Георадары в дорожном строительстве

Возможности определения влагонасыщенности грунтов с помощью георадара "Лоза". Назначение георадаров в различных отраслях промышленности. Опыт использования георадаров в дорожном хозяйстве. Технология обследования эксплуатируемых автомобильных дорог.

Рубрика Строительство и архитектура
Вид методичка
Язык русский
Дата добавления 20.03.2014
Размер файла 142,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

За основу определения качества уплотнения асфальтобетонных покрытий принимается оценка диэлектрического показателя покрытия, так как он является функцией соотношения диэлектрических характеристик компонентов. Так, объемная диэлектрическая характеристика воздуха равна 1; битума - 2,6-2,8; минерального заполнителя 5,5-6,5. Качественное уплотнение асфальтобетона уменьшает долю воздушных пузырьков с низкими диэлектрическими показателями в асфальтобетоне, но увеличивает объемную долю битума и заполнителя, что приводит к повышению диэлектрических свойств асфальтобетона. Лабораторные тесты и полевые испытания асфальтобетонов были проведены в период 1994-1995 гг. в Техасе (Техасский транспортный институт) и в 1995-1997 гг. в Финляндии (Finnra).

Георадарная установка при скорости ее транспортировки 50-70 км/ч позволяет быстро измерять толщину покрытия и содержание пустот в нем. Для контроля результатов измерений достаточно пробурить 1-2 скважины. Измерения с использованием георадаров дают возможность одновременно получить также непрерывную информацию о толщине и качестве оснований под покрытие. Результаты измерений могут быть представлены в виде таблиц, профилей или карт на базе ГИС.

По получению результатов измерений подрядчик может быть немедленно извещен о полученных характеристиках и отклонениях от нормативных показателей, в результате чего он оперативно сможет принять меры по устранению зафиксированных дефектов.

4. Для изысканий грунтово-гидрологических условий местности. Такие работы в Финляндии осуществлялись в середине и конце 80-х годов: летом - с использованием ручной, транспортировки и вездехода, в зимний период в качестве транспортного средства применялся вездеход или снегоход. В транспортных средствах оператор в кабине следил за результатами измерений.

При выполнении изысканий в трудных условиях при ручной транспортировке георадара численность персонала составляет. 3 чел., производительность работ 0,3-1 км/ч или 1-3 км за смену. При нормальных условиях и использовании вездехода достаточно 2 чел, при этом производительность работ - 1-3 км/ч или 3-10 км за смену.

С учетом высокого уровня развитости сети дорог в настоящее время в Финляндии изыскания новых дорог практически не выполняются, а преобладает ремонт и реконструкция существующих.

Анализ существующего опыта применения георадаров в дорожном хозяйстве Финляндии показывает, что данное оборудование на основе высокой производительности, достаточной точности и экологической чистоты доказало свою эффективность. Например, в Финляндии после обследования дорог затраты на ремонтные работы сокращаются как минимум на 25% и при этом значительно повышается эксплуатационная надежность автомобильных дорог.

Лушников Н.А., Лаврухин СВ. Метод радиолокационного контроля состояния дорожных одежд и земляного полотна // Труды ГПРОСДОРНИИ. - М. -1998. - Вып. 9. - С. 101-104.

В данной статье изложены основополагающие принципы использования георадиолокации в дорожной отрасли. Намечены пути оптимизации решения необходимых задач. На основе полученных результатов сделаны выводы относительно возможностей описанного метода.

Проведено сравнение задач георадиолокации в различных областях использования. Приведена схема прибора и необходимый алгоритм действий, исходя из возможностей метода на данный момент времени. Представлены вниманию рисунки, на которых изображены результаты обработки сигналов на одном из опытных участков.

Извлечение

Для отработки методики проведения измерений и интерпретации результатов в лаборатории средств диагностики РОСДОРНИИ совместно со специалистами других фирм был разработан и изготовлен специализированный геолокатор. Этот геолокатор создан на основе российских разработок последних лет в области геофизики и радиолокации. Он работает на средней для георадаров частоте - 800 МГц и позволяет исследовать участки автомобильных дорог на глубину от 0,5 до 6 м. Схема прибора представлена на рис. 1.

Радар состоит из двух антенн: передающей и приемной, которые идентичны по конструкции и являются широкополосными щелевыми антеннами. Позади антенн располагается датчик пути. Зондирующий сигнал формируется при ударном возбуждении передающей антенны перепадом напряжения и имеет форму трех-четырех полупериодов колебаний. Эти сигналы отражаются от границ слоев или локальных неоднородностей, имеющих различные электрические свойства. На выходе приемной антенны производится стробоскопическое преобразование принятых сигналов, которые затем фильтруются, преобразуются в двоичный 10-ти разрядный код и записываются в память ЭВМ.

Для испытания прибора было проведено исследование ряда участков на предмет их однородности и слоистости, а также определена граница УГВ. Ниже изображены последовательно три этапа обработки сигналов, записанных на одном из опытных участков дороги. Полученные изображения (1 шаг - 1 метр) позволяют выделить зоны, различающиеся по структуре, рис. 2.

На примерах результатов обработки сигналов, представленных на рис. 2, заметны границы между слоями земляного полотна. В некоторых случаях практики, например, при значительной толщине дорожной одежды, видна граница между дорожной одеждой и земляным полотном.

Однако в настоящее время точное определение с помощью геолокатора глубины залегания границ слоев и уровня грунтовых вод, а также неоднородностей затруднено. Для получения подобных данных требуются сведения о диэлектрической проницаемости материалов, слагающих дорогу. Диэлектрическая проницаемость этих материалов зависит как от их состава, так и от влажности. Поэтому на первом этапе исследований с целью получения недостающей информации необходимо периодически бурить дорожную одежду.

Следует ожидать, что обследование дорог с помощью геолокаторов в первую очередь позволит выявлять аномальные участки, различающиеся между собой по электрофизическим свойствам. При этом обследование целесообразно проводить по следующей схеме: перед измерениями необходимо выполнить бурение дорожной одежды и определить ее конструкцию, ввести параметры этой конструкции в компьютер геолокатора и затем произвести измерение на исследуемом участке дороги с помощью локатора, предварительно «привязав» его показания к реальным условиям. Локатор будет регистрировать изменения конструкции дорожной одежды на обследуемом участке автомобильной дороги. В местах, отличающихся по своей структуре от заданной конструкции, необходимо произвести контрольные бурения. Первые полученные результаты дали подтверждение правильности такого подхода и возможность сформулировать основные концептуальные положения применения георадара в дорожной отрасли.

Во-первых, следует ожидать, что использование этого прибора позволит выявлять неоднородности в теле земляного полотна и дорожной одежде.

Во-вторых, при исследовании каждого конкретного объекта потребуется индивидуальная настройка прибора на существующую конструкцию дорожной одежды.

В-третьих, применение геолокатора значительно облегчцт поиск неоднородностей, ослабленных зон дорожных конструкций и т.п., но, вероятно, не исключит применения разрушающих методов контроля.

В дальнейшем предполагается собрать сведения о электрофизических свойствах дорожно-строительных материалов. Эту работу можно выполнить двумя путями - с помощью лабораторных исследований с применением специальной аппаратуры или непосредственно на дороге. Второй путь позволяет получать менее достоверную информацию, однако представляется наиболее целесообразным, поскольку не требует уникальной аппаратуры и доступен для получения данных прямо на дороге. Однако при этом необходимо периодически делать отборы проб грунта и дорожной одежды.

Итогом данного этапа исследований должна быть разработка методики неразрушающего контроля состояния земляного полотна и дренирующих слоев дорожной одежды, а также получение корреляции между получаемыми результатами и физико-механическими характеристиками (в основном, прочностью) дорожной одежды. Это позволит использовать получаемые результаты в расчетах для назначения ремонтных мероприятий. При этом, поскольку процесс измерений геолокатором непрерывен, на основе полученных данных можно будет назначать ремонтные мероприятия только на тех участках дороги, где они действительно требуются.

Макеечева И.В. Дорожный рентген. Георадиолокационные исследования при дорожном строительстве и диагностике состояния дорог//Строит, техника и технологии. - 2001. - 5. - С. 38-39.

Извлечение

Одной из основных задач дорожного строительства является развитие сети автомобильных дорог, особенно в периферийных районах. При этом возникает вопрос: как оптимально проложить трассу, чтобы она не только вписалась в рельеф местности, но и была «согласована» с геологией.

Другой не менее важной задачей является сохранение существующей сети автодорог, улучшение их транспортно-эксплуатационных характеристик в условиях роста интенсивности движения.

Качество любого проекта в большой степени зависит от полноты и объективности исходных данных: пространственной модели рельефа, геологии и гидрогеологии.

Все вышеперечисленные задачи можно решать при помощи георадиолокации - наиболее перспективного экспресс-метода неразрушающего контроля.

Метод георадиолокационного подповерхностного зондирования (в общепринятой терминологии - георадиолокация) основан на изучении распространения в среде электромагнитных волн. Идея метода - в регистрации сигналов, полученных при отражении импульсов электромагнитных волн от границ раздела слоев зондируемой среды. Такими границами раздела являются, например, контакты между сухими и влагонасыщенными грунтами, между породой и материалом искусственного сооружения, между коренными и рыхлыми породами и т.д. Все задачи, решаемые георадиолокацией, могут быть разделены на две большие группы с характерными для каждой методиками исследований, способами обработки, типами отображения объектов исследования и представления результатов. Первая группа включает в себя геологические, гидрогеологические и инженерно-геологические задачи. Вторая - поиск локальных объектов, обследование инженерных сооружений и т.д.

В настоящее время георадиолокация широко применяется в исследованиях при относительно небольшой глубине залегания целевых объектов - 0,2-15 м.

Инструментом для георадиолокации служит георадар - цифровой, портативный, носимый одним оператором геофизический прибор, предназначенный для решения широкого спектра геотехнических, геологических, инженерных и других задач, где есть необходимость оперативного мониторинга среды, получения разрезов грунта, не требующих бурения или раскопок. Во время зондирования оператор в реальном времени получает на дисплее информацию в виде радиолокационного профиля (называемого радарограммой) с одновременной записью данных в память компьютера для дальнейшего их применения.

Набор сменных антенных модулей обеспечивает возможность зондирования в большом диапазоне частот (16-2000 МГц). Применение той или иной антенной системы определяется задачей, решаемой при зондировании.

Данная технология, в отличие от бурения, позволяет обследовать изучаемую территорию не «точечно», а непрерывно, не нарушая целостности поверхности земли или дорожного покрытия.

Георадар позволяет создать непрерывную картину о количестве и толщине слоев дорожных покрытий и оснований, границе зоны увлажнения дорожной одежды и земляного полотна, зон разуплотнения или неоднородных включений в грунте, а также выявлять брак, допущенный в процессе дорожных работ, и другие отклонения, являющиеся основными причинами последующих разрушений дорожного полотна. При этом применяют антенны, сконструированные специально для дорожных исследований, которые обеспечивают детальность измерений по профилю (единицы дециметров) при глубине до 1,5-2 м (и все это при перемещении со скоростью до 80 км/ч!).

Современные георадары сконструированы для работы в труднодоступных районах с неблагоприятным климатом и могут применяться в любое время года (рабочая температура георадара составляет -20 - +40°С.

В России и особенно за рубежом накоплен большой опыт проведения подобных исследований, который позволил выработать основные положения методики работ, обработки и интерпретации получаемых данных.

Безусловно, технология инженерно-геологических изысканий автомобильных дорог с использованием георадаров наиболее перспективна и будет непрерывно совершенствоваться на базе накапливаемого практического опыта и использования новейших модификаций георадарного оборудования.

Неразрушающие испытания конструкций с большой производительностью дорожного покрытия автодорог и аэропортовEURADAR: [Проспект]/Auscult SARL. - Б.г. - 2 с.

Извлечение

EURADAR и/или RAMAC 800 МГц - это радары, которые превосходно соответствуют требованиям как к установлению толщины отдельных слоев дорожного покрытия, так и к определению структурных аномалий: неоднородности, наличия стали, нарушения соединения между слоями асфальта, зоны влажности, каверн в дорожных покрытиях на глубине максимально 0,8 м.

RAMAC 250 МГц и RAMAC 100 МГц используются для детектирования и локализации подземной проводки и каверн на большой глубине, до нескольких метров.

Результаты совместного визуального и радарного наблюдения за состоянием покрытия и земляного полотна / В.А. Кретов, В.Ю. Глазков, Н.А. Пушников, СВ. Лаврухин//Труды ГПРОСДОРНИИ. - 2000. - Вып. 10. - С. 93-96.

Извлечение

Исследование полученных результатов показало, что скорость образования трещин в асфальтобетонных покрытиях, их количество и тип в значительной мере зависят от вида аномалий в теле земляного полотна (неоднородность по составу, переувлажнение, различная степень плотности грунта, взаимное расположение слоев и т.д.). В случаях, когда наблюдалось излишнее увлажнение, трещинообразование носило особенно интенсивный характер, при этом появлялись дополнительные криволинейные продольные и поперечные трещины, размеры которых увеличивались (длина и ширина раскрытия). В местах значительного переувлажнения земляного полотна (участок на открытой местности) наблюдались все типы трещин, но при этом отмечалось меньшее количество поперечных и преобладание криволинейных продольных. На таких участках покрытия величина раскрытия трещин местами достигала 1-5 см, это при средней наблюдаемой величине около 0,8 см.

Одним из наиболее интересных результатов данной работы явилась возможность прогнозирования трещинообразований, поскольку появление трещин происходило там, где заранее были выявлены неоднородность грунта, его переувлажнение и другие аномалии. На рис. 2 показаны фрагменты радарограмм, на которых видны обнаруженные дефекты и схематично показаны трещины, как существовавшие, так и появившиеся впоследствии.

Сопоставление результатов визуального наблюдения и полученных радарограмм позволяет сделать вывод о высокой точности прогнозирования трещинообразования как по местоположению дефектов, так и по возможному виду разрушений. Предполагается, что на основании проводимых исследований и сделанных выводов радарная система в дальнейшем позволит с максимальной эффективностью производить проектирование ремонтных мероприятий. Применение же георадарных установок при приемке работ по устройству земляного полотна предотвратит досрочное разрушение дорожных одежд и увеличит срок службы автомобильных дорог в целом.

Для решения вышеперечисленных задач предполагается в ближайшее время проведение более обширных исследований и наблюдений на нескольких дорогах, расположенных в различных грунтово-гидрологических условиях и отличающихся условиями эксплуатации.

Шапиро Д.М., Жариков А.А. Обследование мостовых опор методом радиоволновой диагностики //Наука и техника в дор. отрасли. - 2001. - №2. - С. 23-24.

Извлечение

Тульское предприятие ООО «Геопроект» разработало и реализует технологию геофизического обследования подземной части объектов строительства. Геофизические изыскания выполняются методом радиоволновой диагностики, основанной на принципе бесконтактного поляризационного геометрического зондирования с дневной поверхности. Технология проведения работ позволяет определять физические характеристики до глубины 25-30 м и оконтуривать отражающие и экранирующие подземные объекты.

Для выполнения обследований используется поляризационная дипольная установка «Навигатор», оснащенная двумя видами антенн: стелющимися антеннами, предназначенными для радиоволновой дефектоскопии природных и искусственных сред; антеннами, осуществляющими радиозондирование подземного пространства с дневной поверхности. Значения выходных параметров рассчитываются на ЭВМ по программе, реализующей специально разработанный алгоритм.

Пат. 2109872 RU,MK№E01 С1/00, G01C7/04. Кулижников А.М., Метла Т.А. Способ инженерных грунтово-гидрологических изысканий автомобильных дорог//Архангельский гос. техн. ун-т. - М 96106714/03; Заявл. 02.04.1996; Опубл. 27.04.1998, Бюл. №12.

Извлечение

Изобретение относится к дорожному строительству и предназначено для проведения инженерных грунтово-гидрологических изысканий автомобильных дорог в широкой полосе варьирования трассы под системное автоматизированное проектирование автомобильных дорог.

Задача изобретения - повышение качества сбора информации по грунтово-гидрологическим условиям местности и снижение трудозатрат на подготовительные работы.

Это достигается тем, что согласно способу инженерных грунтово-гидрологических изысканий автомобильных дорог, включающему определение в камеральных условиях границы полосы варьирования трассы и маршрута движения вездехода, разбивку маршрута и сбор информации по грунтово-гидрологическим условиям местности при прохождении вездехода со станцией, всю полосы варьирования разбивают на зоны с различными грунтово-гидрологическими условиями, в каждой зоне задают минимальное а и максимальное b расстояния между точками определения грунтово-гидрологического разреза, задают начальное направление движения под углом 35-55° вправо или влево по направлению воздушной линии, а сбор информации по грунтово-гидрологическим условиям местности выполняют при прохождении вездехода со станцией. Вездеход со станцией С-023 движется по начальному направлению, обходя деревья и другие препятствия, к границе полосы варьирования с фиксацией маршрута с помощью спутниковой системы GPS по установленному на вездеходе Р-кодовому приемнику ASHTECH Р-12; у границы полосы варьирования вездеход проходит на расстояние (а+b)/2 параллельно воздушной линии, связывающей конечные точки трассы, далее маршрут движения вездехода в обход деревьев и других препятствий выполняют по направлению к другой границе полосы варьирования трассы и определяют программой на ПЭВМ в виде коридора, границы которого находятся: ближняя на расстоянии а, дальняя на расстоянии b от траектории предыдущего маршрута, при этом при переходе из одной зоны грунтово-гидрологических условий в другую расстояния а и b соответственно изменяют, аналогичным образом производят движение вездехода по всей полосе варьирования трассы.

На чертеже приведена схема маршрута движения вездехода со станцией С-023. Способ грунтово-гидрологических изысканий автомобильных дорог осуществляют следующим образом.

Сначала в камеральных условиях по топографической карте в зависимости от рельефа местности и ситуации определяют границы полосы варьирования трассы, координаты которых с помощью сканера заносят в память ПЭВМ; всю полосу варьирования по топографическим картам и дешифрированию материалов аэросъемок разбивают на зоны, например, 1-3, с различными грунтово-гидрологическими условиями (например, болотистые, оползневые, карстовые и посадочные участки, участки с обеспеченными и необеспеченными поверхностными стоками и т.д.). Координаты границ зон с различными грунтово-гидрологическими условиями, границы выделены точками, также с помощью сканера заносят в память ПЭВМ. В каждой зоне устанавливают минимальное а и максимальное b расстояние между точками определения грунтово-гидрологического разреза. Примеры таких расстояний приведены в таблице для трех категорий сложности грунтов. Из рассмотрения и последующих изысканий отбрасывают участки местности 4, прилегающие к начальной и конечной точкам трассы и образующиеся границей полосы варьирования и прямыми, направленными под углами 35-55° к воздушной линии. Задают начальное направление движения вездехода в зависимости от рельефа и ситуации, например под углом 45° вправо к направлению воздушной линии между начальное и конечной точками трассы.

Вездеход со станцией С-023 (или георадаром фирмы Finn RA) движется по начальному направлению к правой границе полосы варьирования трасы, обходя при этом встречающиеся деревья и другие препятствия. По маршруту движения вездехода на экране дисплея просматривается и записывается на магнитные носители геологический разрез местности, на котором фиксируется положение уровня грунтовых вод. При движении вездехода его положение в декартовой системе координат определяется и записывается на магнитные носители с помощью спутниковой системы GPS по установленному на вездеходе Р-кодовому приемнику ASHTECH Р-12, который определяет геодезические координаты с точностью выше 5 мм и обладает значительной помехоустойчивостью. Потребляемая мощность приемником менее 12 Вт, питание осуществляется от сети постоянного тока 10-36 В.

При достижении правой границы полосы варьирования трассы вездеход проходит на расстояние (а+b)/2 параллельно воздушной линии, связывающей начальный и конечный пункт трассы.

Далее маршрут движения вездехода выполняют в обход деревьев к левой границе полосы варьирования трассы по коридору (границы коридора выделены пунктирными линиями), определяемому программой на ПЭВМ. Причем границы коридора находятся: ближняя на расстоянии а, а дальняя на расстоянии b от траектории предыдущего маршрута вездехода. Вездеход в пределах коридора может осуществлять движение по требуемым участкам местности с возможностью маневрирования. При этом ПЭВМ по программе контролирует переход из одной зоны грунтово-гидрологических условий в другую, в результате чего соответственно изменяются расстояния а и b. Достигнув левой границы полосы варьирования, вездеход проходит параллельно воздушной линии на расстояние (а+b)/2 и вновь направляется по новому коридору к правой границе полосы варьирования и так далее до выхода в конечную точку трассы.

Качество сбора информации по грунтово-гидрологическим условиям местности повышается, так как маршрут движения вездехода будет гибким, в обход участков, не требующих определения грунтово-гидрологических условий местности, и с обязательным прохождением участков со сложными грунтово-гидрологическими условиями.

Трудозатраты на подготовительные работы снизятся, так как не потребуется установка в точках поворота вездехода ориентиров, не будет выполняться разбивка и прорубка трассы по маршруту движения вездехода. Расчеты для трассы автомобильной дороги протяженностью 10 км показали, что предлагаемый способ инженерных грунтово-гидрологических изысканий автомобильных дорог позволяет на 250-320 человеко-смен уменьшить трудозатраты на подготовительные работы в сравнении с известным способом инженерных грунтово-гидрологических изысканий, принятым за прототип.

Пат. 2170297RU, МКИ7 Е 01С1/00, G01 C 7/04. Канжина О.В., Кулижников A.M. Способ инженерных изысканий автомобильных дорог//Архангельск, гос. техн. ун-т. - 99116757/03; Заявл. 30.07.1999; Опубл. 30.07.1999, Бюл. 19.

Извлечение

Изобретение относится к дорожному строительству и может быть использовано при проведении инженерных изысканий автомобильных дорог на стадии рабочей документации в полосе отвода автомобильной дороги. Способ включает продольное передвижение вездехода с георадаром и спутниковой системой позиционирования, осуществляющей определение пространственных координат и грунтово-гидрогеологическую информацию. Новым является то, что георадар последовательно перемещают по оси трассы и границам полосы отвода и осуществляют сбор исходной информации о рельефе в поперечном направлении только при прохождении по оси трассы, которую разбивают на отрезки, длину s которых определяют на криволинейных участках по приведенной зависимости от допускаемого отклонения от оси трассы и ширины полосы отвода, а на прямолинейных- в зависимости от расстояния видимости, при этом между двумя смежными поперечными проходами георадара выдерживают расстояние, равное расстоянию между двумя опорными точками t, которое определяют также по приведенной зависимости. Технический результат, обеспечиваемый изобретением, состоит в повышении надежности вычисления объемов земляных работ, избежании ошибок при проектировании продольного профиля на основе информации по пространственному расположению уровня грунтовых вод по гидрогеологической модели местности.

Формула изобретения

Способ инженерных изысканий на стадии рабочей документации в полосе отвода автомобильных дорог, включающий продольное передвижение вездехода с георадаром и спутниковой системой позиционирования, осуществляющей определение пространственных координат и грунтово-гидрогеологической информации, отличающийся тем, что георадар последовательно перемещают по оси трассы и границам полосы отвода и осуществляют сбор исходной информации о рельефе в поперечном направлении только при прохождении по оси трассы, причем трассы разбивают на отрезки, длину s которых определяют на криволинейных участках в зависимости от допускаемого отклонения от оси трассы и ширины полосы отвода по формуле

s = (1-0,18·B + 0,1·R·B)0,5,

где s - шаг движения георадара на криволинейном участке, м;

R - радиус кривой поворота, м;

В - ширина полосы отвода, м,

а на прямолинейных - в зависимости от расстояния видимости, при этом между двумя смежными поперечными проходами георадара выдерживают расстояние, равное расстоянию между двумя опорными точками t, которое определяют по формуле

t = 30 - 5Дh,

где Дh- перепад высот на 50 пог. м длины маршрута, м.

МАТЕРИАЛЫ, ОПУБЛИКОВАННЫЕ В АННОТИРОВАННОМ БИБЛИОГРАФИЧЕСКОМ СБОРНИКЕ ПО ВОПРОСАМ СТРОИТЕЛЬСТВА, РЕМОНТА И СОДЕРЖАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ И МОСТОВ (ЗАРУБЕЖНЫЙ ОПЫТ)

Оценка радарных систем, используемых для мониторинга толщины слоев дорожных одежд

Evaluation de systemes radar pour controller I'epaisseur des couches de chaussees/Simonn J.-M. //Bulletin des laboratories des Ponts et Chaussees. - 2002. - M 238, mai-juin. - P. 51-59 (фр.).

Толщина слоев, составляющих дорожную одежду, является основным параметром, определяемым при обследовании и мониторинге дорог. С помощью радара этот параметр можно измерять почти непрерывно. В 2000 г. сетью региональных лабораторий дорог и мостов Франции (LPC) выполнена оценка рабочих характеристик радарных систем с целью определения влияния различных параметров таких систем на измерения, проводимые при мониторинге дорожных одежд.

Данные эксперименты позволили сделать вывод о том, что хотя уровень неопределенности измерений, выполняемых радарами, в основном, остается идентичным, их относительный диапазон измерений и, следовательно, потенциальное использование является различным.

Проведенная работа направлена также на качественное оценивание различных радарных систем в отношении области их применения с использованием для этого метода испытания LPC.

Неразрушающий способ исследования асфальтобетонных покрытий с помощью георадара

Zerstorungsfreie Untersuchungen von Asphaltbelagen nth Georadar/Hugenschmidt J., PartiM.N.//Bitumen. -1999. -M4. -S. 125-130 (нем.).

Представлены примеры использования георадара на автомагистрали А2 в Швейцарии для оценки толщины покрытия и выявления повреждений покрытий на четырех мостах.

Георадар является эффективным прибором для неразрушающего и экономически выгодного обследования асфальтобетонных дорожных покрытий и других инженерных сооружений. Для успешного использования георадара важны все стадии: проведение измерений, обработка и интерпретация результатов. Точность определения толщины покрытия зависит от состояния конструкции покрытия, качества измерений георадаром, а также затрат на обследование. Опыт показывает, что расхождение результатов, полученных при испытании кернов, с измерениями, выполненными георадаром, составляет менее 2 см.

При определении общей толщины покрытия используются высокочастотные антенны георадара, которые обеспечивают необходимую разрешающую способность и глубину проникания. Для исследования внутренней структуры покрытия часто используются низкочастотные антенны. Одновременное применение различных антенн георадаров обеспечивает возможность решения многих проблем.

Размещено на Allbest.ru

...

Подобные документы

  • История развития применения геосинтетических материалов в дорожном строительстве в Российской Федерации. Производство различных видов геотекстилей и геосеток, георешеток и геосот, геонитей, а также геоплит, используемых в качестве термоизоляторов.

    реферат [1,3 M], добавлен 08.12.2010

  • Организация труда и производства в строительстве автомобильных дорог, комплекс подготовительных мероприятий: оснащение специальным оборудованием, источниками энергии, водой, паром, сжатым воздухом; устройство бытовых помещений; управленческая связь.

    курсовая работа [1,5 M], добавлен 27.11.2012

  • Шлаки и их использование в строительной отрасли. Шлаки черной металлургии: доменные и сталелитейные. Структура шлаков по видам производства. Типичный химический состав доменного шлака. Возрождения технологии использования горячих восстановительных газов.

    курсовая работа [1,9 M], добавлен 14.10.2011

  • Всероссийская сеть автомобильных дорог. Обеспечение возможности движения потоков автомобилей с высокими скоростями. Изыскания, проектирование и строительство горных дорог в южных районах. Проектирование и строительство любых тоннельных конструкций.

    презентация [2,6 M], добавлен 25.11.2013

  • Состояние дорожной сети и автомобильных дорог на сегодняшний день. Характеристика отраслевой программы "Дороги Беларуси". Совершенствование методов проектирования и строительства автомобильных дорог и мостов. Повышение безопасности дорожного движения.

    реферат [34,3 K], добавлен 10.10.2010

  • Технология производства работ по строительству, ремонту и обслуживанию дорог в Чувашии. Выемка в различных типах грунтов, насыпи из них. Устройство земляного полотна в зимних условиях и на болотах. Ведомость потребностей дорожно-строительных материалов.

    курсовая работа [2,2 M], добавлен 20.04.2011

  • Характеристика грунтов района строительства трассы. Подсчет объемов земляных работ. Расчет поправок и попикетных объемов земляных масс. Технология производства земляных работ. Выбор машин. Технологическая последовательность укладки дорожного покрытия.

    контрольная работа [52,4 K], добавлен 23.03.2017

  • Рассмотрение структуры и основ деятельности дорожной строительной организации. Изучение системы контроля и приемки выполненных работ по ремонту и содержанию автомобильных дорог. Охрана труда и техника безопасности при исполнении работ асфальтобетонщика.

    отчет по практике [27,7 K], добавлен 17.09.2014

  • Проектирование ремонтных работ автомобильных дорог. Выбор ведущей машины. Разработка технологической карты, составление почасового графика работы машин, расчет потребности в ГСМ, технико-экономических показателей. Составление линейного графика работ.

    контрольная работа [35,8 K], добавлен 29.05.2015

  • Порядок определения коэффициента суровости. Механизм расчета глубины промерзания грунтов, его назначение, необходимые действия. Методика и основные этапы определения поправочных коэффициентов к нормам времени, коэффициента теплопередачи опалубки.

    методичка [31,9 K], добавлен 16.11.2010

  • Контроль качества выполняемых работ при строительстве земляного полотна и правила их приемки. Операционный контроль в процессе выполнения и по завершении соответствующих операций. Основные правила приемки работ при строительстве автомобильных дорог.

    реферат [66,9 K], добавлен 14.01.2015

  • Существующие основные типы грунтов. Характеристика грунтов города Москвы и их поведение при строительстве. Выбор конструкции фундамента в зависимости от типа грунта. Схема размещения в городе Москве нового жилищного строительства в ближайшие годы.

    реферат [281,0 K], добавлен 23.01.2011

  • Понятие и специфика индивидуальных проектов в строительстве. Технология проектирования, нормативное регулирование, зарубежный опыт. Проектирование зданий с учетом функционального назначения. Строительство по индивидуальным проектам в Белгородской области.

    курсовая работа [3,3 M], добавлен 07.10.2011

  • Исследование подготовительных работ при строительстве автомобильных дорог. Определение объёмов работ по расчистке дорожной полосы. Расчёт потребности в машинах, механизмах, рабочей силе. Устройство земляного полотна. Уклада верхних слоёв дорожной одежды.

    отчет по практике [223,4 K], добавлен 21.09.2015

  • Кадастр. Геоинформационные системы. Исследование различных вариантов представления атрибутивной и пространственной информации в базах данных ГИС и процедуры работы с данными в ГИС. ГИС-технология "Компас-2". Назначение, содержание, сферы применения.

    дипломная работа [281,9 K], добавлен 11.10.2008

  • Понятие и назначение инженерных изысканий, его место и роль в работе проектировщика. Характеристика различных видов инженерных изысканий и их отличительные признаки, условия и возможности применения, оценка их значимости в современном строительстве.

    доклад [10,6 K], добавлен 04.12.2009

  • Цель и задачи вертикальной планировки. Классификация систем водоснабжения. Газовые сети городов. Транспортно-эксплуатационные показатели автомобильных дорог. Дорога в плане. Назначение и размещение основных инженерных сетей. Городское электрохозяйство.

    шпаргалка [27,9 K], добавлен 09.12.2014

  • Принципы создания единого архитектурного ансамбля из всех элементов дорожного ландшафта - проезжей части, земляного полотна, линейных зданий, насаждений, оформления и оборудования дороги. Проектирование мероприятий по озеленению автомобильных трас.

    контрольная работа [635,1 K], добавлен 09.06.2011

  • Ботаническое описание туи западной, ее применение в народном хозяйстве, размножение. Декоративные формы туи западной и их применение в зеленом строительстве. Сравнительная оценка декоративных форм туи западной, выращиваемых в питомнике "ПАРК–Сервис".

    курсовая работа [29,3 M], добавлен 13.06.2019

  • Понятие договорного ценообразования в строительстве. Понятие сметной стоимости. Договор строительного подряда. Факторы, влияющие на ценообразование в строительстве. Методика формирования цен. Конкурс как основное средство определения договорной цены.

    дипломная работа [743,2 K], добавлен 26.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.