Обследование монолитных железобетонных конструкций
Ознакомление с результатами оценки технического состояния строительных конструкций по внешним признакам дефектов и повреждений. Определение прочности бетона и расположения арматуры механическими методами. Изучение основных типов анкерных устройств.
Рубрика | Строительство и архитектура |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 12.11.2014 |
Размер файла | 736,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Обследование монолитных железобетонных конструкций
1.1 Методы и средства обследования монолитных железобетонных конструкций
1.2 Основные дефекты характерные для железобетонных конструкций
1.3 Диагностика состояния дефектов
2. Типы усиления железобетонных столбчатых фундаментов при увеличении нагрузки
1. Обследование монолитных железобетонных конструкций
1.1 Методы и средства обследования монолитных железобетонных конструкций
Оценка технического состояния конструкций по внешним признакам производится на основе определения следующих факторов:
- геометрических размеров конструкций и их сечений;
- наличия трещин, отколов и разрушений;
- состояния защитных покрытий (лакокрасочных, штукатурок, защитных экранов и др.);
- прогибов и деформаций конструкций;
- нарушения сцепления арматуры с бетоном;
- наличия разрыва арматуры;
- состояния анкеровки продольной и поперечной арматуры;
- степени коррозии бетона и арматуры.
Определение и оценку состояния лакокрасочных покрытий железобетонных конструкций следует производить по методике, изложенной в ГОСТ 6992-68. При этом фиксируются следующие основные виды повреждений: растрескивания и отслоения, которые характеризуются глубиной разрушения верхнего слоя (до грунтовки), пузыри и коррозионные очаги, характеризуемые размером очага (диаметром), мм. Площадь отдельных видов повреждений покрытия выражают ориентировочно в процентах по отношению ко всей окрашенной поверхности конструкции (элемента).
Эффективность защитных покрытий при воздействии на них агрессивной производственной среды определяется по состоянию бетона конструкций после удаления защитных покрытий.
В процессе визуальных обследований производится ориентировочная оценка прочности бетона. В этом случае можно использовать способ простукивания. Метод основан на простукивании поверхности конструкции молотком массой 0,4-0,8 кг непосредственно по очищенному растворному участку бетона или по зубилу, установленному перпендикулярно поверхности элемента. При этом для оценки прочности принимаются минимальные значения, полученные в результате не менее 10 ударов. Более звонкий звук при простукивании соответствует более прочному и плотному бетону.
При наличии увлажненных участков и поверхностных высолов на бетоне конструкций определяют величину этих участков и причину их появления.
Результаты визуального осмотра железобетонных конструкций фиксируют в виде карты дефектов, нанесенных на схематические планы или разрезы здания, или составляют таблицы дефектов с рекомендациями по классификации дефектов и повреждений с оценкой категории состояния конструкций.
Внешние признаки, характеризующие состояния железобетонных конструкций по четырем категориям состояний, приводятся в табл.
Оценка технического состояния строительных конструкций по внешним признакам дефектов и повреждений
Оценка технического состояния железобетонных конструкций по внешним признакам
Категория состояния конструкций |
Признаки состояния конструкций |
|
1 |
2 |
|
I - нормальное |
На поверхности бетона незащищенных конструкций видимых дефектов и повреждения нет или имеются небольшие отдельные выбоины, сколы, волосяные трещины (не более 0,1 мм). Антикоррозионная защита конструкций и закладных деталей не имеет нарушений. Поверхность арматуры при вскрытии чистая, коррозии арматуры нет, глубина нейтрализации бетона не превышает половины толщины защитного слоя. Ориентировочная прочность бетона не ниже проектной. Цвет бетона не изменен. Величина прогибов и ширина раскрытия трещин не превышают допустимую по нормам |
|
II - удовлетворительное |
Антикоррозионная защита железобетонных элементов имеет частичные повреждения. На отдельных участках в местах малой величиной защитного слоя проступают следы коррозии распределительной арматуры или хомутов, коррозия рабочей арматуры отдельными точками и пятнами; потери сечения рабочей арматуры не более 5 %; глубоких язв и пластинок ржавчины нет. Антикоррозионная защита закладных деталей не обнаружена. Глубина нейтрализации бетона не превышает толщины защитного слоя. Изменен цвет бетона вследствие пересушивания, местами отслоение защитного слоя бетона при простукивании. Шелушение граней и ребер конструкций, подвергшихся замораживанию. Ориентировочная прочность бетона в пределах защитного слоя ниже проектной не более 10 %. Удовлетворяются требования действующих норм, относящихся к предельным состояниям I группы; требование норм по предельным состояниям II группы могут быть частично нарушены, но обеспечиваются нормальные условия эксплуатации |
|
III - неудовлетворительное |
Трещины в растянутой зоне бетона, превышающие их допустимое раскрытие. Трещины в сжатой зоне и в зоне главных растягивающих напряжений, прогибы элементов, вызванные эксплуатационными воздействиями, превышают допустимые более чем на 30 %. Бетон в растянутой зоне на глубине защитного слоя между стержнями арматуры легко крошится. Пластинчатая ржавчина или язвы на стержнях оголенной рабочей арматуры в зоне продольных трещин или на закладных деталях, вызывающие уменьшение площади сечения стержней от 5 до 15 %. Снижение ориентировочной прочности бетона в сжатой зоне изгибаемых элементов до 30 и в остальных участках - до 20 %. Провисание отдельных стержней распределительной арматуры, выпучивание хомутов, разрыв отдельных из них, за исключением хомутов сжатых элементов ферм вследствие коррозии стали (при отсутствии в этой зоне трещин). Уменьшенная против требований норм и проекта площадь опирания сборных элементов при коэффициенте заноса К=1,6 (см. примечание). Высокая водо- и воздухопроницаемость стыков стеновых панелей |
|
IV - предаварийное или аварийное |
Трещины в конструкциях, испытывающих знакопеременные воздействия, трещины, в том числе пересекающие опорную зону анкеровки растянутой арматуры; разрыв хомутов в зоне наклонной трещины в средних пролетах многопролетных балок и плит, а также слоистая ржавчина или язвы, вызывающие уменьшение площади сечения арматуры более 15 %; выпучивание арматуры сжатой зоны конструкций; деформация закладных и соединительных элементов; отходы анкеров от пластин закладных деталей из-за коррозии стали в сварных швах, расстройство стыков сборных элементов с взаимным смещением последних; смещение опор; значительные (более 1/50 пролета) прогибы изгибаемых элементов при наличии трещин в растянутой зоне с раскрытием более 0,5 мм; разрыв хомутов сжатых элементов ферм; разрыв хомутов в зоне наклонной трещины; разрыв отдельных стержней рабочей арматуры в растянутой зоне; раздробление бетона и выкрошивание заполнителя в сжатой зоне. Снижение прочности бетона в сжатой зоне изгибаемых элементов и в остальных участках более 30 %. Уменьшенная против требований норм и проекта площадь опирания сборных элементов. Существующие трещины, прогибы и другие повреждения свидетельствуют об опасности разрушения конструкций и возможности их обрушения |
Примечания: 1. Для отнесения конструкции к перечисленным в таблице категориям состояния достаточно наличие хотя бы одного признака, характеризующего эту категорию. 2. Преднапряженные железобетонные конструкции с высокопрочной арматурой, имеющие признаки II категории состояния, относятся к III категории, а имеющие признаки III категории - соответственно к IV или V категориям в зависимости от опасности обрушения. 3. При уменьшенной против требований норм и проекта площади опирания сборных элементов необходимо провести ориентировочный расчет опорного элемента на срез и смятие бетона. В расчете учитываются фактические нагрузки и прочность бетона. 4. Отнесение обследуемой конструкции к той или иной категории состояния при наличии признаков, не отмеченных в таблице, в сложных и ответственных случаях должно производиться на основе анализа напряженно-деформированного состояния конструкций, выполняемых специализированными организациями
Определение прочности бетона механическими методами
Механические методы неразрушающего контроля при обследовании конструкций применяют для определения прочности бетона всех видов нормируемой прочности, контролируемых по ГОСТ 18105-86.
В зависимости от применяемого метода и приборов косвенными характеристиками прочности являются:
- значение отскока бойка от поверхности бетона (или прижатого к ней ударника);
- параметр ударного импульса (энергия удара);
- размеры отпечатка на бетоне (диаметр, глубина) или соотношение диаметров отпечатков на бетоне и стандартном образце при ударе индентора или вдавливании индентора в поверхность бетона;
- значение напряжения, необходимого для местного разрушения бетона при отрыве приклеенного к нему металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска;
- значение усилия, необходимого для скалывания участка бетона на ребре конструкции;
- значение усилия местного разрушения бетона при вырыве из него анкерного устройства.
При проведении испытаний механическими методами неразрушающего контроля следует руководствоваться указаниями ГОСТ 22690-88.
К приборам механического принципа действия относятся: эталонный молоток Кашкарова, молоток Шмидта, молоток Физделя, пистолет ЦНИИСКа, молоток Польди и др. Эти приборы дают возможность определить прочность материала по величине внедрения бойка в поверхностный слой конструкций или по величине отскока бойка от поверхности конструкции при нанесении калиброванного удара (пистолет ЦНИИСКа).
Молоток Физделя (рис. 1) основан на использовании пластических деформаций строительных материалов. При ударе молотком по поверхности конструкции образуется лунка, по диаметру которой и оценивают прочность материала. То место конструкции, на которое наносят отпечатки, предварительно очищают от штукатурного слоя, затирки или окраски. Процесс работы с молотком Физделя заключается в следующем: правой рукой берут за конец деревянной рукоятки, локоть опирают о конструкцию. Локтевым ударом средней силы наносят 10-12 ударов на каждом участке конструкции. Расстояние между отпечатками ударного молотка должно быть не менее 30 мм. Диаметр образованной лунки измеряют штангенциркулем с точностью до 0,1 мм по двум перпендикулярным направлениям и принимают среднее значение. Из общего числа измерений, произведенных на данном участке, исключают наибольший и наименьший результаты, а по остальным вычисляют среднее значение. Прочность бетона определяют по среднему измеренному диаметру отпечатка и тарировочной кривой, предварительно построенной на основании сравнения диаметров отпечатков шарика молотка и результатов лабораторных испытаний на прочность образцов бетона, взятых из конструкции по указаниям ГОСТ 28570-90 или специально изготовленных из тех же компонентов и по той же технологии, что материалы обследуемой конструкции.
Методы контроля прочности бетона
Метод, стандарты, приборы |
Схема испытания |
|
Ультразвуковой ГОСТ 17624-87 Приборы: УКБ-1, УКБ-1М УКБ16П, УФ-90ПЦ Бетон-8-УРП, УК-1П |
||
Пластической деформации Приборы: КМ, ПМ, ДИГ-4 Упругого отскока Приборы: КМ, склерометр Шмидта ГОСТ 22690-88 |
||
Пластической деформации Молоток Кашкарова ГОСТ 22690-88 |
||
Отрыв с дисками ГОСТ 22690-88 Прибор ГПНВ-6 |
||
Скалывание ребра конструкции ГОСТ 22690-88 Прибор ГПНС-4 с приспособлением УРС |
||
Отрыв со скалыванием ГОСТ 22690-88 Приборы: ГПНВ-5, ГПНС-4 |
Наименование метода |
Предельные значения прочности бетона, МПа |
|
Упругий отскок и пластическая деформация |
5-50 |
|
Ударный импульс |
10-70 |
|
Отрыв |
5-60 |
|
Скалывание ребра |
10-70 |
|
Отрыв со скалыванием |
5-100 |
Наименование метода |
Число испытаний на участке |
Расстояние между местами испытаний, мм |
Расстояние от края конструкции до места испытаний, мм |
Толщина конструкции, мм |
|
Упругий отскок |
5 |
30 |
50 |
100 |
|
Ударный импульс |
10 |
15 |
50 |
50 |
|
Пластическая деформация |
5 |
30 |
50 |
70 |
|
Скалывание ребра |
2 |
200 |
- |
170 |
|
Отрыв |
1 |
2 диаметра диска |
50 |
50 |
|
Отрыв со скалыванием |
1 |
5 глубин вырыва |
150 |
Удвоенная глубина установки анкера |
Рис. 1. Молоток И.А. Физделя: 1 - молоток; 2 - ручка; 3 - сферическое гнездо; 4 - шарик; 5 - угловой масштаб
Рис. 2. Тарировочный график для определения предела прочности бетона при сжатии молотком Физделя
Рис. 3. Определение прочности материала, с помощью молотка К.П. Кашкарова: 1 - корпус, 2 - метрическая рукоятка; 3 - резиною ручка; 4 - головка; 5 - стальной шарик, 6 - стальной эталонный стержень; 7- угловой масштаб
Рис. 4. Тарировочная кривая для определения прочности бетона молотком Кашкарова
На рис. 2 приведена тарировочная кривая для определения предела прочности при сжатии молотком Физделя.
К методике определения прочности бетона, основанной на свойствах пластических деформаций, относится также молоток Кашкарова ГОСТ 22690-88.
Отличительная особенность молотка Кашкарова (рис. 3) от молотка Физделя заключается в том, что между металлическим молотком и завальцованным шариком имеется отверстие, в которое вводится контрольный металлический стержень. При ударе молотком по поверхности конструкции получаются два отпечатка: на поверхности материала с диаметром d и на контрольном (эталонном) стержне с диаметром dэ. Отношение диаметров получаемых отпечатков зависит от прочности обследуемого материала и эталонного стержня и практически не зависит от скорости и силы удара, наносимого молотком. По среднему значению величины d/dэ из тарировочного графика (рис. 4) определяют прочность материала.
На участке испытания должно быть выполнено не менее пяти определений при расстоянии между отпечатками на бетоне не менее 30 мм, а на металлическом стержне - не менее 10 мм.
К приборам, основанным на методе упругого отскока, относятся пистолет ЦНИИСКа (рис. 5), пистолет Борового, молоток Шмидта, склерометр КМ со стержневым ударником и др. Принцип действия этих приборов основан на измерении упругого отскока ударника при постоянной величине кинетической энергии металлической пружины. Взвод и спуск бойка осуществляются автоматически при соприкосновении ударника с испытываемой поверхностью. Величину отскока бойка фиксирует указатель на шкале прибора.
Рис. 5. Пистолет ЦНИИСКа и пружинный пистолет С.И. Борового для определения прочности бетона неразрушающим методом: 1 - ударник, 2 - корпус, 3 - шкала, 4 - фиксатор показания прибора, 5 - рукоятка
К современным средствам по определению прочности бетона на сжатие неразрушающим ударно-импульсным методом относится прибор ОНИКС-2.2, принцип действия которого заключается в фиксации преобразователем параметров кратковременного электрического импульса, возникающего в чувствительном элементе при ударе о бетон, с его преобразованием в значение прочности. После 8-15 ударов на табло выдается среднее значение прочности. Серия измерений завершается автоматически после 15-го удара и на табло прибора выдается среднее значение прочности.
Отличительная особенность склерометра КМ заключается в том, что специальный боек определенной массы при помощи пружины с заданной жесткостью и предварительным напряжением ударяет по концу металлического стержня, называемого ударником, прижатого другим концом к поверхности испытываемого бетона. В результате удара боек отскакивает от ударника. Степень отскока отмечается на шкале прибора при помощи специального указателя.
Зависимость величины отскока ударника от прочности бетона устанавливают по данным тарировочных испытаний бетонных кубиков размером 151515 см, и на этой основе строится тарировочная кривая.
Прочность материала конструкции выявляют по показаниям градуированной шкалы прибора в момент нанесения ударов по испытываемому элементу.
Методом испытания на отрыв со скалыванием определяют прочность бетона в теле конструкции. Сущность метода состоит в оценке прочностных свойств бетона по усилию, необходимому для его разрушения, вокруг шпура определенного размера при вырывании закрепленного в нем разжимного конуса или специального стержня, заделанного в бетоне. Косвенным показателем прочности служит вырывное усилие, необходимое для вырыва заделанного в тело конструкций анкерного устройства вместе с окружающим его бетоном при глубине заделки h (рис. 6).
Рис. 6. Схема испытания методом отрыва со скалыванием при использовании анкерных устройств
При испытании методом отрыва со скалыванием участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.
Прочность бетона на участке допускается определять по результатам одного испытания. Участки для испытания следует выбирать так, чтобы в зону вырыва не попала арматура. На участке испытания толщина конструкции должна превышать глубину заделки анкера не менее чем в два раза. При пробивке отверстия шлямбуром или высверливанием толщина конструкции в этом месте должна быть не менее 150 мм. Расстояние от анкерного устройства до грани конструкции должно быть не менее 150 мм, а от соседнего анкерного устройства - не менее 250 мм.
При проведении испытаний используются анкерные устройства трех типов (рис. 7). Анкерные устройства типа I устанавливают на конструкции при бетонировании; анкерные устройства типов II и III устанавливают в предварительно подготовленные шпуры, пробитые в бетоне высверливанием. Рекомендуемая глубина отверстий: для анкера типа II - 30 мм; для анкера типа III - 35 мм. Диаметр шпура в бетоне не должен превышать максимальный диаметр заглубленной части анкерного устройства более чем на 2 мм. Заделка анкерных устройств в конструкциях должна обеспечить надежное сцепление анкера с бетоном. Нагрузка на анкерное устройство должна возрастать плавно со скоростью не более 1,5-3 кН/с вплоть до вырыва его вместе с окружающим бетоном.
Рис. 7. Типы анкерных устройств: 1 - рабочий стержень; 2 - рабочий стержень с разжимным конусом; 3 - рабочий стержень с полным разжимным конусом; 4 - опорный стержень, 5 - сегментные рифленые щеки
Наименьший и наибольший размеры вырванной части бетона, равные расстоянию от анкерного устройства до границ разрушения на поверхности конструкции, не должны отличаться один от другого более чем в два раза.
При определении класса бетона методом скалывания ребра конструкции применяют прибор типа ГПНС-4 (рис. 8). Схема испытания приведена на рис. 9.
Параметры нагружения следует принимать: а=20 мм; b=30 мм, =18.
На участке испытания необходимо провести не менее двух сколов бетона. Толщина испытываемой конструкции должна быть не менее 50 мм. Расстояние между соседними сколами должно быть не менее 200 мм. Нагрузочный крюк должен быть установлен таким образом, чтобы величина «а» не отличалась от номинальной более чем на 1 мм. Нагрузка на испытываемую конструкцию должна нарастать плавно со скоростью не более (1±0,3) кН/с вплоть до скалывания бетона. При этом не должно происходить проскальзывания нагрузочного крюка. Результаты испытаний, при которых в месте скола обнажалась арматура, и фактическая глубина скалывания отличались от заданного более 2 мм, не учитываются.
Рис. 8. Прибор для определения прочности бетона методом скалывания ребра: 1 - испытуемая конструкция, 2 - скалываемый бетон, 3 - устройство УРС, 4 - прибор ГПНС-4
Рис. 9. Схема испытания бетона в конструкциях методом скалывания ребра конструкции
Единичное значение Ri прочности бетона на участке испытаний определяют в зависимости от напряжений сжатия бетона б и значения Ri0.
Сжимающие напряжения в бетоне б, действующие в период испытаний, определяют расчетом конструкции с учетом действительных размеров сечений и величин нагрузок.
Единичное значение Ri0 прочности бетона на участке в предположении б=0 определяют по формуле
, (1)
где тg - поправочный коэффициент, учитывающий крупность заполнителя, принимаемый равным: при максимальной крупности заполнителя 20 мм и менее - 1, при крупности более 20 до 40 мм - 1,1;
Riy - условная прочность бетона, определяемая по графику (рис. 10) по среднему значению косвенного показателя Р
(2),
Pi - усилие каждого из скалываний, выполненных на участке испытаний.
При испытании методом скалывания ребра на участке испытания не должно быть трещин, сколов бетона, наплывов или раковин высотой (глубиной) более 5 мм. Участки должны располагаться в зоне наименьших напряжений, вызываемых эксплуатационной нагрузкой или усилием обжатия предварительно напряженной арматуры.
Рис. 10. Зависимость условной прочности бетона Riy от силы скола Рi
Ультразвуковой метод определения прочности бетона. Принцип определения прочности бетона ультразвуковым методом основан на наличии функциональной связи между скоростью распространения ультразвуковых колебаний и прочностью бетона.
Ультразвуковой метод применяют для определения прочности бетона классов В7,5 - В35 (марок М100-М400) на сжатие.
Прочность бетона в конструкциях определяют экспериментально по установленным градуировочным зависимостям «скорости распространения ультразвука - прочность бетона V=f(R)» или «время распространения ультразвука t - прочность бетона t=f(R)». Степень точности метода зависит от тщательности построения тарировочного графика.
Тарировочный график строится по данным прозвучивания и прочностных испытаний контрольных кубиков, приготовленных из бетона того же состава, по той же технологии, при том же режиме твердения, что и изделия или конструкции, подлежащие испытанию. При построении тарировочного графика следует руководствоваться указаниями ГОСТ 17624-87.
Для определения прочности бетона ультразвуковым методом применяются приборы: УКБ-1, УКБ-1М, УК-16П, «Бетон-22» и др.
Ультразвуковые измерения в бетоне проводят способами сквозного или поверхностного прозвучивания. Схема испытаний бетона приведена на рис. 11.
Рис. 11. Способы ультразвукового прозвучивания бетона: а - схема испытания способом сквозного прозвучивания; б - то же, поверхностного прозвучивания; УП - ультразвуковые преобразователи
При измерении времени распространения ультразвука способом сквозного прозвучивания ультразвуковые преобразователи устанавливают с противоположных сторон образца или конструкции.
Скорость ультразвука V, м/с, вычисляют по формуле
, (3)
где t - время распространения ультразвука, мкс;
l - расстояние между центрами установки преобразователей (база прозвучивания), мм.
При измерении времени распространения ультразвука способом поверхностного прозвучивания ультразвуковые преобразователи устанавливают на одной стороне образца или конструкции по схеме.
Число измерений времени распространения ультразвука в каждом образце должно быть: при сквозном прозвучивании - 3, при поверхностном - 4.
Отклонение отдельного результата измерения времени распространения ультразвука в каждом образце от среднего арифметического значения результатов измерений для данного образца, не должно превышать 2 %.
Измерение времени распространения ультразвука и определение прочности бетона производятся в соответствии с указаниями паспорта (технического условия применения) данного типа прибора и указаний ГОСТ 17624-87.
На практике нередки случаи, когда возникает необходимость определения прочности бетона эксплуатируемых конструкций при отсутствии или невозможности построения градуировочной таблицы. В этом случае определение прочности бетона проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя (конструкции одной партии). Скорость распространения ультразвука V определяют не менее чем в 10 участках обследуемой зоны конструкций, по которым определяют среднее значение V. Далее намечают участки, в которых скорость распространения ультразвука имеет максимальное Vmax и минимальное Vmin значения, а также участок, где скорость имеет величину Vn наиболее приближенную к значению V, а затем выбуривают из каждого намеченного участка не менее чем по два керна, по которым определяют значения прочности в этих участках: Rmax, Rmin, Rn соответственно. Прочность бетона RH определяют по формуле
(4)
Rmax/100. (5)
Коэффициенты а1 и a0 вычисляют по формулам
; (6)
. (7)
При определении прочности бетона по образцам, отобранным из конструкции, следует руководствоваться указаниями ГОСТ 28570-90.
При выполнении условия 10 % допускается ориентировочно определять прочность: для бетонов классов прочности до В25 по формуле
, (8)
где А - коэффициент, определяемый путем испытаний не менее трех кернов, вырезанных из конструкций.
Для бетонов классов прочности выше В25 прочность бетона в эксплуатируемых конструкциях может быть оценена также сравнительным методом, принимая в основу характеристики конструкции с наибольшей прочностью. В этом случае
(9)
Такие конструкции, как балки, ригели, колонны должны прозвучиваться в поперечном направлении, плита - по наименьшему размеру (ширине или толщине), а ребристая плита - по толщине ребра.
При тщательном проведении испытаний этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и испытанию образцов.
Определение толщины защитного слоя бетона и расположения арматуры
Для определения толщины защитного слоя бетона и расположения арматуры в железобетонной конструкции при обследованиях применяют магнитные, электромагнитные методы по ГОСТ 22904-93 или методы просвечивания и ионизирующих излучений по ГОСТ 17623-87 с выборочной контрольной проверкой получаемых результатов путем пробивки борозд и непосредственными измерениями.
Радиационные методы, как правило, применяют для обследования состояния и контроля качества сборных и монолитных железобетонных конструкций при строительстве, эксплуатации и реконструкции особо ответственных зданий и сооружений.
Радиационный метод основан на просвечивании контролируемых конструкций ионизирующим излучением и получении при этом информации об ее внутреннем строении с помощью преобразователя излучения. Просвечивание железобетонных конструкций производят при помощи излучения рентгеновских аппаратов, излучения закрытых радиоактивных источников.
Транспортировку, хранение, монтаж и наладку радиационной аппаратуры проводят только специализированные организации, имеющие специальное разрешение на проведение указанных работ.
Магнитный метод основан на взаимодействии магнитного или электромагнитного поля прибора со стальной арматурой железобетонной конструкции. анкерный строительный бетон арматура
Толщину защитного слоя бетона и расположение арматуры в железобетонной конструкции определяют на основе экспериментально установленной зависимости между показаниями прибора и указанными контролируемыми параметрами конструкций.
Для определения толщины защитного слоя бетона и расположения арматуры из современных приборов применяют в частности ИСМ, ИЗС-10Н (ТУ25-06.18-85.79). Прибор ИЗС-10Н обеспечивает измерение толщины защитного слоя бетона в зависимости от диаметра арматуры в следующих пределах:
- при диаметре стержней арматуры от 4 до 10 мм толщины защитного слоя - от 5 до 30 мм;
- при диаметре стержней арматуры от 12 до 32 мм толщины защитного слоя - от 10 до 60 мм.
Прибор обеспечивает определение расположения проекций осей стержней арматуры на поверхность бетона:
- диаметрами от 12 до 32 мм - при толщине защитного слоя бетона не более 60 мм;
- диаметрами от 4 до 12 мм - при толщине защитного слоя бетона не более 30 мм.
При расстоянии между стержнями арматуры менее 60 мм применение приборов типа ИЗС нецелесообразно.
Определение толщины защитного слоя бетона и диаметра арматуры производится в следующем порядке:
- до проведения испытаний сопоставляют технические характеристики применяемого прибора с соответствующими проектными (ожидаемыми) значениями геометрических параметров армирования контролируемой железобетонной конструкции;
- при несоответствии технических характеристик прибора параметрам армирования контролируемой конструкции необходимо установить индивидуальную градуировочную зависимость в соответствии с ГОСТ 22904-93.
Число и расположение контролируемых участков конструкции назначают в зависимости от:
- цели и условий испытаний;
- особенности проектного решения конструкции;
- технологии изготовления или возведения конструкции с учетом фиксации арматурных стержней;
- условий эксплуатации конструкции с учетом агрессивности внешней среды.
Работу с прибором следует производить в соответствии с инструкцией по его эксплуатации. В местах измерений на поверхности конструкции не должно быть наплывов высотой более 3 мм.
При толщине защитного слоя бетона, меньшей предела измерения применяемого прибора, испытания проводят через прокладку толщиной (10±0,1) мм из материала, не обладающего магнетическими свойствами.
Фактическую толщину защитного слоя бетона в этом случае определяют как разность между результатами измерения и толщиной этой прокладки.
При контроле расположения стальной арматуры в бетоне конструкции, для которой отсутствуют данные о диаметре арматуры и глубине ее расположения, определяют схему расположения арматуры и измеряют ее диаметр путем вскрытия конструкции.
Для приближенного определения диаметра арматурного стержня определяют и фиксируют на поверхности железобетонной конструкции место расположения арматуры прибором типа ИЗС-10Н.
Устанавливают преобразователь прибора на поверхности конструкции, и по шкалам прибора или по индивидуальной градуировочной зависимости определяют несколько значений толщины защитного слоя бетона pr для каждого из предполагаемых диаметров арматурного стержня, которые могли применяться для армирования данной конструкции.
Между преобразователем прибора и поверхностью бетона конструкции устанавливают прокладку соответствующей толщины (например, 10 мм), вновь проводят измерения и определяют расстояние для каждого предполагаемого диаметра арматурного стержня.
Для каждого диаметра арматурного стержня сопоставляют значения pr и (abs-e).
В качестве фактического диаметра d принимают значение, для которого выполняется условие
[pr-(abs-e)] min, (10)
где abs - показание прибора с учетом толщины прокладки.
Индексы в формуле обозначают:
s - шаг продольной арматуры;
р - шаг поперечной арматуры;
е - наличие прокладки;
e - толщина прокладки.
Результаты измерений заносят в журнал, форма которого приведена в таблице.
Фактические значения толщины защитного слоя бетона и расположение стальной арматуры в конструкции по результатам измерений сравнивают со значениями, установленными технической документацией на эти конструкции.
Результаты измерений оформляют протоколом, который должен содержать следующие данные:
- наименование проверяемой конструкции (ее условное обозначение);
- объем партии и число контролируемых конструкций;
- тип и номер применяемого прибора;
- номера контролируемых участков конструкций и схему их расположения на конструкции;
- проектные значения геометрических параметров армирования контролируемой конструкции;
- результаты проведенных испытаний;
- ссылку на инструктивно-нормативный документ, регламентирующий метод испытаний.
Форма записи результатов измерений толщины защитного слоя бетона железобетонных конструкций
Тип прибора, № |
Условное обозначение конструкции |
Номера контролируемых участков конструкции |
Параметры армирования конструкции по технической документации |
Показания прибора |
Измеренная толщина защитного слоя бетона, мм |
Примечание |
||||
номинальный диаметр арматуры, мм |
расположение стержней |
толщина защитного слоя бетона, мм |
мм |
условные единицы |
||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Определение прочностных характеристик арматуры
Расчетные сопротивления неповрежденной арматуры разрешается принимать по проектным данным или по нормам проектирования железобетонных конструкций.
В зависимости от класса стали рекомендуется принимать следующие расчетные сопротивления арматуры на растяжение и сжатие:
- для гладкой арматуры - 225 МПа (класс А-I);
- для арматуры с профилем, гребни которого образуют рисунок винтовой линии, - 280 МПа (класс А-II);
- для арматуры периодического профиля, гребни которого образуют рисунок «елочка», - 355 МПа (класс А-III).
Жесткая арматура из прокатных профилей принимается в расчетах с расчетным сопротивлением при растяжении, сжатии и изгибе равным 210 МПа.
При отсутствии необходимой документации и информации класс арматурных сталей устанавливается испытанием вырезанных из конструкции образцов с сопоставлением предела текучести, временного сопротивления и относительного удлинения при разрыве с данными ГОСТ 380-94.
Расположение, количество и диаметр арматурных стержней определяются либо путем вскрытия и прямых замеров, либо применением магнитных или радиографических методов (по ГОСТ 22904-93 и ГОСТ 17625-83 соответственно).
Для определения механических свойств стали поврежденных конструкций рекомендуется использовать методы:
- испытания стандартных образцов, вырезанных из элементов конструкций, согласно указаниям ГОСТ 7564-73*;
- испытания поверхностного слоя металла на твердость согласно указаниям ГОСТ 18835-73, ГОСТ 9012-59* и ГОСТ 9013-59*.
Заготовки для образцов из поврежденных элементов рекомендуется вырезать в местах, не получивших пластических деформаций при повреждении, и чтобы после вырезки были обеспечены их прочность и устойчивость.
При отборе заготовок для образцов элементы конструкций разделяют на условные партии по 10-15 однотипных конструктивных элементов: ферм, балок, колонн и др.
Заготовки для образцов рекомендуется отбирать в трех однотипных элементах конструкций (верхний пояс, нижний пояс, первый сжатый раскос и т.п.) в количестве 1-2 шт. из одного элемента.
Все заготовки должны быть замаркированы в местах их взятия и марки обозначены на схемах, прилагаемых к материалам обследования конструкций.
Характеристики механических свойств стали - предел текучести т, временное сопротивление и относительное удлинение при разрыве получают путем испытания на растяжение образцов согласно ГОСТ 1497-84*.
Определение основных расчетных сопротивлений стали конструкций производится путем деления среднего значения предела текучести на коэффициент надежности по материалу m=1,05 или временного сопротивления на коэффициент надежности =1,05. При этом за расчетное сопротивление принимается наименьшая из величин Rт, R, которые найдены соответственно по т и .
При определении механических свойств металла по твердости поверхностного слоя рекомендуется применять портативные переносные приборы: Польди-Хютта, Баумана, ВПИ-2, ВПИ-Зк и др.
Полученные при испытании на твердость данные переводятся в характеристики механических свойств металла по эмпирической формуле. Так, зависимость между твердостью по Бринелю и временным сопротивлением металла устанавливается по формуле
=3,5Hb,
где Н - твердость по Бринелю.
Выявленные фактические характеристики арматуры сопоставляются с требованиями СНиП 2.03.01-84* и СНиП 2.03.04-84*, и на этой основе дается оценка эксплуатационной пригодности арматуры.
Определение прочности бетона путем лабораторных испытаний
Лабораторное определение прочности бетона существующих конструкций производится путем испытания образцов, взятых из этих конструкций.
Отбор образцов производится путем выпиливания кернов диаметром от 50 до 150 мм на участках, где ослабление элемента не оказывает существенного влияния на несущую способность конструкций. Этот метод дает наиболее достоверные сведения о прочности бетона в существующих конструкциях. Недостатком его является большая трудоемкость работ по отбору и обработке образцов.
При определении прочности по образцам, отобранным из бетонных и железобетонных конструкций, следует руководствоваться указаниями ГОСТ 28570-90.
Сущность метода состоит в измерении минимальных усилий, разрушающих выбуренные или выпиленные из конструкции образцы бетона при их статическом нагружении с постоянной скоростью роста нагрузки.
Форма и номинальные размеры образцов в зависимости от вида испытаний бетона должны соответствовать ГОСТ 10180-90.
Допускается применение цилиндров диаметром от 44 до 150 мм, высотой от 0,8 до 2 диаметров при определении прочности на сжатие, от 0,4 до 2 диаметров при определении прочности на растяжение при раскалывании и от 1,0 до 4 диаметров при определении прочности при осевом растяжении.
За базовый при всех видах испытаний принимают образец с размером рабочего сечения 150150 мм.
Места отбора проб бетона следует назначать после визуального осмотра конструкций в зависимости от их напряженного состояния с учетом минимально возможного снижения их несущей способности. Пробы рекомендуется отбирать из мест, удаленных от стыков и краев конструкций.
После извлечения проб места отбора следует заделывать мелкозернистым бетоном или бетоном, из которого изготовлены конструкции.
Участки для выбуривания или выпиливания проб бетона следует выбирать в местах, свободных от арматуры.
Для выбуривания образцов из бетона конструкций применяют сверлильные станки типа ИЕ 1806 по ТУ 22-5774 с режущим инструментом в виде кольцевых алмазных сверл типа СКА по ТУ 2-037-624, ГОСТ 24638-85*Е или твердосплавных концевых сверл по ГОСТ 11108-70.
Для выпиливания образцов из бетона конструкций применяют распиловочные станки типов УРБ-175 по ТУ 34-13-10500 или УРБ-300 по ТУ 34-13-10910 с режущим инструментом в виде отрезных алмазных дисков типа АОК по ГОСТ 10110-87Е или ТУ 2-037-415.
Допускается применение другого оборудования и инструментов для изготовления образцов из бетона конструкций, обеспечивающих изготовление образцов, отвечающих требованиям ГОСТ 10180-90.
Испытание образцов на сжатие и все виды растяжения, а также выбор схемы испытания и нагружения производят по ГОСТ 10180-90.
Опорные поверхности испытываемых на сжатие образцов, в случае, когда их отклонения от поверхности плиты пресса более 0,1 мм, должны быть исправлены нанесением слоя выравнивающего состава. В качестве типовых следует использовать цементное тесто, цементно-песчаный раствор или эпоксидные композиции.
Толщина слоя выравнивающего состава на образце должна быть не более 5 мм.
Прочность бетона испытываемого образца с точностью до 0,1 МПа при испытании на сжатие и с точностью до 0,01 МПа при испытаниях на растяжение вычисляют по формулам:
на сжатие ;
на осевое растяжение ;
на растяжение при раскалывании ;
на растяжение при изгибе ,
где F - разрушающая нагрузка, Н;
А - площадь рабочего сечения образца, мм2;
а, b, l - соответственно ширина и высота поперечного сечения призмы и расстояние между опорами при испытании образцов на растяжение при изгибе, мм.
Для приведения прочности бетона в испытанном образце к прочности бетона в образце базового размера и формы прочности, полученные по указанным формулам, пересчитывают по формулам:
на сжатие ;
на осевое растяжение ;
на растяжение при раскалывании ;
на растяжение при изгибе ,
где 1, и 2 - коэффициенты, учитывающие отношение высоты цилиндра к его диаметру, принимаемые при испытаниях на сжатие по табл., при испытаниях на растяжение при раскалывании по табл. и равные единице для образцов другой формы;
, , , - масштабные коэффициенты, учитывающие форму и размеры поперечного сечения испытанных образцов определяют экспериментально по ГОСТ 10180-90.
h d |
от 0,85 до 0,94 |
от 0,95 до 1,04 |
от 1,05 до 1,14 |
от 1,15 до 1,24 |
от 1,25 до 1,34 |
от 1,35 до 1,44 |
от 1,45 до 1,54 |
от 1,55 до 1,64 |
от 1,65 до 1,74 |
от 1,75 до 1,84 |
от 1,85 до 1,95 |
от 1,95 до 2,0 |
|
1 |
0,96 |
1,0 |
1,04 |
1,08 |
1,1 |
1,12 |
1,13 |
1,14 |
1,16 |
1,18 |
1,19 |
1,2 |
h d |
1,04 и менее |
1,05-1,24 |
1,25-1,44 |
1,45-1,64 |
1,65-1,84 |
1,85-2,0 |
|
2 |
1,0 |
1,02 |
1,04 |
1,07 |
1,1 |
1,13 |
Размеры образцов: ребро куба или сторона квадратной призмы, мм |
Сжатие |
Растяжение при раскалывании |
Растяжение при изгибе |
Осевое растяжение |
||
все виды бетонов |
тяжелый бетон |
мелкозернистый бетон |
тяжелый бетон |
|||
70 |
0,85 |
0,78 |
0,87 |
0,86 |
0,8 |
|
100 |
0,95 |
0,88 |
0,92 |
0,92 |
0,92 |
|
150 |
1,0 |
1,0 |
1 |
1,0 |
1,0 |
|
200 |
1,05 |
1,10 |
1,05 |
1,15 |
1,08 |
Отчет об испытаниях должен состоять из протокола отбора проб, результатов испытания образцов и соответствующей ссылки на стандарты, по которым проведено испытание.
, МПа |
Коэффициент при испытаниях на сжатие цилиндров диаметром, мм |
||||
50±6 |
63±6 |
80±10 |
более 90 |
||
15 и менее |
1,1 |
1,06 |
1,02 |
1,0 |
|
св. 15 до 25 |
1,07 |
1,04 |
1,01 |
1,0 |
|
св. 25 до 35 |
1,03 |
1,01 |
1,0 |
1,0 |
|
св. 35 до 45 |
0,96 |
0,97 |
0,99 |
1,0 |
|
св. 45 до 55 |
0,88 |
0,92 |
0,97 |
1,0 |
|
более 55 |
0,8 |
0,83 |
0,95 |
1,0 |
1.2 Основные дефекты характерные для железобетонных конструкций
Виды дефектов железобетонных конструкций зависят от многих факторов, основными из которых являются:
· физико-механические характеристики железобетона, зависящие от класса арматуры и бетона;
· вид воздействия (силовое, агрессивные воды и газы, температурно-влажностный режим окружающей среды);
· вид, направление и способ силового нагружения (статическое или динамическое, сосредоточенное или распределенное);
· соответствие фактических нагрузок и воздействий расчетным;
· соответствие фактической расчетной схемы проектной;
· тип здания или сооружения и его конструктивная схема (сборное, сборно-монолитное, монолитное, этажность);
· нарушение технологии при изготовлении, транспортировке, складировании и монтаже железобетонных конструкций;
· ошибки при проектировании;
· механические повреждения;
· аварии техногенного и природного характера.
При проведении обследований технического состояния зданий и сооружений, следует учитывать, что дефекты железобетонных конструкций могут носить общий характер, присущий всем железобетонным конструкциям, и специфический, относящийся к определенным типам зданий и сооружений.
Независимо от типа здания, его конструктивной и расчетной схемы общие характерные дефекты железобетонных конструкций приведены ниже.
Дефекты железобетонных конструкций
№ п/п |
Вид повреждения и дефекта, место расположения и характерные признаки обнаружения |
Вероятные причины возникновения и методы обнаружения |
Возможные последствия и меры по предупреждению дальнейшего развития или по устранению |
|
1 |
Волосяные трещины, не имеющие четкой ориентации, появляющиеся при изготовленни в основном на верхней поверхности |
Усадка в результате принятого режима температурно-влажностной обработки, состава бетонной смеси, свойств цемента. Метод выявления - визуальный |
На несущую способность не влияют, могут снизить долговечность. Заделка трещин раствором |
|
2 |
Волосяные трещины вдоль арматуры, следы ржавчины на поверхности бетона |
Коррозия арматуры (слой коррозии до 0,5 мм) при потере бетоном защитных свойств (например, при карбонизации). Раскалывание бетона при нарушении сцепления с арматурой. Метод выявления - визуально-инструментальный |
Снижение несущей способности до 5%. Может снизится долговечность. Усиление - при необходимости. Восстановление защитного слоя |
|
3 |
Сколы бетона |
Механические воздействия. Метод выявления - визуальный |
При расположении в сжатой зоне - снижение несущей способности за счет уменьшения площади сечения. При расположении в растянутой зоне на несущую способность не влияют, но снижают жесткость элемента. Установка обойм по расчету. Заделка сколов мелкозернистым бетоном |
|
4 |
Промасливание бетона |
Технологические протечки. Метод выявления - визуально-инструментальный |
Снижение несущей способности за счет снижения прочности бетона до 30%. Устранение протечек. Усиление по расчету, снятие промасленного слоя. Установка обойм или армосеток, обетонирование |
|
5 |
Трещины вдоль арматурных стержней с шириной раскрытия до 3 мм. Явные следы коррозии арматуры |
Развиваются в результате коррозии арматуры из волосяных трещин. Толщины продуктов коррозии до 3 мм. Метод выявления - визуально-инструментальный |
Снижение несущей способности в зависимости от толщины слоя коррозии и размеров выключенного из работы бетона сжатой зоны. Кроме того, уменьшение несущей способности нормальных сечений до 20% в результате нарушения сцепления арматуры с бетоном. При расположении на опорных участках - состояние аварийное. Усиление по расчету, восстановление защитного слоя |
|
6 |
Отслоение защитного слоя бетона |
Коррозия арматуры - дальнейшее развитие дефектов в п.2 и п.5. Метод выявления - визуально-инструментальный |
Снижение несущей способности в зависимости от уменьшения площади сечения арматуры в результате коррозии и уменьшения размеров поперечного сечения сжатой зоны. Кроме того, снижение прочности нормальных сечений до 30% в результате нарушения сцепления арматуры с бетоном. Снижена жесткость элементов При расположении дефекта на опорном участке - состояние аварийное. Усиление по расчету, восстановление защитного слоя |
|
7 |
Нормальные трещины в изгибаемых конструкциях и в растянутых элементах конструкций шириной раскрытия для стали класса: А240 - более 0,5 мм; А300, А400, А500, А600 - более 0,4 мм; в остальных случаях - более о,3 мм |
Перегрузка конструкций. Смещение растянутой арматуры. Для преднапряженных конструкций - малая величина натяжения арматуры при изготовлении. Метод выявления - визуально-инструментальный |
Снижение несущей способности и жесткости элементов. Разгрузка и усиление по расчету |
|
8 |
То же, что в п.7, но имеются трещины с разветвленными концами |
Перегрузка конструкций в результате снижения прочности бетона илинарушения сцепления арматуры с бетоном. Метод выявления - визуально-инструментальный |
Состояние аварийное. Немедленная разгрузка и усиление по расчету |
|
9 |
Наклонные трещины со смещением участков балки относительно друг друга и наклонные трещины, пересекающие арматуру |
Перегрузка конструкций. Нарушение анкеровки арматуры. Метод выявления - визуально-инструментальный |
Состояние аварийное. Немедленная разгрузка и усиление по расчету |
|
10 |
Относительные прогибы, превышающие предельно допустимые по нормам проектирования |
Перегрузка конструкций. Метод выявления - инструментальный |
Степень опасности определяется в зависимости от наличия других дефектов. Например, наличие этого дефекты и по п.7 - состояние аварийное. Разгрузка и усиление по расчету |
|
11 |
Повреждения арматуры и закладных деталей (надрезы, вырывы) |
Механические воздействия, коррозия арматуры. Метод выявления - визуально-инструментальный |
Снижение несущей способности. Усиление по расчету |
|
12 |
Выпучивание сжатой арматуры, продольные трещины в сжатой зоне, шелушение бетона сжатой зоны |
Перегрузка конструкций. Метод выявления - визуально-инструментальный |
Состояние аварийное. Разгрузка и усиление по расчету |
|
13 |
Уменьшение площадок опирания против проектных |
Ошибки при изготовлении и монтаже. Метод выявления - инструментальный |
Возможно снижение несущей способности. Усиление по расчету |
|
14 |
Разрывы или смещения поперечной арматуры в зоне наклонных трещин |
Перегрузка конструкций. Метод выявления - инструментальный |
Состояние аварийное. Разгрузка и усиление по расчету |
|
15 |
Отрыв анкеров от пластин закладных деталей, деформация соединительных элементов, расхождение стыков |
Наличие воздействий, не предусмотренных при проектировании. Метод выявления - визуально-инструментальный |
Состояние аварийное. Разгрузка и усиление по расчету |
|
16 |
Трещины, вывалы и оголение арматуры в зоне проходы коммуникаций через стены, перекрытия и покрытия |
Механические повреждения при пробивке отверстий и проемов с оголением и вырезкой арматуры, вибрация. Метод выявления - визуально-инструментальный |
Снижение несущей способности. Усиление по расчету |
|
17 |
Трещины, выбоины, раскалывание фундаментов под оборудование, вырыв анкерных болтов |
Вибрации, снижение прочности бетона, промасливание. Метод выявления - визуально-инструментальный |
Состояние предаварийное. Устранение вибрации. Восстановление фундаментов с усилением |
|
18 |
Высолы на поверхности бетона |
Воздействие агрессивной среды, неправильное применение химдобавок. Метод выявления - визуально-инструментальный, лабораторный |
Снижение несущей способности за счет коррозии арматуры и бетона. Восстановление защитных покрытий. В необходимых случаях - усиление по расчету |
|
19 |
Наличие следов сажи и копоти, шелушение отдельных слоев поверхности бетона, небольшие сколы бетона |
Воздействие очагового пожара. Метод выявления - визуальный |
Снижение несущей способности. Конструкции требуют восстановления поврежденных поверхностей |
|
20 |
Полное покрытие поверхности сажей и копотью, сколы и обнажение арматуры по углам, обнажение арматурной сетки плоских элементов до 10%, отделение бетона без обрушения (глухой звук при простукивании), трещины до 0,5 мм |
Среднее воздействие пожара. Метод выявления - визуально-инструментальный |
Снижение несущей способности и жесткости элементов. Конструкции требуют усиления по расчету с увеличением сечений |
|
21 |
Цвет бетона - желтый, сколы до 30%, обнажение арматуры до 50%, трещины до 1,0 мм | ...
Подобные документы
Контролируемые параметры для железобетонных конструкций. Прочностные характеристики бетона и их задание. Количество, диаметр, прочность арматуры. Контролируемые параметры дефектов и повреждений железобетонных конструкций. Основные методы испытания бетона.
презентация [1,4 M], добавлен 26.08.2013Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.
контрольная работа [26,6 K], добавлен 28.06.2010Оценка технического состояния жилого дома. Расчет физического износа основного строения. Фиксирование дефектов и повреждений строительных конструкций. Определение общего технического состояния объекта. Оценка инвестиционной привлекательности здания.
курсовая работа [23,0 K], добавлен 15.11.2010Достоинства и недостатки монолитного домостроения. Проектирование состава бетона. Технология возведения монолитных конструкций (опалубочные и арматурные работы, бетонирование). Интенсификация работ при отрицательной температуре. Оценка прочности изделий.
курсовая работа [1,7 M], добавлен 18.10.2013Железобетон, как композиционный строительный материал. Принципы проектирования железобетонных конструкций. Методы контроля прочности бетона сооружений. Специфика обследования состояния железобетонных конструкций в условиях агрессивного воздействия воды.
курсовая работа [2,2 M], добавлен 22.01.2012Организация и методика обследования конструкций, алгоритм оценки технического состояния зданий и сооружений. Обследование технического состояния здания на основе визуального осмотра обнаруженных дефектов на примере детской библиотеки И.А. Крылова.
курсовая работа [868,8 K], добавлен 07.02.2011Конструктивное решение здания. Обследование строительных конструкций: стен, перекрытий, отмостки. Определение прочности бетона в несущих железобетонных конструкциях. Прочность кирпича и раствора несущих стен. План мероприятий по реконструкции здания.
контрольная работа [25,9 K], добавлен 22.12.2010Компоновка пятиэтажного здания из сборных железобетонных конструкций. Составление монтажного плана перекрытия. Назначение характеристик прочности бетона и арматуры, определение высоты панели. Расчет колонны, сбор нагрузок. Определение размеров фундамента.
курсовая работа [2,8 M], добавлен 06.01.2017Особенности работы и разрушения каменных и армокаменных конструкций. Определение их прочности и технического состояния по внешним признакам. Влияние агрессивных сред на каменную кладку. Мероприятия по обеспечению долговечности промышленных зданий.
курсовая работа [1,2 M], добавлен 27.12.2013Предварительное назначение размеров железобетонных элементов подземного здания. Расчётные и нормативные характеристики арматуры и бетона. Расчет и подбор прочности рабочей арматуры полки ребристой плиты перекрытия, колонны, столбчатого фундамента.
курсовая работа [123,8 K], добавлен 01.02.2011Расчет фактических пределов огнестойкости железобетонных балок, многопустотных железобетонных плит и других строительных конструкций. Теплофизические характеристики бетона. Определение нормативной нагрузки и характеристика расчетного сопротивления.
курсовая работа [738,3 K], добавлен 12.02.2014Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.
курсовая работа [36,7 K], добавлен 08.02.2011Элементы железобетонных конструкций многоэтажного здания. Расчет ребристой предварительно напряжённой плиты перекрытия; трехпролетного неразрезного ригеля; центрально нагруженной колонны; образования трещин. Характеристики прочности бетона и арматуры.
курсовая работа [1,0 M], добавлен 21.06.2009Конструирование и расчет опалубки, основные требования к ней. Заготовка и монтаж арматуры. Методы обеспечения проектного защитного слоя бетона. Проектирование состава бетонной смеси для бетонирования конструкции. Контроль качества железобетонных работ.
курсовая работа [110,3 K], добавлен 24.11.2013Обследование технического состояния строительных конструкций является самостоятельным направлением строительной деятельности. Оно занимается обеспечением эксплуатационной надежности зданий и разработкой проектной документации по реконструкции зданий.
контрольная работа [27,8 K], добавлен 21.01.2009Общая характеристика объекта недвижимости. Оценка значимости различных дефектов и повреждений, причин возникновения, степень их распространения. Рекомендации по улучшению технического состояния и безопасной эксплуатации конструкций (плит покрытия) здания.
курсовая работа [246,5 K], добавлен 14.08.2014Конструирование сборной железобетонной плиты, назначение геометрических размеров, классов арматуры и бетона, определение потерь предварительного напряжения. Расчет прочности сплошной колонны среднего ряда фундамента и основных геометрических размеров.
курсовая работа [318,7 K], добавлен 16.11.2009Предварительное обследование технического состояния конструкций технического, большепролетного производственного здания. Выводы о степени снижения несущей способности и категории технического состояния для отдельных конструкций и для здания в целом.
курсовая работа [1,1 M], добавлен 13.08.2013Характеристика основных этапов работ по обследованию конструкций, зданий и сооружений. Составление инженерно-технического отчета. Используемые приборы при обследовании. Обследование железобетонных плит и ригелей. Формирование цены в ООО "Реконструкция".
отчет по практике [33,0 K], добавлен 19.10.2011Проектирование монолитного коммуникационного тоннеля для стоков. Расчёт объёмов работ: установка арматуры, устройство опалубки, бетонирование, укрытие неопалубленных поверхностей конструкций, выдерживание бетона, снятие утеплителя, контроль температуры.
курсовая работа [381,0 K], добавлен 09.12.2014