Инженерное оборудование, тепло-, газо-, водоснабжение территорий и зданий. Электрические сети и схемы электроснабжения
Проектирование подземных коммуникаций. Основы гидростатики и гидродинамики. Устройство и оборудование наружной водопроводной сети. Канализация и санитарная очистка поселений. Теплоснабжение, отопление и вентиляция. Системы электроснабжения объектов.
Рубрика | Строительство и архитектура |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 24.02.2015 |
Размер файла | 440,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Рис. 7. Схема электрической системы
Вместе с тем применяют понятия "питающие сети" и "распределительные сети".
4. Конструктивное выполнение сетей. Линии могут быть воздушными, кабельными и токопроводами. Подстанции могут быть открытыми и закрытыми.
Примерная схема относительно простой электроэнергетической системы приведена на рис. 7. Здесь электрическая энергия, вырабатываемая на двух электростанциях различных типов -- тепловой электростанции (ТЭС) и теплоэлектроцентрали (ТЭЦ) -- подводится к потребителям, удаленным друг от друга. Для того чтобы передать электроэнергию на расстояние, ее предварительно преобразовывают, повышая напряжения трансформаторами. У мест потребления электроэнергии напряжение понижают до нужной величины. Из схемы можно понять, что электроэнергия передается по воздушным линиям. Схема представлена в однолинейном изображении.
В действительности элементы системы, работающие на переменном токе, имеют трехфазное исполнение. Однако для выявления структуры системы и анализа ее работы нет необходимости в ее трехфазном изображении, вполне достаточно однолинейного.
10.2 Напряжение электрических сетей
Электрическое оборудование, применяемое в электрических системах, характеризуется номинальным напряжением. При номинальном напряжении электроустановки работают в нормальном и экономичном режимах. Номинальное напряжение сети совпадает с номинальным напряжением ее приемников. Первичные обмотки трансформаторов (независимо оттого, повышающие они или понижающие) играют роль потребителей электроэнергии, поэтому их номинальное напряжение принимают равным номинальному напряжению электроприемников.
Генераторы электрических станций и вторичные обмотки трансформаторов находятся в начале питаемой ими сети, поэтому их напряжения должны быть выше номинального напряжения приемников на величину потерь напряжения в сети. Обычно принимают номинальное напряжение вторичных обмоток транс форматора на 5 или 10% выше номинального для электроприемников и сети.
ЛЭП, предназначенные для распределения электроэнергии между отдельными потребителями в некотором районе и для связи энергосистем, могут выполняться как на большие, так и на малые расстояния и служить для передачи мощностей различных величин. Для дальних передач большое значение имеет пропускная способность, т.е. наибольшая мощность, которую можно передавать по ЛЭП с учетом всех ограничивающих факторов.
Для воздушных ЛЭП переменного тока можно приближённо считать, что максимальная мощность, которую они могут передать, примерно пропорциональна квадрату напряжения и обратно пропорциональна длине передачи. Стоимость сооружения можно принять пропорциональной величине напряжения. Поэтому в развитии передач электроэнергии на расстояние наблюдается тенденция к увеличению напряжения как главного средства увеличения пропускной способности. Со времени создания первых ЛЭП напряжение повышалось в 1,5--2 раза примерно каждые 15-20 лет. Рост напряжения давал возможность увеличивать протяженности ЛЭП и передаваемые мощности.
10.3 Структура потребителей и понятие о графиках их электрических нагрузок
В зависимости от выполняемых функций, возможностей обеспечения схемы питания от энергосистемы, величины и режимов потребления электроэнергии и мощности, особенностей правил пользования электроэнергией потребителей принято делить на следующие основные группы: промышленные и приравненные к ним, производственные, сельскохозяйственные, бытовые, обшественно-коммунальные (учреждения, организации, предприятия торговли и общественного питания и др.).
К промышленным потребителям приравнены следующие предприятия: строительные, транспорта, шахты, рудники, карьеры, нефтяные, связи, коммунального хозяйства и бытового обслуживания. Промышленные потребители являются наиболее энергоемкой группой потребителей электрической энергии.
Каждая из групп потребителей имеет определенный режим работы. Например, электрическая нагрузка от коммунально-бытовых потребителей с преимущественно осветительной нагрузкой отличается большой неравномерностью в различное время суток. Днем нагрузка небольшая, к вечеру она становится максимальной, ночью резко падает и к утру вновь возрастает. Электрическая нагрузка промышленных предприятий более равномерна в течение дня и зависит от вида производства режима рабочего дня и числа смен.
Наглядное представление о характере изменения электрических нагрузок во времени дают графики нагрузок. По продолжительности они могут быть суточными и годовыми. Если откладывать по оси абсцисс часы суток, а по оси ординат потребляемую в каждый момент времени мощность в процентах от максимального значения, то получим суточный график нагрузки.
10.4 Надежность электроснабжения городских потребителей
Под надежностью электроснабжения понимается способность системы электроснабжения обеспечивать электроприемники объекта бесперебойным питанием электроэнергией при регламентированном напряжении. Надежность питания в основном зависит от принятой схемы электроснабження, степени резервирования от дельных групп электроприемников, а также от надежной работы отдельных элементов системы электроснабженвя (линий, трансформаторов, электрических аппаратов и др.).
Не все электроприемники требуют одинаковой надежности электроснабжения. Например, электроснабжение электродвигателей пожарных насосов, дымоудаления и аварийного освещения лестничных клеток жилого многоэтажного дома должно быть более надежным, чем освещения квартир. Для некоторых электро приемников перерывы в электроснабжении недопустимы даже на сравнительно короткий срок, в то время как электроприемники других групп потребителей без ущерба для производства и опасности для жизни людей допускают перерывы.
В соответствии с ПУЭ все электроприемники по требуемой надежности электроснабжения разделяют на три категории.
К 1-й категории относятся электроприемники, перерыв в электроснабжении которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования, массовый брак продукции, расстройство сложного технологического процесса. Примером электроприемников этой категории в промышленных установках могут быть электроприемники насосных станций противопожарных установок, си стемы вентиляции в химически опасных цехах, водоотливных и подъемных установок в шахтах и т. п. В городских сетях к 1-й категории относят канализационные и водопроводные станции, АТС, радио и телевидение, а также лифтовые установки высотных зданий.
Электроприемники этой категории должны обеспечиваться электроэнергией от двух независимых источников питания, и перерыв электроснабжения при нарушении питания от одного из них может быть допущен только на время автоматического ввода резервного источника питания. допустимый интервал продолжительности нарушения электроснабжения для электроприемников 1-й категории составляет не более 1 мин.
Независимым источником питания называется источник, на котором сохраняется напряжение при исчезновении его на других источниках, например распределительные устройства двух центров питания (ЦП), две секции одного центра при условии, что каждая секция питается от отдельного источника в секции не связаны между собой.
При небольшой суммарной мощности электроприемников 1--й категории в качестве независимого источника питания могут быть использованы передвижные - или стационарные автоматизированные электростанции небольшой мощности с двигателями внутреннего сгорания, аккумуляторные батареи, которые устанавливаются непосредственно около объекта потребления электроэнергии.
Ко 2-й категории относятся электроприемники перерыв в электроснабжении которых связан с существенным недоотпуском продукции, массовым простоем людей, механизмов, промышленного транспорта, нарушением нормальной деятельности значительного количества городских жителей. Школы, детские учреждения и жилые дома до пяти этажей обычно относят к Приемникам 2-й категории.
В механических, металлообрабатывающих сборочных цехах ко 2-й группе можно отнести следующие электроприемники: электродвигатели станочного оборудования, подъемных устройств и вентиляторов, печи сопротивления, сварочные агрегаты и т.д. Электроприемники этой категории могут питаться от одного центра и допускают перерывы в электроснабжении на время, необходимое для включения резервного питания выездной оперативной бригадой энергосистемы или дежурным персоналом предприятия, допустимая продолжительность нарушения электроснабжения для электроприемников 2-й категории -- не более 30 мин.
При наличии Централизованного резерва допускается питание от Подстанции с одним трансформатором,
К 3-й категории относятся электроприемники, не подходящие под определения 1-й и 2-й категорий. К этой группе относятся электроприемники небольших коммунальных предприятий, вспомогательных цехов, ремонтных мастерских, складов неответственного назначения, цехов несерийного производства и др. Для этой категории электроприемников допускается перерыв на время ремонта или замены поврежденного элемента электроснабжения, но не более чем на 1 сут.
Для рационального и надежного построения схем электроснабжения необходимо правильно определить категории надежности отдельных групп электроприемников.
10.5 Электроснабжение городских предприятий
Электроснабжение предприятий в зависимости от их энергоемкости может осуществляться по одной или двум системам электрических сетей. Одна система (внешнее электроснабжение) состоит из воздушных или кабельных линий различных напряжений, по которым электроэнергия передается от районных подстанций энергосистемы до приемных пунктов (ГПП, ЦРП, РП и ТП) на предприятиях. Другая система (внутреннее электроснабжение) состоит из кабельных сетей напряжением 6-10 кВ, рас положенных на территории предприятия, по которым электро энергия передается от ГПП, ЦРП, РИ на цеховые ТП.
Центральный распределительный пункт (ЦРП) -- это распределительное устройство, расположенное на территории крупного предприятия, получающее питание непосредственно от ЦП на напряжение 6-10 кВ и распределяющее электроэнергию на то же напряжение между РП и ТП предприятия.
Главная понижающая станция (ГПП) -- трансформаторная подстанция, расположенная на территории крупного энергоемкого предприятия, получающая питание непосредственно от энергосистемы 35-110 кВ и выше и распределяющая электроэнергию на напряжение 6-10 кВ между РП и ТП предприятия.
Электроснабжение предприятий с небольшой установленной мощностью (на предприятии одно ТП) осуществляется по кабельным линиям от городских ЦП или РП напряжением 6-10 кВ. Электроснабжение средних энергоемких предприятий с несколькими цеховыми ТП осуществляется по двум системам сетей, которые состоят из кабельных линий, передающих электроэнергию от ЦП на ЦРП или РП, а последние -- на цеховые ТП предприятия. Для наиболее энергоемких предприятий со многими цеховыми ТП система внешнего электроснабжения состоит из воздушных линий напряжением 35-110 кВ и выше (глубокие вводы), которые передают электроэнергию непосредственно от энергосистемы на ГПП предприятия. Система внутреннего электроснабжения состоит из кабельных сетей напряжением 6-10 кВ, расположенных на территории предприятия, передающих электроэнергию от ЦП на РП и на цеховые ТП предприятия.
10.6 Выбор схемы распределения электроэнергии
Система электроснабжения может быть выполнена в нескольких вариантах, из которых выбирается оптимальный. При его выборе учитывают степень надежности, обеспечение качества электроэнергии, удобство и безопасность эксплуатации, возможность применения прогрессивных методов электромонтажных работ.
Основные принципы построения схем объектов:
* максимальное приближение источников высокого напряжения 35-220 кВ к электроустановкам потребителей с подстанция ми глубокого ввода, размещаемыми рядом с энергоемкими производственными корпусами;
* резервирование питания для отдельных категорий потребителей должно быть заложено в схеме и элементах системы электроснабжения.
Для этого линии, трансформаторы и коммутацонные устройства должны нести в нормальном режиме постоянную нагрузку, а в послеаварийном режиме после отключения поврежденных участков принимать на себя питание оставшихся в работе потребителей с учетом допустимых для этих элементов перегрузок; секционирование шин всех звеньев системы распределения энергии, а при преобладании потребителей 1-й и 2-й категорийустановка на них Устройств автоматического включения резерва (АВР).
Схемы строятся по уровневому принципу. Обычно применяются два-три уровня. Первым уровнем распределения электроэнергии является сеть между источником питания объекта и подстанцией глубокого ввода (ПГВ), если распределение производится при напряжении 110-220 кВ, или между ГПП п РП напряжением 6-10 кВ, если распределение происходит на напряжении 6-10кВ
Вторым уровнем распределения электроэнергии является сеть между РП и ТП (или отдельными электроприемником высокого напряжения).
На небольших и некоторых средних объектах чаще применяется только один уровень распределения энергии -- между центром питания от системы и пунктами приема энергии (ТП или высоковольтными электроприемниками).
10.7 Электрические сети внутри объекта на напряжении 6-10 кВ
Электрические сети внутри объекта выполняются по магистральным, радиальным или смешанным схемам.
Радиальные схемы распределения электроэнергии применяются в тех случаях, когда пункты приема расположены в различных направлениях от центра питания. Они могут быть двух- или одноступенчатыми
На небольших объектах и для питания крупных сосредоточенных потребителей используются одноступенчатые схемы. Двухступенчатые радиальные схемы с промежуточным РП выполняются для крупных и средних объектов с подразделениями расположенными на большой территории. При наличии потребителей 1-й и 2-й категорий РП и ТП питаются не менее чем по двум раздельно работающим линиям. Допускается питание электроприемников 2-й категории по одной линии, состоящей не менее чем из двух кабелей.
При двух рансформаторных подстанциях каждый трансформатор питается отдельной линией по блочной схеме: линия -- трансформатор. Пропускная способность блока в послеаварийном режиме рассчитывается исходя из категорийности питаемых потребителей.
При однотрансформаторных подстанциях взаимное резервирование питания небольших групп приемников 1-й категории осуществляется при помощи кабельных или шинных перемычек на вторичном напряжении между соседними подстанциями.
Вся коммутационная аппаратура устанавливается на РП или ГПП, а на питаемых от них ТП предусматривается преимущественно глухое присоединение трансформаторов. Иногда трансформаторы ТП присоединяются через выключатель нагрузки и разъединитель.
Радиальная схема питания обладает большой гибкостью и удобством в эксплуатации, так как повреждения и ремонт одной линии влияет на работу только одного потребителя.
Магистральные схемы напряжением 6-10 кВ применяются при линейном размещении подстанций на территории объекта, когда линии от центра питания до пунктов приема могут быть проложены без значительных обратных направлений. Магистральные схемы имеют следующие преимущества: лучшая загрузка кабелей при нормальном режиме, меньшее число камер на распределительной станции. К недостаткам следует отнести усложнение схем ком мутации при соединении ТП и одновременное отключение нескольких потребителей, питающихся от магистрали при ее повреждении.
Число трансформаторов, присоединяемых к одной магистра ли, обычно не превышает двух-трех при мощности трансформаторов 1000-2500 кВА и четырех-пяти при мощности трансформаторов 250-630 кВА.
Магистральные схемы выполняются одиночными и двойными, с односторонним и двухсторонним питанием.
Смешанные схемы питания, сочетающие в себе принципы радиальных и магистральных систем распределения электроэнергии, имеют наибольшее распространение на крупных объектах. Так, на первом уровне обычно применяются радиальные схемы. Энергия от РП к цеховым ТП п двигателям высокого напряжения на таких объектах распределяется как по радиальным, так и по магистральным схемам.
Степень резервирования определяется категорийностью потребителей. Так, потребители 1-й категории должны обеспечиваться питанием от двух независимых источников. В качестве второго источника питания могут быть использованы не только секционированные сборные шины электростанций или подстанций, но и перемычки в сетях на низшем напряжении, если они подают питание от ближайшего распределительного пункта, имеющего независимое питание с АВР.
Для особо ответственных потребителей, отнесенных к особой группе 1-й категории, должно предусматриваться электроснабжение от трех независимых источников. Каждый из двух основных источников должен полностью обеспечивать питание потребителя, а третий независимый источник -- иметь минимальную мощность для безаварийного останова производства. Третьим независимым источником может быть, например, дизельная станция, которая при отключении одного из двух независимых источников включается на холостой ход и находится в режиме "горячего" резерва. Во избежание перегрузки третьего источника пре дусматривается отключение остальных потребителей перед его вводом.
11. Конструкторское выполнение электрических сетей
11.1 Общие сведения
Для выполнения электрических сетей применяются неизолированные (голые) и изолированные провода, кабели, токопроводы.
Голые провода не имеют изолирующего покрова. Их можно прокладывать только в условиях, исключающих случайные прикосновения к ним людей, что может привести к замыканию. Наибольшее распространение голые провода получили на воздушных линиях, расположенных на открытом воздухе. Провода подвешиваются к опорам при помощи изоляторов и арматуры.
Большинство сетей напряжением до 1 кВ внутри помещений выполняются изолированными проводами, т.е. проводами, имеющими изолирующие, а иногда защитные покровы.
Кабелем называется многопроволочный провод или несколько скрученных вместе изолированных проводов при помещении их в общую герметическую оболочку. Силовые кабели предназначены для прокладки в земле, под водой, на открытом воздухе и внутри помещений.
Токопроводом называют устройство, предназначенное для канализации электроэнергии при открытой прокладке в производственных и электротехнических помещениях, по опорным конструкциям, колоннам и фермам зданий. К токопроводам относятся шинные магистрали различного исполнения, которые называются шинопроводами.
Материалами для токоведущих частей проводов и кабелей являются медь, алюминий, их сплавы и сталь.
Медь -- один из лучших проводников электрического тока, и поэтому необходимые технико-экономические показатели (потери электроэнергии) можно получить при меньших сечениях медных проводов, чем при проводах из других материалов. Медные провода хорошо противостоят влиянию атмосферных воздействий и большинству химических реагентов, находящихся в воздухе.
Алюминий -- худший проводник, чем медь. Его проводимость примерно в 1,6 раза меньше проводимости меди, однако проводимость алюминия все же достаточно высока, чтобы его можно было использовать в качестве токопроводящего материала для проводов и кабелей. действию атмосферных явлений алюминий противостоит так же хорошо, как и медь.
Стальные провода используются в тех случаях, когда требуется передать небольшую мощность и, следовательно, имеют небольшое сечение, например в сельских сетях. Стальные провода с большим сопротивлением на разрыв используются для устройства переходов воздушных линий через широкие реки, ущелья при длине пролета более 1 км.
Активное и реактивное сопротивления стальных проводов значительно выше, чем проводов из цветного метала, поэтому область их применения ограничена. Существенный недостаток стальных проводов -- высокая коррозия. Для повышения коррозионной стойкости стальные провода изготовляют из оцинкованной проволоки.
11.2 Воздушные линии
Воздушной линией электропередачи (ВЛ или ВЛЭП) называют устройство для передачи электроэнергии по проводам. Воздушные линии состоят из трех элементов: проводов, изоляторов, опор. Расстояние между двумя соседними опорами называют длиной пролета или пролетом линии L (рис. 8).
Рис. 8. Пролет линии на опорах с подвесными изоляторами
гидростатика канализация отопление электроснабжение
Провода к опорам подвешиваются свободно, и под влиянием собственной массы провод в пролете провисает по цепной линии.
Высота опоры Н при горизонтальном расположении проводов определяется габаритным размером h и максимальной стрелой провеса f При креплении проводов на гирляндах изоляторов высота опоры увеличивается на длину гирлянды .
Расстояние между соседними проводами фаз ВЛ обеспечивает требуемый изоляционный промежуток и зависит в основном от ее номинального напряжения. Для линий напряжением 6-10 кВ это расстояние в среднем составляет 1 м; 1 10 кВ - 4 м; 220 кВ -- 7 м; 500 кВ -- 12 м; 750 кВ -- 15 м. На двухцепных опорах расстояния между проводами разных цепей берутся такими, чтобы были возможны ремонтные работы на одной из цепей без отключения второй.
Длину пролета линии L обычно определяют из экономических соображений. С ее увеличением возрастает стрела провеса, а следовательно, и высота опор, что увеличивает их стоимость. Вместе с тем с увеличением длины пролета уменьшается число опор и снижается стоимость изоляции, для линий напряжением до 1 кВ длина пролета обычно составляет 30- 75 м, для линий напряжением 110 кВ -- 150-200 м при высоте опор с горизонтальным расположением проводов 13-14 м, для линий напряжением 220-500 кВ длина пролета составляет 400-450 м при высоте опор25-30 м.
Над проводами воздушных линий для их защиты от атмосферных перенапряжений подвешиваются грозозащитные тросы. Обычно используют тросы из сталеалюминевых проводов. При подвеске на изоляторах тросы могут быть использованы в качестве проводов связи.
Рассмотрим элементы воздушных линий.
Провода воздушных линий. Провода воздушных линий чаще всего неизолированные (голые). Разнообразные условия работы ВЛЭП определяют необходимость иметь разные конструкции проводов.
Однопроволочньге провода, как говорит само название, выполняют из одной проволоки. Многопроволочные провода из одного металла состоят из нескольких свитых между собой проволок. Многопроволочные провода имеют по сравнению с однопроволочными ряд существенных преимуществ: большую гибкость, что обеспечивает большую сохранность и удобство монтажа; высокие сопротивления на разрыв могут быть получены только для прово лок относительно небольшого диаметра. Однопроволочньге провода изготовляют сечениями 4, 6, 10 мм многопроволочные -- сечением от 10 мм
Желание повысить механическую прочность привело к выпуску алюминиевых проводов со стальным сердечником, называемых сталеалюминиевыми. Сердечник провода выполняется из одной или нескольких свитых стальных оцинкованных проволок.
Для удобства записей провода обозначаются марками: М -- медь, А -- алюминий, С -- сталь. Б бронза.
Сталеалюминевые провода бывают следуюших марок: АС, имеющие отношение сечений алюминия и стали 5,5-6,0; АСО (облегченной конструкции), имеющие отношение сечений алюминия и стали 7,5-8,0; АСУ (усиленной конструкции), имеющие отношение сечений алюминия и стали около 4,5.
Наиболее целесообразно применение проводов АСО.
Для обозначения провода рядом с маркой дается его номинальное сечение, например: А-50 (алюминиевый провод сечением 50 мм2) Номинальным сечением называется округленная величина фактического сечения провода.
Изоляторы воздушных линий. Применяются следующие типы изоляторов: фарфоровые штыревые типа ШС--б, ШС-10 -- для линий напряжением 6-10 кВ; фарфоровые штыревые типа Ш--20, ШД-35 -- для линий напряжением 20-35 кВ; подвесные фарфоровые или стеклянные изоляторы ПФ и ПС -- для линий напряжением 35 кВ и выше.
Изоляторы типа ШД и ШС крепятся к опорам на крюках и штырях. При напряжении 110 кВ и выше применяются только подвесные изоляторы, которые собираются в гирлянды.
Гирлянды подвесных изоляторов бывают поддерживающие и натяжные. Поддерживающие изоляторы располагаются вертикально на промежуточных опорах, натяжные гирлянды используются на анкерных опорах и находятся почти в горизонтальном положении. На ответственных участках ЛЭП применяют сдвоенные гирлянды. Число изоляторов в гирлянде зависит от напряжения ЛЭП, эффективной и нормированной длины пути утечки и материала опоры (требуемого уровня изоляции). На деревянных и железобетонных опорах при напряжении 35 кВ гирлянда состоит из двух подвесных изоляторов, при напряжении 110 кВ -- из шести изоляторов, при напряжении 220 кВ -- из 12 изоляторов. На металлических опорах устанавливают на один-два изолятора больше.
На воздушных линиях напряжением выше 220 кВ для зашиты гирлянд от повреждений при возникновении дуги короткого замыкания применяют защитные рога и кольца.
Опоры воздушных линий. Воздушные ЛЭП прокладываются на деревянных, металлических и железобетонных опорах.
По назначению опоры бывают промежуточными, анкерными.угловыми и концевыми. Опоры могут быть одноцепными и двух- цепными, с тросом и без него.
Наиболее распространенными на линиях являются промежуточные опоры. В равнинных местностях их число составляет 80... 90 % от общего числа опор при нормальных режимах работы.
Анкерные опоры устанавливают через определенное число пролетов (через каждые 3-5 км). Они имеют жесткое закрепление проводов и рассчитаны на обрыв всех проводов. Провода линий с подвесными изоляторами крепятся на анкерных опорах натяжными гирляндами, провода одной и той же фазы смежных с опорой пролетов соединены петлями проводов.
При подходах к подстанциям устанавливают концевые опоры. Они являются ближайшими к подстанциям и выполняются жесткими, провода на них крепятся, как и на анкерных опорах, натяжными гирляндами изоляторов.
11.3 Кабельные линии
Кабель -- готовое заводское изделие, состоящее из изолированных токоведущих жил, заключенных в герметичную защитную оболочку, которая может быть защищена от механических повреждений броней.
Силовые кабели выпускаются на напряжение до 35 кВ, имеют от одной до четырех медных или алюминиевых жил сечениями 1- 2000 км )Жилы сечением до 16 мм -- однопроволочные, жилы большего сечения -- многопроволочные. По форме сечения жилы одножильных кабелей круглые, а многожильных -- сегментные или секторные. Преимущественно применяются кабели с алюминиевыми жилами. Кабели с медными жилами используют редко: для перемещающихся механизмов, во взрывоопасных помещениях.
Изоляция жил выполняется из кабельной бумаги, пропитанной маслоканифольным составом, резины, поливинилхлорида и полиэтилена. Кабели с бумажной изоляцией предназначены для прокладки на вертикальных и крутонаклонных трассах, имеют обедненную пропитку. Герметичная защитная оболочка кабеля предохраняет изоляцию от вредного действия влаги, газов, кислот и механических повреждений. Оболочки делаются из свинца, алюминия, резины и поливинилхлорида. В кабелях напряжением выше 1 кВ для повышения электрической прочности между изолированными жилами и оболочкой прокладывают слой по ясной изоляции.
Броня кабеля выполняется из стальных лент или стальных оцинкованных проволок. Поверх брони накладывают покровы из кабельной пряжи (джута), пропитанной битумом и покрытой меловым составом. При прокладке кабеля в помещениях, каналах и тоннеля джутовый покров во избежание возможного пожара снимают.
Кабели на напряжение 110 кВ и выше обычно выполняют газо- или маслонаполненными, одножильными с покрытием стальной броней или асфальтированными, для прокладки в земле или на воздухе. Масло в кабелях находится под давлением.
Обозначения марок кабелей соответствует их конструкции. Кабели с бумажной изоляцией и алюминиевыми жилами имеют следующие марки: ААБ, ААГ, ААП, ААШв, АСБ, АСБГ, АСПГ, АСШВ. Первая буква обозначает материал жил (А -- алюминий, отсутствие впереди в маркировке буквы А означает наличие медной жилы), вторая -- материал оболочки (А -- алюминий, С -- свинец). Буква Б означает, что кабель бронирован стальными лентами; буква Г -- отсутствие наружного покрова; Шв -- наружный покров выполнен в виде шланга из поливинилхлорида.
Изоляция обозначается следующим образом: Р -- резиновая, П -- полиэтиленовая, В -- поливинилхлоридная, отсутствие обозначения -- бумажная с нормальной пропиткой.
В качестве брони используются следующие обозначения: Б -- стальные ленты, П -- плоская оцинкованная стальная проволока, К -- круглая оцинкованная стальная проволока.
Например, буквами СБШв маркируется кабель с медными жилами в свинцовой оболочке с наружным покровом в виде шланга из поливинилхлорида.
Маркировка маслонаполненных кабелей начинается с буквы М, вторая буква обозначает тип давления масла: Н -- низкое, В -- высокое.
Маркировка контрольных кабелей начинается с буквы К.
В маркировке кабеля после буквенных обозначений указывается его номинальное напряжение, кВ, число жил и сечение одной жилы. Например, маркировка кабеля АВПБГ-- 1 --Эх 50 + 1 х 25 означает, что кабель с тремя алюминиевыми жилами по 50 мм и четвертой -- сечением 25 мм полиэтиленовой изоляцией на напряжение 1 кВ, с оболочкой из полихлорвинила, бронированный стальными лентами без наружного противокоррозийного покрытия.
Отдельные отрезки кабелей на напряжение до 1 кВ соединяются чугунными муфтами, выше 1 кВ -- свинцовыми муфтами, залитыми специальным составом.
Концы кабелей разделываются, а для лучшего контакта с шинами распределительного устройства на концы жил напаивают или приваривают наконечники. Для предотвращения попадания в кабель влаги, кислот и других реагентов, ухудшающих изоляцию, концы кабеля герметически заделывают.
11.4 Способы прокладки кабелей напряжением 6-10 кВ
Передача электроэнергии потребителям в пределах жилых районов осуществляется подземными кабельными линиями, которые прокладывают на полосе между красной линией и линией застройки. Прокладка подземных силовых кабельных линий ведется, как правило, в общих траншеях. В случае пересечений с магистральными трассами и железными дорогами, при недостатке свободного места в поперечном профиле улицы и в некоторых других случаях прокладку силовых кабелей допускается вести в общих коллекторах, причем силовые кабели должны находиться в коллекторе выше других инженерных сетей.
Кабельные прокладки требуют меньших площадей по сравнению с воздушными и могут применяться при любых природных и атмосферных условиях. Кабельные прокладки напряжением 6-10 кВ применяются на предприятиях небольшой и средней мощности и в городских сетях.
Трассу для кабельных линий выбирают кратчайшую с учетом наиболее дешевого обеспечения их защиты от механических повреждений, коррозии, вибраций, перегрева и от повреждений при возникновении электрической дуги в соседнем кабеле.
Прокладка кабеля может осуществляться несколькими способами: в траншеях, каналах, туннелях, блоках, на галереях и эстакадах. Внутри кабельных сооружений и производственных помещений предусматривают прокладку кабелей на стальных конструкциях различного исполнения: настенных, в лотках, коробах.
Способ и конструктивное выполнение прокладки выбирают в зависимости от числа кабелей, условий трассы, наличия или отсутствия взрывоопасных газов тяжелее воздуха, степени загрязненности почвы, требований эксплуатации, экономических факторов.
Рис. 9
Прокладка кабелей в траншеях. Наиболее простой является про кладка кабелей в траншеях (рис. 9). Она экономична и по расходу цветного металла, так как допустимые токи на кабеле больше (примерно в 1,3 раза) при прокладке в земле, чем в воздухе. Однако по ряду причин этот способ не получил широкого применения на промышленных предприятиях.
Прокладка в траншеях не применяется:
* на участках с большим числом кабелей;
* при большой насыщенности территории подземными и наземными технологическими и транспортными коммуникациями и др. сооружениями;
* на участках, где возможно разлитие горячего металла или жидкостей, разрушающе действующих на оболочку кабелей
* в местах, где возможны блуждающие токи опасных значений, большие механические нагрузки, размытие почвы и т.п.
Опыт эксплуатации кабелей, проложенных в земляных траншеях, показал, что при разрытиях кабели часто повреждаются. При прокладке в одной траншее шести кабелей и более вводится очень большой снижающий коэффициент на допустимую токовую на грузку. Поэтому не следует прокладывать в одной траншее более шести кабелей. При большом числе кабелей предусматривают две рядом расположенные траншеи с расстоянием между ними 1,2 м.
Земляная траншея для укладки кабелей должна иметь глубину не менее 800 мм, на дне траншеи создают мягкую подушку толщиной 100 мм из просеянной земли. Глубина заложения кабеля должна быть не менее 700 мм. Ширина траншеи зависит от числа кабелей, прокладываемых в ней. Расстояние между несколькими кабелями напряжением до 10 кВ должно быть не менее 100 мм. Кабели укладывают на дно траншеи в один ряд. Сверху кабели засыпают слоем мягкого грунта. для защиты кабельной линии напряжением выше 1 кВ от механических повреждений ее по всей длине поверх верхней подсыпки покрывают бетонными плитами или кирпичом, а линии напряжением до 1 кВ -- только в местах вероятных разрытий.
Трассы кабельных линий прокладывают по непроезжей части на расстоянии не менее: 600 мм от фундаментов зданий, 500 мм до трубопроводов, 2000 мм до теплопроводов.
Прокладка кабелей в каналах. Прокладка кабелей в железобетонных каналах может быть наружной и внутренней (рис. 10). Этот способ более дорогостоящий, чем в траншеях. При внецеховой канализации на неохраняемой территории каналы прокладывают под землей на глубине 300 мм и более. Глубина канала -- не более 900 мм. На участках, где возможно разлитие расплавленного металла, жидкостей или других веществ, разрушительно действующих на оболочки кабелей, кабельные каналы применять нельзя.
Рис. 10
Прокладка кабелей в туннелях.
Прокладка в туннелях удобна и надежна в эксплуатации, но она оправданна лишь при большом числе (более 30-40) кабелей, идущих в одном направлении, например на главных магистралях, для связей между главной подстанцией и распределительной и в других аналогичных случаях.
Рис. 11. Прокладка кабелей в туннеле
Туннели бывают проходные высотой 2100 мм (рис. 11) и полупроходные высотой 1500 мм. Полупроходные туннели допускаются на коротких участках (до 10 м) в местах, затрудняющих про хождение туннелей нормальной высоты. Глубина заложения туннеля от верха покрытия принимается равной не менее 0,7 м.
Прокладка кабелей в блоках. Прокладка кабелей в блоках надежна, но наименее экономична как по стоимости, так и по пропускной способности кабелей. Она применяется только в случаях, если по местным условиям недопустимы более простые способы прокладки, а именно: при блуждающих токах, агрессивных грунтах, вероятности разлива по трассе металла или агрессивных жид костей и др. Блочную канализацию кабелей следует переводить в траншею или канал во всех случаях, когда это возможно по условиям трассы. Тип кабельных блоков выбирается в зависимости от уровня грунтовых вод, их агрессивности и присутствия блуждающих токов.
Прокладка кабелей на галереях и эстакадах. При больших потоках кабелей целесообразно вместо туннелей применять открытые эстакады и закрытые галереи, а также использовать стены зданий, в которых нет взрыво- и пожароопасных производств.
Прокладка кабелей на эстакалах и в галереях целесообразна на химических, нефтехимических, металлургических и других заводах, территории которых насыщены различными подземными коммуникациям на предприятиях с большой агрессивностью почвы; в местах, где возможно значительное скопление при под земных способах прокладки (каналы и туннели) взрывоопасных газов тяжелее воздуха.
12. Устройство осветительных и силовых сетей общественных, жилых зданий и предприятий
12.1 Основные положения и определения
При проектировании осветительных и силовых сетей следует стремиться к варианту, удовлетворяющему всем техническим требованиям: надежности действия сетей, удобству и безопасности эксплуатации, экономичности. Важнейшим условием надежности электрических сетей и оборудования, а также безопасности их обслуживания является правильный их выбор в зависимости от технологического назначения помещений, в которых они должны работать. Особенно важно это при выборе сетей и электрооборудования для пожаро- и взрывоопасных помещений.
Неблагоприятные условия окружающей среды (пыль, влажность, химически активная среда, высокая температура и т.п.) могут повредить изоляцию проводов сети и электрооборудования и привести к пробою, а это нередко вызывает короткие замыкания и выход из строя электрической сети и электрооборудования, а также поражение обслуживающего персонала электрическим током. для того чтобы правильно выбрать для каждого помещения электрическую проводку и электрооборудование, необходимо определить, к какой категории относится то или иное помещение (например, к категории сухих, влажных, особо сырых, жарких, пыльных, с химически активной средой, пожаро- или взрывоопасных).
Затем нужно согласно требованиям ПУЭ выбрать для каждого помещения соответствующую марку проводов и кабелей, способ прокладки сетей, а также наполнение осветительной арматуры и электрооборудования.
12.2 Выбор напряжений сетей
Для питания стационарных силовых электроприемников и светильников общего освещения применяют трехфазные четырехпроводные сети с системой напряжения 380/220 В. Такая система позволяет одновременно питать электроэнергией силовые (на линейное напряжение) и осветительные (на фазное напряжение) электроприемники при глухозаземленных нейтралях трансформаторов.
Для питания мощных силовых электроприемников, например электродвигателей компрессоров холодильных установок с единичной мощностью 160 кВт и более, можно принять напряжение 6О В, 6 и 10 кВ.
Система 380/220 В имеет преимущества по сравнению с системой 220/127 В: экономия цветного металла примерно на 40%, увеличение пропускной способности сети, уменьшение потерь энергии.
Напряжение не выше 220 В применяют в помещениях без повышенной опасности поражения током, для питания светильни ков общего освещения при любой высоте их установки и в помещениях с повышенной опасностью и особо опасных при высоте установки более 2,5 м от уровня пола. Такое же напряжение допускается для питания светильников местного стационарного освещения в помещениях без повышенной опасности.
В помещениях с повышенной опасностью и особо опасных, если высота установки светильников общего освещения с лампами накаливания меньше 2,5 м от уровня пола при питании их напряжением 220 В, должны применяться светильники специальной конструкции, исключающие доступ к лампе без инструмента, с подводом проводов в металлических трубах и таким же вводом их в светильник. Без таких светильников применяют напряжение не выше 36 В. Это требование можно не выполнять, если светильники с лампами накаливания и люминесцентными недоступны для посторонних лиц (закрытые помещения) и обслуживаются квалифицированным персоналом.
Для питания светильников местного стационарного освещения и ручных (ремонтное освещение) в помещениях с повышенной опасностью и особо опасных используют напряжение не выше 36 В, а в отдельных случаях для питания ручных светильников (работы в металлических помещениях) -- не выше 12 В.
Питание силовых электроприемников и источников света может осуществляться от общих или раздельных трансформаторов. Питание от общих трансформаторов имеет ряд преимуществ по сравнению с питанием от раздельных трансформаторов. С равными электрическими нагрузками при общем питании число трансформаторов меньше, а следовательно, и затраты на строительство подстанций меньше. Упрощается электрическая схема каждой подстанции, вследствие чего сокращается количество устанавливаемой аппаратуры, уменьшаются ее габаритные размеры и удешевляются строительные и монтажные работы. Однако не всегда такое питание силовой и осветительной нагрузок возможно. Например, при пуске мощных электродвигателей и сварочных трансформаторов вследствие больших пусковых токов в питающей сети и трансформаторе кратковременно повышаются потери напряжения, а это приводит к кратковременным снижениям напряжения у источников света. Резкие колебания напряжения вызывают изменения светового потока, в результате возникает частое мигание, которое вредно действует на зрение. Питание силовой и осветительной нагрузок общественных и жилых зданий и предприятий осуществляют от общих трансформаторов.
12.3 Вводные и вводно-распределительные устройства
Для присоединения внутренних электрических сетей электро- установок к внешним питающим кабельным линиям, а также для распределения электрической энергии и защиты от перегрузок и короткого замыкания отходящих линий служат вводные (ВУ) или вводно-распределительные (ВРУ) устройства. Вводное устройство также предназначается для разграничения ответственности за эксплуатацию электрических сетей между персоналом городской сети, а персоналом потребителя. За вводным устройством электрические сети находятся в ведении потребителя.
При питании по одному кабелю небольших по мощности электроустановок, относящихся к 3-й категории бесперебойности электроснабжения, в качестве ВУ применяют вводные трехполюсные ящики типа БПВ на токи 100, 250, 350 А с одним блоком "предохранители ПН-2 и выключатель". Также используются ящики Я 3700 с одним трехполюсным автоматом серии А3700 на токи 50-600 А. Для трех- и пятиэтажных жилых домов в качестве ВУ используют шкафы серии ШВ.
Для общественных зданий, жилых домов повышенной этажности в небольших предприятий применяют ВРУ, выполненные в виде щитов одно- или двустороннего обслуживания. Любое ВРУ комплектуется из вводных и распределительных панелей или шкафов заводского изготовления. В крупных городах предприятия электромонтажных организаций разрабатывают и применяют свои конструктивные серии ВРУ. В Москве используют единую серию ВРУ-УВР 503, которая комплектуется из отдельных панелей одностороннего обслуживания и состоит из вводных и распределительных панелей.
Вводные панели изготовляют следующих видов: ВР, ВП, ВА. Аппаратура вводных панелей рассчитана на номинальные токи 250, 400, 630 А. На вводных панелях ВР-250 на токи 250 А устанавливают предохранители ПН-2-250, рубильник Р или рубильник переключатель серии РП. На вводных панелях ВП-400 и ВП-630 соответственно устанавливают рубильники-переключатели серии РБ а предохранители ПН-2-б30. На панелях ВА устанавливают автоматический выключатель серии А3726 на номинальный ток 25 А.
Распределительные панели изготовляют следующих видов: распределительные с автоматическими выключателями на отходящих линиях, распределительные с автоматикой управления лестничным и коридорным освещением, распределительные с отделением учета.
В распределительных панелях устанавливают автоматические выключатели серий А37, АЕ2О, АЕ1ООО и АП5ОБ, магнитные пускатели ПМЛ, промежуточные реле РПЛ и пакетные выключатели ПВ, ПП.
При компоновке ВРУ вводные и распределительные панели одного ввода располагаются рядом. Части ВРУ выпускаются заводом изготовителем в виде отдельных панелей с вмонтированными аппаратами и приборами, а также соединительными проводниками.
Благодаря большому разнообразию схем вводных и распределительных панелей ВРУ-УВР-8503 по заданным электрическим схемам питания внутренних сетей зданий можно скомпоновать любое ВРУ.
На крупных предприятиях, потребляющих значительные мощности, в качестве вводно-распределительных устройств применяют вводные и распределительные шкафы и панели заводского изготовления серии ЩО-70. Их используют также на подстанциях в распределительных устройствах напряжением 0,4 кВ. Конструктивно они могут быть одностороннего или двустороннего обслуживания. На вводных панелях установлены рубильники с предохранителями или автоматы серии АВМ, а на распределительных рубильники с предохранителями или автоматы серии А37.
Панели щитов для одностороннего обслуживания называют панелями присланного типа и устанавливают непосредственно у стены электропомещения. Их обслуживают с лицевой стороны. Панели щитов двустороннего обслуживания называют отдельно- или свободностоящими и располагают на расстоянии не менее 0,8 м от стены.
Щиты одностороннего обслуживания требуют меньшей площади для установки, чем щиты двустороннего обслуживания. Кроме того, они более экономичны. Однако щиты двустороннего обслуживания удобнее в эксплуатации.
Кроме щитов панельного типа заводы изготовляют вводно-распределительные и распределительные щиты, собираемые из от дельных блоков: предохранитель, выключатель, предохранитель - выключатель, автомат, счетчик.
Помещения вводно-распределительных устройств (электрощитовые) располагают в удобных местах, куда имеет доступ только обслуживающий персонал. Через электрощитовые не должны проходить газопроводы, а другие трубопроводы должны быть без соединений, вентилей, задвижек. Допускается устанавливать ВРУ не в специальных помещениях, а на лестничных клетках, в коридорах, но при этом шкафы должны запираться, рукоятки аппаратов управления не должны выводиться наружу или должны быть съемными. Не допускается устанавливать ВРУ в сырых помещениях и в местах, подверженных затоплению.
12.4 Схемы построения осветительных и силовых сетей
Электрическая энергия от ВРУ до электроприемников распределяется по сетям, имеющим различные схемы построения. Выбор схемы зависит от территориального расположения приемников электрической энергии относительно ВРУ, а также относительно друг друга, величины установленной мощности отдельных электроприемников и надежности электроснабжения.
Правильно составленная схема должна обеспечить простоту и удобство эксплуатации; быть экономичной по капитальным затратам на ес сооружение, расходу цветных металлов, эксплуатационным расходам и потерям электроэнергии. Кроме того, схема питания должна допускать применение индустриальных и скоростных методов монтажа.
По назначению осветительные и силовые сети делятся на питающие и распределительные.
Питающей сетью называют линии от встроенных в здание трансформаторных подстанций или КТП, а также от ВРУ здания до групповых щитков освещения и силовых распределительных пунктов, распределительной -- линии, идущие от силовых распределительных пунктов, а групповой линии от групповых щитков освещения до светильников.
Каждую питаюшую линию, отходящую от главного распределительного щита (ГРЩ) или от ВРУ здания, можно выполнять по схемам радиальной, магистральной и радиально-магистральной (смешанной). При питании от радиальной линии электрическая нагрузка присоединяется только в конце линии в точке питания, а при питании от магистральной линии отдельные нагрузки присоединяются на всем ее протяжении.
Радиальная схема обеспечивает высокую надежность питания отдельных потребителей, так как при аварии в питающей линии прекращает работу только один или несколько электроприемников, в то время как остальные электроприемники других линий продолжают нормально действовать. В осветительных сетях радиальная схема питания почти не применяется из-за высокой стоимости сооружения и значительного расхода цветного металла.
В силовых сетях радиальные линии применяют для непосредственного питания отдельных мощных электроприемников, находящихся друг от друга на большом расстоянии, или отдельных силовых распределительных пунктов, питающих электроприемники небольшой мощности, которые расположены отдельными группами.
Основным требованием при построении осветительной сети является обеспечение бесперебойности питания, так как внезапное прекращение освещения может нарушить производственный процесс и привести к несчастным случаям. Правильно составленная схема питания должна либо исключать случаи аварийного прекращения освещения, либо свести их до минимума. Выполнения указанных требований достигают соответствующим построением схемы осветительной сети. Согласно Правилам устройства электротехнических установок на многих предприятиях, а также в общественных зданиях кроме рабочего освещения должно быть предусмотрено и аварийное, обеспечивающее продолжение работы или безопасную эвакуацию людей из здания.
Осветительная установка обеспечивается более надежной схемой питания, если на объекте расположены две однотрансформаторные подстанции. В этом случае аварийное освещение питается от самостоятельных линий разных подстанций. Этим самым сохраняется один из видов освещения даже при выходе из строя одной из подстанций. Такая схема питания рабочего и аварийного освещения называется перекрестной. Если каждая подстанция питается от разных центров питания, то данную схему можно использовать для питания аварийного освещения с целью продолжения работы.
В больших городах для питания общественных, жилых зданий и предприятий используют двухтрансформаторные подстанции с автоматическим включением резерва (АВ Р) на стороне напряжением 380 В. При питании трансформаторов от разных центров питания можно также использовать аварийное освещение для продолжения работы.
Питающие силовые линии преимущественно выполняют по магистральной схеме. Радиальные линии применяют только для присоединения мощных электроприемников, а также потребите лей, требующих повышенной надежности электроснабжения. Магистральные питающие линии применяют, когда электроприемники небольшой мощности равномерно расположены по всей площади производственного помещения, В этом случае электроприемники в зависимости от их территориального расположения группами присоединяют к силовым распределительным пунктам, а последние -- к линии. На вводе каждого силового пункта устанавливают аппарат управления (рубильник или автомат), отключаюший его при аварии или ремонте без нарушения работы остальных пунктов.
Конструктивно магистральные линии и распределительные сети выполняют кабелем или проводами, а в некоторых случаях -- шинопроводами (токопроводами). Применение проводки того или иного вида определяется характером производства, мощностью и расположение технологических потребителей.
В небольших ремонтных мастерских, на коммунальных предприятиях, предприятиях общественного питания, бытового обслуживания, в которых технологический процесс производства меняется редко и оборудование, как правило, перемещается редко, магистральные линии, питаюшие распределительные пункты, и распределительную сеть выполняют кабелями или проводами в трубах, проложенных в полу и по стенам. В цехах предприятий, где станки и механизмы расположены по всей площади рядами и часто перемещаются вследствие изменения технологического процесса, в качестве питающих магистральных линий и распределительной сети применяют магистральные и распределительные закрытые шинопроводы заводского производства.
...Подобные документы
Проектирование генерального плана. Объемно-планировочное решение офиса туристической фирмы. Основные черты архитектурного стиля. Инженерное оборудование: отопление, вентиляция, кондиционирование воздуха; водоснабжение и канализация; связь и сигнализация.
контрольная работа [16,7 K], добавлен 21.01.2011Водоснабжение, канализация и санитарно-техническое оборудование (системы жизнеобеспечения зданий): разработка для 5-этажного здания квартирного типа. Системы внутреннего водоснабжения здания и внутреннего водоотведения. Расчет дворовой сети водоотведения.
курсовая работа [494,6 K], добавлен 11.11.2014Проект сбора бытовых и производственных сточных вод, их канализация, очистка. Выбор схемы и системы водоотведения, трассировка сети. Расчёт расходов городских стоков; устройство трубопроводов насосных станций перекачки сточных вод; охрана водных ресурсов.
курсовая работа [471,7 K], добавлен 19.11.2012Санитарно-техническое устройство и оборудование современных зданий. Сведения по холодному водоснабжению здания. Последовательность выполнения расчета. Определение характеристик водопотребителей. Общие сведения о внутренней канализации жилых помещений.
контрольная работа [106,2 K], добавлен 18.03.2014Разработка проекта систем холодного и горячего водоснабжения, аксонометрической схемы трубопровода, трассировка сети, ее гидравлический расчет. Подбор счетчика, рабочего напора водопровода. Расчет водонагревателя и счетчика, системы канализации.
курсовая работа [234,0 K], добавлен 31.05.2014Описание конструктивного решения проектируемой внутренней водопроводной сети и ввода. Аксонометрическая схема и гидравлический расчет внутренней водопроводной сети. Дворовая канализационная сеть и приемники сточных вод. Расчет внутренней канализации.
курсовая работа [683,1 K], добавлен 28.01.2014Проектирование и расчет систем внутреннего водопровода здания. Построение аксонометрической схемы водопроводной сети здания. Гидравлический расчет водопроводной сети. Устройство внутренней канализационной сети. Определение расчетных расходов сточных вод.
контрольная работа [1,0 M], добавлен 06.09.2010Генеральный план, объемно-планировочные решения здания, внутренняя и наружная отделка. Инженерное оборудование (канализация и водоснабжение, отопление). Определение объема строительно-монтажных работ. Локальная смета на общестроительные работы.
курсовая работа [379,1 K], добавлен 18.10.2010Технология механизированных производственных процессов ООО "Стройдело". Монтаж пластиковых окон. Проверка заведения углов на здании при помощи нивелира. Реконструкция инженерного оборудования (отопление, вентиляция, газоснабжение, водоснабжение).
отчет по практике [1,1 M], добавлен 15.09.2014Генеральный план, объемно-планировочное и конструктивное решения строительства общественно-культурного центра. Теплотехнический расчет наружной стены здания. Инженерные сети: теплоснабжение, водопровод, канализация, электроснабжение, вентиляция.
курсовая работа [42,6 K], добавлен 07.11.2014Разработка проекта внутреннего водопровода и канализации жилого пятиэтажного здания. Особенности принятой системы водоснабжения по напору. Гидравлический расчет внутренней и дворовой канализационной сети. Устройство дворовой сети (трубы, сооружения).
курсовая работа [657,1 K], добавлен 07.01.2011Методика проектирования инженерных систем в жилом микрорайоне города. Проектирование сетей водоснабжения, канализации, газоснабжения, теплоснабжения, электроснабжения; расчет их параметров; построение профилей ввода и дворовой канализации. Разработка разр
курсовая работа [54,6 K], добавлен 10.01.2011Проектирование систем внутреннего водоснабжения: выбор системы и схемы, трассировка сетей и санитарно-технического оборудования. Построение аксонометрической схемы водопроводной сети. Ведомость определения расчетных расходов и потерь напора в сети.
контрольная работа [15,4 K], добавлен 11.09.2012Объемно-планировочное решение, строительство комплекса аквапарка. Разработка аттракционов для аквапарка. Организация движения посетителей. Архитектурная физика, инженерное и санитарно-техническое оборудование. Инсоляция и аэрация. Отопление и вентиляция.
курсовая работа [5,2 M], добавлен 22.12.2015Определение расчетных расходов от зданий общественного назначения. График водопотребления и подачи воды насосами. Трассировка сети и водоводов. Определение потерь напора на участках водопроводной сети и увязка колец. Начальное потокораспределение.
курсовая работа [178,2 K], добавлен 27.03.2014Характеристика напорной водопроводной сети. Состав работ технологического процесса возведения водопроводной сети. Выбор экскаватора для разработки грунта в выемках и монтажного крана для прокладки трубопроводов. Расчет количества автосамосвалов.
курсовая работа [1005,3 K], добавлен 06.12.2013Выбор схемы холодного водоснабжения. Подбор счетчиков холодного водоснабжения. Расчет теплопотерь в подающей сети и расхода циркуляционной сети. Потери напора в подающих трубопроводах при пропуске циркуляционного расхода при частичном водоразборе.
курсовая работа [547,3 K], добавлен 04.10.2013Проектирование систем холодного водопровода здания. Гидравлический расчет внутренней водопроводной сети. Определение расчетных расходов воды, диаметров труб и потерь напора. Устройство сетей внутренней канализации. Дворовая канализационная сеть.
курсовая работа [193,7 K], добавлен 03.03.2015Классификация и элементы систем водоснабжения. Система канализации и ее классификация. Условия приема сточных вод в канализационные сети. Расчет эксплуатационных затрат по содержанию водопроводной системы. Определение расчетного расхода сточной жидкости.
курсовая работа [207,3 K], добавлен 02.11.2014Устройство систем внутреннего водоснабжения и канализации. Системы водоснабжения и схемы сетей внутренних водопроводов в зданиях. Системы внутреннего горячего водоснабжения здания. Трассировка сети внутренней канализации. Определение общих расходов воды.
курсовая работа [200,6 K], добавлен 05.11.2008