеціальності 05.23.17 - будівельна механіка. - Київський національний університет будівництва і архітектури, Київ, 2000.

Розглядається задача нелінійного деформування і стійкості тришарових просторових конструкцій, які мають вихідні дефекти типу розшарувань або утворені в процесі експлуатації від дії статичного навантаження. Об'єктами дослідження є тришарові пластинки і оболонки, які є несучими елементами конструкцій, що застосовуються в будівництві, машинобудуванні, в авіаційної техніці і т.п. На основі дискретного підходу запропонована розрахункова модель, яка базується на використанні класичних і некласичних моделей оболонок і враховує не тільки високу поперечну деформативність і податливість поперечному зсуву заповнювача, але і можливість еволюції розшарувань і однобічний контакт між суміжними шарами в межах дефектних ділянок. Розроблено ефективний алгоритм для розв'язку геометрично і конструктивно нелінійної задачі, яка об'єднує концепції методу продовження розв'язку по параметру, методу Ньютона - Кантаровича та ітераційного методу для визначення реальної форми деформування. Встановлені закономірності деформування та втрати стійкості тришарових пластинчастих і оболонкових елементів конструкцій з урахуванням еволюції розшарувань і однобічного контакту між шарами.

Ключові слова: тришарові конструкції, дискретний підхід, нелінійне деформування, стійкість, еволюція розшарувань, однобічний контакт.

АННОТАЦИЯ

Якимкин Александр Викторович. Численный анализ деформирования элементов трехслойных конструкций с учетом эволюции расслоений. -Рукопись.

Диссертация на соискание ученой степени кандидата технических наук по специальности 05.23.17 - строительная механика. - Киевский национальный университет строительства и архитектуры, Киев, 2000.

Рассматривается задача о нелинейном деформировании и устойчивости трехслойных пространственных конструкций, содержащих исходные дефекты типа расслоений или образованные в процессе эксплуатации от действия статического нагружения. Объектами исследования служат трехслойные пластинки и оболочки, которые являются несущими элементами конструкций, широко применяющихся в строительстве, машиностроении, авиационной технике и т.п.

На основе дискретного подхода предложена расчетная модель, которая базируется на использовании классических и неклассических моделей оболочек, учитывает не только высокую поперечную деформативность и податливость поперечному сдвигу заполнителя, но и возможность эволюции расслоений и односторонний контакт между смежными слоями в границах дефектных участков.

Построение расчетной модели выполняется в два этапа. На первом шаге с позиции классической теори оболочек (используется гипотеза Кирхгофа-Лява) для наружных слоев, неклассической для заполнителя (применяется гипотеза о линейном распределении перемещений по его толщине, учитываются деформации поперечного сдвига и обжатия), формируются полные системы геометрически нелинейных дифференциальных соотношений. Затем с применением метода криволинейных сеток они преобразуются в системы конечноразностных уравнений в узлах сеточной области с учетом граничных условий и действующей на слои внешней нагрузки. На втором этапе выполняется построение разрешающих уравнений для слоистой оболочки в целом с учетом различных условий сопряжения слоев в узлах сеточной области. Построение указанных уравнений базируется на использовании дискретных соотношений для слоев и соответствующих кинматических и статических условий связи между ними. Условия связи формируются с учетом изменения метрики координатных поверхностей слоев по толщине трехслойного пакета. Порядок общей системы уравнений зависит от условий контакта между слоями и изменяется в результате эволюции расслоений.

Разработан эффективный алгоритм для решения геометрически и конструктивно нелинейной задачи, который объединяет концепции метода продолжения решения по параметру, метода Ньютона-Кантаровича и итеррационного метода для определения реальной формы деформирования. При этом решение исходных нелинейных уравнений сводится к последовательному решению линеаризованных уравнений. Условием потери устойчивости трехслойной оболочки является вырождение линераизованного оператора левой части системы разрешающих уравнений равновесия. Выбор критерия для оценки эволюции расслоений базируется на допущении, что инициатором их роста может быть концентрация напряжений в окрестности дефекта либо потеря материалом заполнителя исходных свойств в результате длительной эксплуатации конструкции.

Область контактного взаимодействия между смежными слоями в пределах расслоения определяется с помощью анализа на каждом шаге алгоритма решения по параметру выполнения кинематического условия взаимного непроникновения слоев. Предложенный подход к исследованию трехслойных конструкций реализован в виде прикладного комплекса программ.

На основе решения тестовых и ряда новых задач подтверждена и обоснована степень достоверности и эффективности предложенного подхода к исследованию нелинейного деформирования трехслойных элементов конструкций с учетом эволюции расслоений.

Установлены закономерности деформирования и потери устойчивости трехслойных пластинчатых и оболочечных элементов конструкций с учетом эволюции расслоений и односторонним контактом между слоями. Показано, что учет эволюции расслоений приводит к существенному перераспределению напряженно-деформированного состояния в слоях трехслойных конструкций и понижению (до 60%) величин критической нагрузки. Учет одностороннего контакта между смежными слоями приводит к появлению качественно новых форм равновесия.

Ключевые слова: трехслойные конструкции, дискретный подход, нелинейное деформирование, устойчивость, эволюция расслоений, односторонний контакт.

THE SUMMARY

Yakimkin Oleksandr Viktorovich. Numerical analysis for deformation of the three-ply construction's elements considering exfoliation evolution. - Manuscript.

Dissertation for the "Candidate of Technical Science" degree by speciality 05.23.17 - Structural Mechanics. Kyiv National University of Construction and Architecture, Kyiv, 2000.

Problem of the non-linear deformation and rigidity of the three-ply three-dimensional constructions with target exfoliation or static heavy-duty wear defects was considered. Research objects are three-ply laminas and shells - bearing elements using for building, mechanical and aviation constructions. Calculation model based on the classic and non-classic shell models and considering not only high transversal strain and malleability to the cross-out aggregate bias, but considering also possibility of the exfoliation evolution and one-side contact between adjacent plies in the defect zones, was provided on the strength of discreet approach. High effective algorithm for resolving geometrically and constitutively non-linear task, that integrates method "prolongation of resolving by parameter", Newton-Kantarovich method and iteration method for determination of the real deformation form was developed eventually.

As a result consistent patterns for deformation and rigidity loss of the three-ply laminas and shell elements of constructions, considering exfoliation evolution and one-side contact between plies, were determined.

Keywords: three-ply constructions, discreet approach, non-linear deformation, rigidity, exfoliation evolution, one-side contact.

Размещено на Allbest.ru

...

Подобные документы

  • Характеристика бетону і залізобетону. Причини та наслідки пошкодження будівельних залізобетонних конструкцій. Підготовка основи та матеріали для ремонту, обробка стальної арматури та металевих елементів конструкції. Організація праці опоряджувальників.

    реферат [2,9 M], добавлен 26.08.2010

  • Об’ємно-просторове та архітектурно-планувальне рішення. Характеристика конструктивних елементів споруди. Специфікація елементів заповнення прорізів. Інженерне обладнання будинку. Специфікація бетонних, залізобетонних, металевих конструкцій будівлі.

    курсовая работа [1,3 M], добавлен 25.05.2014

  • Визначення основних розмірів конструкцій: лоток, прольоти другорядних балок і виліт консолей, поперечні перерізи основних несучих елементів. Розрахунок і конструювання лотока. Визначення навантажень, зусиль у перерізах, міцності конструкційних елементів.

    курсовая работа [659,2 K], добавлен 09.10.2009

  • Бетонування фундаментів та масивів, каркасних конструкцій, колон, балок, рамних конструкцій, склепінь, стін, перегородок, плит перекриття, підготовка під підлогу. Малоармовані і неармовані масиви з камнебетону. Застосовування вібробулав і вібраторів.

    реферат [138,3 K], добавлен 21.09.2009

  • Дослідження процесу кріплення гіпсокартону. Комплектні системи для облицювання стін усередині приміщень. Кріплення гіпсокартону до елементів каркаса перегородок, обличкувань огороджувальних конструкцій. Техніка безпеки під час здійснення монтажних робіт.

    курсовая работа [1,7 M], добавлен 01.06.2016

  • Виробництво конструкцій з цегли та керамічного каміння; ефективність їх використання у малоповерховому будівництві. Технологія виготовлення багатошарових залізобетонних конструкцій, віброцегляних і стінових панелей; спеціалізовані механізовані установки.

    реферат [27,9 K], добавлен 21.12.2010

  • Функції, нормативні вимоги, види перекриттів в залежності від призначення. Тепло-звукоізоляційні матеріали. Схема будови легкої підлоги, що плаває. Основні характеристики еластичної плівки для заглушення POLIFOAM. Плити з екструдованного пінополістиролу.

    реферат [53,8 K], добавлен 17.02.2009

  • Виробництво конструкцій і виробів на органічних заповнювачах. Агрегатнопотокова технологічна лінія, її характеристика та оцінка ефективності. Виробництво виробів і конструкцій на неорганічних речовинах, їх різновиди, сфери та особливості застосування.

    реферат [33,9 K], добавлен 21.12.2010

  • Проектування технології монтажу будівельних конструкцій повнозбірних будинків. Будівельно-монтажні роботи зі зведення одноповерхової промислової будівлі з каркасом змішаного типу. Вибір монтажних кранів, параметрів схем монтажу конструкцій будівлі.

    курсовая работа [2,1 M], добавлен 03.12.2014

  • Розрахунок будівельних конструкцій на впливи за граничними станами, при яких вони перестають задовольняти вимоги, поставлені під час зведення й експлуатації. Нові методи розрахунку бетонних і залізобетонних конструкцій за другою групою граничних станів.

    статья [81,3 K], добавлен 11.04.2014

  • Якісні і кількісні критерії безпеки при продовженні терміну експлуатації. Методика реєстраційної оцінки рівня ризику при продовженні терміну експлуатації конструкцій на основі функціонально-вартісного аналізу показників післяремонтної несучої здатності.

    автореферат [89,9 K], добавлен 11.04.2009

  • Характеристика та особливості стропуючого обладнання. Визначення монтажної висоти підйому крюка крана для одного комплекту. Розрахунок техніко-економічних показників і вибір оптимального варіанту монтажу конструкцій. Техніка безпеки при виконанні робіт.

    курсовая работа [937,8 K], добавлен 29.02.2012

  • Об’ємно–конструктивне рішення промислового будинку. Розрахунок конструкцій покриття, обрешітки, збір навантаження від покрівлі, клеєної дощато-фанерної балки. Проектування поперечної двошарнірної рами. Підбір поперечного перерізу дощатоклеєної колони.

    курсовая работа [556,2 K], добавлен 30.03.2011

  • Характеристика умов виконання монтажних робіт. Вибір способів закріплення конструкцій у проектне положення. Складання калькуляції трудових затрат на весь об’єм робіт. Відомість інвентарю та матеріалів. Визначення розмірів та кількості монтажних дільниць.

    курсовая работа [2,1 M], добавлен 10.06.2014

  • Інженерно-геологічні умови будівельного майданчика, варіант ґрунтів. Підбір глибини закладання підошви фундаменту. Попередній та кінцевий підбір його розмірів, збір навантажень. Визначення розрахункового опору ґрунту. Розрахунок різних конструкцій.

    курсовая работа [894,1 K], добавлен 01.09.2014

  • Матеріали для ремонту й відновлення бетонних і залізобетонних конструкцій, пошкодження бетонних конструкцій та їх ремонт. Технологія підготовки поверхонь, очищення і згладжування, розшивання дрібних тріщин, ґрунтування. Техніка безпеки під час роботи.

    реферат [288,8 K], добавлен 28.08.2010

  • Бетон - штучний композитний каменеподібний матеріал. Підприємства з виготовлення виробів із щільних силікатних бетонів. Класифікація залізобетонних конструкцій; технологія виготовлення збірних арматурних каркасів, змішаних будівельних розчинів і сумішей.

    реферат [41,1 K], добавлен 21.12.2010

  • Виробництво виробів і конструкцій із деревини, використання даної сировини в будівництві завдяки високим будівельно-технологічним властивостям. Теплопровідність деревини та фактори, що на неї впливають. Виробництво виробів із пластмас, їх недоліки.

    реферат [47,2 K], добавлен 21.12.2010

  • Наукова організація праці при влаштуванні гідроізоляції кам’яних конструкцій. План житлового будинку. Застосування гідроізоляції на будівлях житлового призначення, технологія процесу виконання. Документація, геодезичний контроль та безпека праці.

    дипломная работа [4,0 M], добавлен 01.02.2011

  • Характеристика принципів будівельних розрахунків в середовищі ПЗ Femap Nastran NX. Опис команд і інструментів для створення геометричного тіла певних параметрів. Створення моделі і основні характеристики розрахунку будівельних металевих конструкцій.

    реферат [578,8 K], добавлен 07.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.