Основы расчета по предельным состояниям

Расчет элементов конструкций цельного сечения. Группы предельных состояний. Сохранность и прочность древесины. Температурно-влажностные условия. Проверка устойчивости плоской формы и прочности при косом изгибе. Определение относительного прогиба.

Рубрика Строительство и архитектура
Вид лекция
Язык русский
Дата добавления 05.02.2015
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

2

ЛЕКЦИЯ

ОСНОВЫ РАСЧЕТА ПО ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ

Расчет элементов конструкций цельного сечения

В соответствии с действующими в России нормами деревянные конструкции должны рассчитываться по методу предельных состояний.

Предельными являются такие состояния конструкций, при которых они перестают удовлетворять требованиям эксплуатации. Внешней причиной, которая приводит к предельному состоянию является силовое воздействие (внешние нагрузки, реактивные силы). Предельные состояния могут наступать под влиянием условий работы деревянных конструкций, а также качества, размеров и свойств материалов. Различают две группы предельных состояний:

1 - по несущей способности (прочности, устойчивости).

2 - по деформациям (прогибам, перемещениям).

Первая группа предельных состояний характеризуется потерей несущей способности и полной непригодностью к дальнейшей эксплуатации. Является наиболее ответственной. В деревянных конструкциях могут возникать следующие предельные состояния первой группы: разрушение, потеря устойчивости, опрокидывание, недопустимая ползучесть. Эти предельные состояния не наступают, если выполняются условия:

у ? R,

ф ? Rск (или Rср),

т.е. когда нормальные напряжения (у) и касательные напряжения (ф) не превышают некоторой предельной величины R, называемой расчетным сопротивлением.

Вторая группа предельных состояний характеризуется такими признаками, при которых эксплуатация конструкций или сооружений хотя и затруднена, однако, полностью не исключается, т.е. конструкция становится непригодной только к нормальной эксплуатации. Пригодность конструкции к нормальной эксплуатации обычно определяется по прогибам

f ? [f], или

f/l ? [f/l].

Это означает, что изгибаемые элементы или конструкции пригодны к нормальной эксплуатации, когда наибольшая величина отношения прогиба к пролету меньше предельно допустимого относительного прогиба [f/l] (по СНиП II-25-80). конструкция сечение древесина изгиб

Цель расчета конструкций - не допустить наступления ни одного из возможных предельных состояний, как при транспортировке и монтаже, так и при эксплуатации конструкций. Расчет по первому предельному состоянию производится по расчетным значениям нагрузок, а по второму - по нормативным. Нормативные значения внешних нагрузок приведены в СНиП «Нагрузки и воздействия». Расчетные значения получают с учетом коэффициента безопасности по нагрузке гn. Конструкции рассчитывают на неблагоприятное сочетание нагрузок (собственный вес, снег, ветер) вероятность которых учитывается коэффициентами сочетаний (по СНиП «Нагрузки и воздействия»).

Основной характеристикой материалов, по которой оценивается их способность сопротивляться силовым воздействиям, является нормативное сопротивление Rн. Нормативное сопротивление древесины вычисляется по результатам многочисленных испытаний малых образцов чистой (без включения пороков) древесины одной породы, влажностью 12%:

Rн=

Где - среднее арифметическое значение предела прочности,

V - вариационный коэффициент,

t - показатель достоверности.

Нормативное сопротивление Rн является минимальным вероятностным пределом прочности чистой древесины, получаемым при статической обработке результатов испытаний стандартных образцов малого размера на кратковременную нагрузку.

Расчетное сопротивление R - это максимальное напряжение, которое может выдержать материал в конструкции не разрушаясь при учете всех неблагоприятных факторов в условиях эксплуатации, снижающих его прочность.

При переходе от нормативного сопротивления Rн к расчетному R необходимо учесть влияние на прочность древесины длительного действия нагрузки, пороков (сучков, косослоя и пр.), перехода от малых стандартных образцов к элементам строительных размеров. Совместное влияние всех этих факторов учитывается коэффициентом безопасности по материалу (к). Расчетное сопротивление получают делением Rн на коэффициент безопасности по материалу:

R= Rн/к,

, где

кдл=0,67 - коэффициент длительности при совместном действии постоянных и временных нагрузок;

кодн=0,27ч0,67 - коэффициент однородности, зависящий от вида напряженного состояния, учитывающий влияние пороков на прочность древесины.

Минимальное значение кодн принимается при растяжении, когда влияние пороков особенно велико. Расчетные сопротивления к приведены в табл. 3 СНиП II-25-80 (для древесины хвойных пород). R древесины других пород получают с помощью переходных коэффициентов, также приведенных в СНиПе.

Сохранность и прочность древесины и деревянных конструкций зависят от температурно-влажностных условий. Увлажнение способствует загниванию древесины, а повышенная температура (за известным пределом) снижает ее прочность. Учет этих факторов требует введения коэффициентов условия работы: mв?1, mТ?1.

Кроме этого СНиП предполагает учет коэффициента слойности для клееных элементов: mсл=0,95ч1,1;

балочный коэффициент для высоких балок, высотой более 50 см.: mб?1;

коэффициент антисептирования: mа?0,9;

коэффициент гнутья для гнутоклееных элементов: mгн?1 и др.

Модуль упругости древесины независимо от породы принимается равным:

Е=10000 МПа;

Е90=400 МПа.

Расчетные характеристики строительной фанеры также приведены в СНиПе, причем, при проверке напряжений в элементах из фанеры, как и для древесины, вводят коэффициенты условия работы m. Кроме этого для расчетного сопротивления древесины и фанеры вводится коэффициент mдл=0,8 в случае, если суммарное расчетное усилие от постоянных и временных нагрузок превышает 80% полного расчетного усилия. Этот коэффициент вводится в дополнение к тому снижению, которое включено в коэффициент безопасности по материалу.

Элементами деревянных конструкций называют доски, бруски, брусья и бревна цельного сечения с размерами, указанными в сортаментах пилёных и круглых материалов. Они могут являться самостоятельными конструкциями, например, балками или стойками, а также стержнями более сложных конструкций. Усилия в элементах определяют общими методами строительной механики. Проверка прочности и прогибов элемента заключается в определении напряжений в сечениях, которые не должны превышать расчетных сопротивлений древесины, а также его прогибов, которые не должны превосходить предельных, установленных нормами проектирования. Деревянные элементы рассчитывают в соответствии со СНиП II-25-80.

Растянутые элементы

На растяжение работают нижние пояса и отдельные раскосы ферм, затяжки арок и других сквозных конструкций. Растягивающее усилие N действует вдоль оси элемента и во всех точках его поперечного сечения возникают растягивающие напряжения у, которые с достаточной точностью считаются одинаковыми по величине.

Древесина на растяжение работает почти упруго и показывает высокую прочность. Разрушение происходит хрупко в виде почти мгновенного разрыва. Стандартные образцы при испытаниях на растяжение имеют вид «восьмерки».

Как видно из диаграммы растяжения древесины без пороков, зависимость деформаций от напряжений близка к линейной, а прочность достигает 100 МПа.

Однако прочность реальной древесины при растяжении, учитывая ее значительные колебания, большое влияние пороков и длительности нагружения значительно ниже: для неклееной древесины I сорта Rр=10 МПа, для клееной древесины влияние пороков уменьшается, поэтому Rр=12 МПа. Прочность растянутых элементов в тех местах, где есть ослабления снижается в результате концентрации напряжений у их краев, т.е. вводится коэффициент условия работы m0=0,8. Тогда получается расчетное сопротивление Rр=8 МПа. Проверочный расчет растянутых элементов производится по формуле:

у

где

- площадь рассматриваемого поперечного сечения, причем ослабления, расположенные на участке длиной 20 см. считаются совмещенными в одном сечении. Для подбора сечений пользуются этой же формулой, но относительно искомой (требуемой) площади .

Сжатые элементы

На сжатие работают стойки, подкосы, верхние пояса и отдельные стержни ферм. В сечениях элемента от сжимающего усилия N, действующего вдоль его оси, возникают почти одинаковые по величине сжимающие напряжения у (эпюра прямоуголная).

Стандартные образцы при испытании на сжатие имеют вид прямоугольной призмы с размерами, указанными на рис. 2.

Древесина работает на сжатие надежно, но не вполне упруго. Примерно до половины предела прочности рост деформаций происходит по закону близкому к линейному, и древесина работает почти упруго. При росте нагрузки увеличение деформаций все более опережает рост напряжений, указывая на упруго-пластический характер работы древесины.

Разрушение образцов без пороков происходит при напряжениях, достигающих 44 МПа, пластично, в результате потери устойчивости ряда волокон, о чем свидетельствует характерная складка. Пороки меньше снижают прочность древесины, чем при растяжении, поэтому расчетное сопротивление реальной древесины при сжатии выше и составляет для древесины 1 сорта Rс=14ч16 МПа, а для 2 и 3 сортов эта величина немного ниже.

Расчет на прочность сжатых элементов производится по формуле:

у

где Rс - расчетное сопротивление сжатию.

Аналогичным образом рассчитываются и сминаемые по всей поверхности элементы. Сжатые стержни, имеющие большую длину и не закрепленные в поперечном направлении должны быть, помимо расчета на прочность, рассчитаны на продольный изгиб. Явление продольного изгиба заключается в том, что гибкий центрально-сжатый прямой стержень теряет свою прямолинейную форму (теряет устойчивость) и начинает выпучиваться при напряжениях, значительно меньших предела прочности. Проверку сжатого элемента с учетом его устойчивости производят по формуле:

у

где - расчетная площадь поперечного сечения,

ц - коэффициент продольного изгиба.

принимается равной:

1. При отсутствии ослаблений =,

2. При ослаблениях, не выходящих на кромки, если площадь ослаблений не превышает 25% , =,

3. То же, если площадь ослаблений превышает 20% , =4/3,

При симметричных ослаблениях, выходящих на кромки =,

При несимметричном ослаблении, выходящем на кромки, элементы рассчитывают как внецентренно сжатые.

Коэффициент продольного изгиба ц всегда меньше 1, учитывает влияние устойчивости на снижение несущей способности сжатого элемента в зависимости от его расчетной максимальной гибкости л.

Гибкость элемента равна отношению расчетной длины l0 к радиусу инерции сечения элемента:

; .

Расчетную длину элемента l0 следует определять умножением его свободной длины l на коэффициент м0:

l0=l м0,

где коэффициент м0 принимается в зависимости от типа закрепления концов элемента:

- при шарнирно закрепленных концах м0=1;

- при одном шарнирно закрепленном, а другом защемленном м0=0,8;

- при одном защемленном, а другом свободном нагруженном конце м0=2,2;

- при обоих защемленных концах м0=0,65.

Гибкость сжатых элементов ограничивается с тем, чтобы они не получились недопустимо гибкими и недостаточно надежными. Отдельные элементы конструкций (отдельные стойки, пояса, опорные раскосы ферм и т.п.) должны иметь гибкость не более 120. Прочие сжатые элементы основных конструкций - не более 150, элементы связей - 200.

При гибкости более 70 (л>70) сжатый элемент теряет устойчивость, когда напряжения сжатия в древесине еще невелики и она работает упруго.

Коэффициент продольного изгиба (или коэффициент устойчивости), равный отношению напряжения в момент потери устойчивости укр к пределу прочности при сжатии Rпр, определяют по формуле Эйлера с учетом постоянного отношения модуля упругости древесины к пределу прочности:

, где

А=3000 - для древесины,

А=2500 - для фанеры.

При гибкостях, равных и меньших 70 (л?70) элемент теряет устойчивость, когда напряжения сжатия достигают упругопластической стадии и модуль упругости древесины понижается. Коэффициент продольного изгиба при этом определяют с учетом переменного модуля упругости по упрощенной теоретической формуле:

Где =0,8 - коэффициент для древесины;

=1 - коэффициент для фанеры.

При подборе сечения используют формулу расчета на устойчивость, предварительно задаваясь величиной л и ц.

Изгибаемые элементы

В изгибаемых элементах от нагрузок, действующих поперек продольной оси, возникают изгибающие моменты М и поперечные силы Q, определяемые методами строительной механики. Например, в однопролетной балке пролетом l от равномерно-распределенной нагрузки q возникают изгибающие моменты и поперечные силы .

От изгибающего момента в сечениях элемента возникают деформации и напряжения изгиба у, которые состоят из сжатия в одной части сечения и растяжения в другой, в результате элемент изгибается.

Диаграмма как и для сжатия, примерно до половины, имеет линейное очертание, затем изгибается, показывая ускоренный рост прогибов.

=80 МПа - предел прочности чистой древесины на изгиб при кратковременных испытаниях. Разрушение образца начинается с появления складок в крайних сжатых волокнах и завершается разрывом крайних растянутых. Расчетное сопротивление изгибу по СНиП II-25-80 рекомендуется принимать таким же, как и при сжатии, т.е. для 1 сорта Rи=14 МПа - для элементов прямоугольного сечения высотой до 50 см. Брусья с размерами сечения 11 - 13 см. при высоте сечения 11 - 50 см. имеют меньше перерезанных волокон при распиловке, чем доски, поэтому их прочность повышается до Rи=15 МПа. Бревна шириной свыше13 см. при высоте сечения 13 - 50 см. совсем не имеют перерезанных волокон, поэтому Rи=16 МПа.

1. Расчет изгибаемых элементов на прочность

Производится по формуле:

у=, где

М - максимальный изгибающий момент,

Wрасч - расчетный момент сопротивления поперечного сечения.

Для наиболее распространенного прямоугольного сечения

; .

Подбор сечения изгибаемых элементов производится по этой же формуле, определяя , затем, задавая один из размеров сечения (b или h), находят другой размер.

2. Расчет на устойчивость плоской формы деформирования элементов прямоугольного постоянного сечения

Производят по формуле:

у=, где

М - максимальный изгибающий момент на рассматриваемом участке lp,

Wбр - максимальный момент сопротивления брутто на рассматриваемом участке lp,

цм - коэффициент устойчивости.

Коэффициент цм для изгибаемых элементов прямоугольного постоянного поперечного сечения шарнирно-закрепленных от смещения из плоскости изгиба, следует определять по формуле:

Где lp - расстояние между опорными сечениями элемента (расстояние между точками закрепления сжатого пояса),

b - ширина поперечного сечения,

h - максимальная высота поперечного сечения на участке lp,

kф - коэффициент, зависящий от формы эпюры на участке lp (определяется по таблице СНиП II-25-80).

При расчете элементов переменной высоты сечения значение коэффициента цм следует умножать на коэффициент kжм, а при подкреплении из плоскости изгиба в промежуточных точках растянутой кромки - на коэффициент kпм.

Оба эти коэффициента определяются по СНиП.

При наличии точек закрепления растянутых зон n?4, kжм=1.

Проверку устойчивости плоской формы изгиба элементов постоянного двутаврового или коробчатого сечения следует производить в тех случаях, когда lp?7b, где b - ширина сжатого пояса поперечного сечения. Расчет следует производить по формуле:

Где ц - коэффициент продольного изгиба сжатого пояса,

Rc - расчетное сопротивление сжатию,

Wбр - момент сопротивления брутто, в случае фанерных стенок - приведенный момент сопротивления в плоскости изгиба элемента.

3. Проверка на скалывание при изгибе

Выполняется по формуле Журавского:

Где Q - расчетная поперечная сила;

Iбр - момент инерции брутто рассматриваемого сечения;

Sбр - статический момент брутто сдвигаемой части сечения относительно нейтральной оси;

b - ширина сечения;

Rск - расчетное сопротивление скалыванию при изгибе (для древесины I сорта Rск=1,8 МПа для неклееных элементов, Rск=1,6 МПа - для клееных элементов вдоль волокон).

В балках прямоугольного сечения при l/h?5 скалывания не происходит, однако оно может быть в элементах других форм сечения, например, в двутавровых балках с тонкой стенкой.

4. Проверка изгибаемых элементов по прогибам

Определяется относительный прогиб, значение которого не должно превышать предельного значения, регламентированного СНиПом:

Наибольший прогиб f шарнирно-опертых и консольных изгибаемых элементов постоянного и переменного сечения следует определять по формуле:

Где f0 - прогиб балки постоянного сечения без учета деформаций сдвига (например, для однопролетной балки ;

h - наибольшая высота сечения;

k - коэффициент, учитывающий переменность высоты сечения, для балки постоянного сечения k=1;

с - коэффициент, учитывающий деформации сдвига от поперечной силы.

Значения коэффициентов k и с приведены в СНиП.

Клееные криволинейные элементы, изгибаемые моментом М, уменьшающим их кривизну, следует проверять дополнительно на радиальные растягивающие напряжения по формуле:

уr=

где у0 - нормальные напряжения в крайнем волокне растянутой зоны.

уi - нормальные напряжения в промежуточном волокне сечения для которого определяются радиальные растягивающие напряжения;

hi - расстояние между крайними и рассматриваемыми волокнами;

ri - радиус кривизны линии, проходящей через центр тяжетси эпюры нормальных растягивающих напряжений, заключенной между крайними и рассматриваемыми волокнами.

Косой изгиб

Возникает в элементах, оси сечений которых расположены наклонно к направлению нагрузок, как например, в брусчатых прогонах скатных покрытий.

qx=qsinб;

qy=qcosб;

Mx=Msinб;

My=Mcosб.

Вертикальная нагрузка q и изгибающие моменты М при косом изгибе под углом б раскладываются на нормальную (qy) и скатную (qx) составляющие.

Проверку прочности при косом изгибе производят по формуле:

у=.

Подбор сечений косоизгибаемых элементов производят методом попыток. Расчет по прогибам производят с учетом геометрической суммы прогибов относительно каждой из осей сечения:

.

Растянуто-изгибаемые элементы

Работают одновременно на растяжение и изгиб. Так работают, например, растянутый нижний пояс фермы с межузловой нагрузкой; стержни, в которых растягивающие усилия действуют с эксцентриситетом относительно оси (такие элементы называют внецентренно-растянутыми). В сечениях растянуто-изгибаемого элемента от продольной растягивающей силы N возникают равномерные растягивающие напряжения, а от изгибающего момента М - напряжения изгиба. Эти напряжения суммируются, благодаря чему растягивающие напряжения увеличиваются, а сжимающие уменьшаются. Расчет растянуто-изгибаемых элементов производится по прочности с учетом всех ослаблений:

у=, .

Отношение Rp/Ru позволяет привести напряжения растяжения и изгиба к единому значению для сравнения их с расчетным сопротивлением растяжению.

Сжато-изгибаемые элементы

Работают одновременно на сжатие и изгиб. Так работают, например, верхние сжатые пояса ферм, нагруженные дополнительно межузловой поперечной нагрузкой, а также при эксцентричном приложении сжимающей силы (внецентренно-сжатые элементы).

В сечениях сжато-изгибаемого элемента возникают равномерные напряжения сжатия от продольных сил N и напряжения сжатия и растяжения от изгибающего момента М, которые суммируются.

Искривление сжато-изгибаемого элемента поперечной нагрузкой приводит к появлению дополнительного изгибающего момента с с максимальным значением:

МN=N·f,

Где f - прогиб элемента.

Расчет на прочность сжато-изгибаемых элементов выполняют по формуле:

Где Мд - изгибающий момент по деформированной схеме от действия поперечных и продольных нагрузок.

Для шарнирно-опертых элементов при симметричных эпюрах изгибающих моментов синусоидального, параболического и близких к ним очертаний:

Где М - изгибающий момент в расчетном сечении без учета дополнительного момента от продольной силы;

о - коэффициент, изменяющийся от 1 до 0, учитывающий дополнительный момент от продольной силы вследствие прогиба элемента, определяемый по формуле:

Где ц - коэффициент продольного изгиба (коэффициент устойчивости) для сжатых элементов.

Кроме проверки на прочность, сжато-изогнутые элементы проверяются на устойчивость по формуле:

Где Fбр - площадь брутто с максимальными размерами сечения элемента на участке lp;

Wбр - максимальный момент сопротивления на рассматриваемом участке lp;

n=2 - для элементов без закрепления растянутой зоны из плоскости деформирования,

n=1 - для элементов, имеющих закрепления в растянутой зоне из плоскости деформирования;

ц - коэффициент устойчивости для сжатия, определяемый по формуле:

Где А=3000 - для древесины,

А=2500 - для фанеры;

цм - коэффициент устойчивости для изгиба, формула для определения этого коэффициента была дана раньше.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет деревянных конструкций по предельным состояниям, исходные положения. Расчет элементов сплошного сечения: однопролетные балки сплошного сечения, консольные и неразрезные системы прогонов. Расчетные сопротивления древесины, проверка устойчивости.

    презентация [463,9 K], добавлен 24.11.2013

  • Расчет многопустотной плиты по предельным состояниям первой группы. Расчетные и нормативные нагрузки. Расчет прочности плиты по сечению, пустотной плиты по предельным состояниям второй группы. Перераспределение моментов под влиянием пластических шарниров.

    дипломная работа [932,1 K], добавлен 07.03.2012

  • Суть компоновки балочных конструкций. Характеристика балочной клетки нормального и усложненного типа. Подбор, изменение сечения балки по длине, проверка прочности, устойчивости, прогиба. Конструирование промежуточных ребер жесткости, расчет поясных швов.

    курсовая работа [1,8 M], добавлен 22.01.2010

  • Расчет дощатого настила из древесины под рулонную кровлю и стропильной ноги на прочность и жесткость. Определение несущей способности шарнирно-закрепленной деревянной стойки составного сечения. Проверка прочности межквартирной бетонной стеновой панели.

    практическая работа [170,8 K], добавлен 14.02.2014

  • Компоновка конструктивной схемы здания. Проектирование поперечного сечения плиты. Расчет полки ребристой плиты, ее прочности, нормального сечения к продольной оси, плиты по предельным состояниям второй группы. Потери предварительного напряжения арматуры.

    курсовая работа [244,3 K], добавлен 20.07.2012

  • Компоновочная схема здания. Расчет двускатной балки покрытия по предельным состояниям I и II группы. Определение геометрических размеров фундамента, расчет прочности конструкции, прогиба, образования и раскрытия трещин. Расчет фундамента от отпора грунта.

    курсовая работа [1,8 M], добавлен 15.12.2013

  • Сбор нагрузок на железобетонную плиту перекрытия. Расчет плиты по группе предельных состояний; прогиба панели; прочности нормальных и наклонных сечений ригеля на поперечную силу и изгибающий момент. Конструирование колонны. Определение прочности консоли.

    курсовая работа [207,8 K], добавлен 29.03.2015

  • Методы моделирования работы железобетонной конструкции в стадии разрушения. Расчет фундаментов на температурно-влажностные воздействия. Оценка температурно-влажностных деформаций в железобетонных фундаментных конструкциях жилого здания в п. Батагай.

    отчет по практике [2,4 M], добавлен 23.09.2017

  • Проверка прочности, общей устойчивости и прогиба сварной балки. Изменение сечения главной балки по длине. Расчет балочной клетки нормального типа. Проверка и обеспечение местной устойчивости балки. Подбор и расчет сечения колонны. Расчет ребер жесткости.

    курсовая работа [700,4 K], добавлен 28.06.2015

  • Механические свойства древесины: прочность, деформативность. Работа на растяжение деревянных конструкций. Значение величины дефекта, его расположения на их разрушение в виде разрыва. Растягивающие напряжения вдоль волокон. Центральное растяжение элемента.

    презентация [208,4 K], добавлен 18.06.2015

  • Компоновка и второстепенная балка перекрытия: подбор сечения, проверка прочности. Подбор сечения балки в виде сварного двутавра. Расчет сварных швов, прикрепляющих пояса к стене. Проверка местной устойчивости элементов колонны, размеры опорной плиты.

    курсовая работа [328,0 K], добавлен 04.10.2014

  • Выбор и обоснование стали. Методика и этапы расчета настила. Компоновка элементов балочной клетки. Расчет балок настила: подбор сечения и проверка прогиба. Проверка общей и местной устойчивости. Размеры ребер жесткости. Конструирование монтажного стыка.

    дипломная работа [2,1 M], добавлен 04.08.2014

  • Расчет по предельным состояниям двускатной предварительно напряженной балки покрытия. Определение потерь предварительного напряжения арматуры, расчетного сечения на образование трещин и фундамента на раскалывание. Проверка ширины раскрытия трещин.

    курсовая работа [787,9 K], добавлен 30.01.2012

  • Расчет и конструирование ограждающей конструкции. Геометрические размеры и определение нагрузок на раму, ее статический расчет, подбор сечения и проверка напряжений, оценка устойчивости плоской формы. Конструкции и расчет опорного и конькового узлов.

    курсовая работа [951,4 K], добавлен 11.12.2011

  • Расчетная схема, нагрузки и усилия, подбор сечения балки настила, проверка ее прочности и жесткости. Расчет геометрических характеристик поперечного сечения. Расчет планок колонны. Проверка общей и местной устойчивости главной балки, ее крепления к стене.

    курсовая работа [1,1 M], добавлен 20.12.2013

  • Анализ расчетной схемы сварной стержневой конструкции и определение типа поперечного сечения её балки. Расчет прочности балки и её высоты по условиям жесткости и максимального прогиба. Геометрические размеры сечения и прочность стержневой конструкции.

    курсовая работа [602,2 K], добавлен 12.09.2015

  • Расчет полки плиты по прочности. Определение полной нагрузки на поперечное ребро. Подбор продольной арматуры. Вычисление продольных ребер по первой группе предельных состояний. Прочность нормального сечения в зависимости от расположения нейтральной оси.

    курсовая работа [513,9 K], добавлен 19.06.2015

  • Особенности расчета многопустотной плиты по предельным состояниям. Определение усилий в ригеле поперечной рамы. Расчет прочности ригеля по сечениям, нормальным к продольной оси. Конструирование арматуры ригеля. Расчет сборной железобетонной колонны.

    курсовая работа [362,0 K], добавлен 22.01.2010

  • Физические и механические свойства древесины. Испытание механических свойств древесины на изгиб и на сжатие. Направление сил в деревянной конструкции, находящейся под нагрузкой. Расчет изгибаемого элемента прямоугольного сечения. Проверка на устойчивость.

    контрольная работа [283,4 K], добавлен 10.10.2013

  • Проектирование металлических конструкций для производственного здания. Расчеты стального настила и его балок, подбор сечения главной балки. Проверка прочности, общей устойчивости и прогиба сварной балки. Расчёт соединения поясов балки со стенкой.

    контрольная работа [1,3 M], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.