Виды коррозии бетонов
Химические виды коррозии бетона. Образование кристаллогидратов при взаимодействии воды и клинкерных минералов. Особенности магнезиальной, углекислотной, сульфатной и сероводородной коррозии. Физическое разрушение бетонов. Виды защиты от коррозии.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 19.06.2015 |
Размер файла | 26,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Виды коррозии бетонов
План
Введение
1. Химические виды коррозии бетона
2. Коррозия выщелачивания
3. Коррозия второго вида. Магнезиальная коррозия
4. Углекислотная коррозия
5. Сульфатная коррозия
6 .Сероводородная коррозия
7. Физическая коррозия бетонов
8. Защита от коррозии
Заключение
Введение
В настоящее время цемент является одним из важнейших строительных материалов. Его применяют для изготовления бетонов, бетонных и железобетонных изделий, строительных растворов, асбестоцементных изделий. Изготовляют его на крупных механизированных и автоматизированных заводах. Цемент начали производить в прошлом столетии. В начале 20-х годов XIX в. Е. Делиев получил обжиговое вяжущее из смеси извести с глиной и опубликовал результаты своей работы в книге, изданной в Москве в 1825 г. В 1856 г. был пущен первый в России завод портландцемента. Портландцемент является минеральным вяжущим веществом, составляющим основу большей части номенклатуры сухих строительных смесей в качестве самостоятельного вяжущего, в смешанных цементных вяжущих системах, в составе цементно-известковых вяжущих, а также различных полимерцементных композиций. Ценные и уникальные свойства портландцемента определяются его способностью при затворении водой образовывать пластичное тесто, со временем, самопроизвольно, за счёт химического взаимодействия в системе, превращающееся в камень. Способность к самоотвердеванию, образование прочного и долговечного камня, экологическая чистота, низкая химическая опасность, пожаровзрывобезопасность в сочетании с низкой стоимостью являются предпосылками для широкого практического применения портландцемента.
Бетоны и цементный камень, как его матричная часть, в эксплуатационных условиях подвержены коррозионному воздействию различных сред, особенно минерализованной воды в морских сооружениях (молы, причалы, эстакады со свайным основанием и железобетонным верхним строением, портовые конструкции и др.), минеральной кислоты при эксплуатации резервуаров, башен и других сооружений химической промышленности. На бетон оказывают коррозионное воздействие органические кислоты и биосфера, особенно при работе сооружений в торфяных грунтах, на предприятиях пищевой промышленности. Негативное влияние могут оказывать на состав и структуру цементного камня в бетонах щелочная среда, пресная вода, особенно водные растворы электролитов. В индустриальных районах коррозионное влияние на бетонные конструкции оказывают газы, например сернистые, сероводород, хлористый водород, аэрозоли солей, например морской воды и др. Агрессивное воздействие оказывают также твердые, в основном высокодисперсные вещества, способные образовывать во влажных условиях прослойки из истинных и коллоидных растворов. Кроме химических реакций при контакте со средой возможны физические сорбционные процессы с поглощением из среды поверхностно-активных веществ (ПАВ), например серосодержащих полярных смол из нефтепродуктов, с физическим нарушением сплошности контактов в структуре и ускорением развития дефектов.
1. Химические виды коррозии бетона
Существуют три типа коррозии данного вида. В одном виде она встречается очень редко, так как в основном протекает в двух-трех видах:
1. В результате растворения водами малой жесткости камня, происходит коррозия. Это вода: дождевая, болотная, вода с горных рек или конденсат. Агрессивность воды уменьшается при появлении в ней кальция(Ca) и магния(Mg). Агрессивной является вода только с бикарбонатной щелочью менее 1,4-0,7 мг экв/л. С вымыванием Са (ОН)2 (при растворимости 1,2 г/л в расчете на СаО начинается) разрушение цементного камня, затем разрушаются клинкерные минералы. Выщелачивание 15-30% СаО является причиной уменьшения прочности на 50%.
2. Возникает в результате взаимодействия различных кислот, солей и цементного камня. Впоследствии обменных реакций образуются легкорастворимые соединения не имеющие прочности. Наиболее частой является углекислая кислота. Происходит образование углекислой кислоты в процессе растворения углекислого газа в воде. Для нейтрализации углекислой кислоты необходимо наличие в воде карбоната кальция, который и приводит равновесие в системе. Данная кислота не наносит вреда бетону, однако, если равновесие нарушено и кислоты больше, то она вполне может разрушить бетонную постройку по следующим реакциям:
Са (ОН)2 + Н2СО3 = СаСО3 + 2Н2О;
СаСО3 + Н2СО3 = Са (НСО3)2.
Так же, нередко встречается и магнезиальная коррозия, которая происходит при действии магнезиальных солей с цементным камнем. Например, в воде находится хлорид магния, который при взаимодействии с цементным камнем разрушает его.
3. При действии на цементный камень веществ, которые способны образовать увеличенные кристаллические соединения, возникает коррозия третьего вида. Коррозия может произойти в присутствии вод содержащих сульфат натрия, сульфат кальция и прочее.
2. Коррозия выщелачивания
Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2. Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесной.
Гидросиликаты и гидроалюминаты кальция имеют тем большую равновесную растворимость, чем выше их основность. Следовательно отщепление гидратов сначала происходит от высокоосновных гидратов, их основность при этом понижается, а устойчивость в данной среде повышается.Если концентрация гидрата окиси кальция в дальнейшем не будет понижаться, то процесс на этом остановится. Если же концентрация извести будет продолжать понижаться и станет ниже равновесной для вновь образовавшегося гидрата, то отщепление гидрата окиси кальция будет продолжаться вплоть до полного разложения гидросиликатов и гидроалюминатов, с образованием аморфных кремнезема и глинозема. Хотя последние и плохо растворимы в воде, однако они не обладают вяжущими свойствами - прочность и монолитность камня нарушаются.Эти процессы могут наблюдаться, если цементный камень омывается непрерывно обновляющейся водой или растворами солей, имеющими малую концентрацию Са(ОН)2, либо если Са(ОН)2 связываются содержащимися в растворе веществами в прочные малорастворимые или малодиссоциирующие химические соединения (кальция).Чем выше концентрация извести в порах цементного камня, тем выше скорость выщелачивания. Низкоосновные гидраты кальция имеют меньшую равновесную растворимость. Известь связывается, а основность понижается в тех случаях, когда в цемент вводятся активные кремнеземистые добавки, а при высоких температурах и кварцевый песок..Более агрессивными в смысле выщелачивания являются «мягкие» воды. Растворимость извести повышается в присутствии хлористого натрия. Значит минерализованные пластовые воды в принципе все агрессивны к цементному камню. Растворимость Са(ОН)2 повышается с ростом температуры. Значит перечисленные условия требуют применения низкоосновных цементов. Процесс выщелачивания снижает прочность бетона и может протекать до полного разрушения цементного камня.Для увеличении стойкости бетонов к коррозии первого вида увеличивают плотность бетонов и регулируют их состав ,уменьшая содержание основных соединений ,например, в карбонизированном бетоне растворимость СаСо3 в сто раз чем Са(ОН)2.
3. Коррозия второго вида. Магнезиальная коррозия
Наиболее опасными средами при коррозии бетонов второго вида являются кислоты ,разрушение в которых сопровождается образованием рыхлых и легко растворимых новообразований .По растворимости продуктов коррозии бетонов кислоты принято делить на три группы. В первую группу входят сильные минеральные кислоты, такие как соляная, азотная и другии,При коррозии в этих кислотах на поверхности бетона образуется слой продуктов коррозии, состоящий из солей кальция, геля ,кремнекислоты, гидроксилов железа, и алюминия. Этот слой затрудняет доступ кислот в бетон. Во вторую группу входит серная,сернистая,фосфорная,и другие кислоты. при высоких концентрациях этих кислот продукты коррозии бетона содержатбольшое количество солей кальция, что повышает плотность новообразований и понижает скорость коррозии бетона.Третью группу составляют кислоты с низкой растворимостью кальциевых солей.К ним относятся : Щавелевая, фтористоводородная , кремнефтористоводородная
Коррозия второго вида происходит в растворах солей и кислот. Ко второй группе (коррозия II вида) относятся процессы, развивающиеся в бетоне под действием вод, содержащих вещества, вступающие в химические реакции с цементным камнем. Образующиеся при этом продукты реакций либо легкорастворимы и уносятся водой, либо выделяются на месте реакции в виде аморфных масс, не обладающих вяжущими свойствами. К этой группе могут быть отнесены, например, процессы коррозии, связанные с воздействием на бетон различных кислот, магнезиальных и других солей.Соли магния MgS04 и MgCl2, как правило, присутствуют в грунтовых водах. Большое количество этих солей содержится и в морской воде. При действии таких солей на бетон происходит взаимодействие с гидроксидом кальция.При малых концентрациях раствора MgCl2 реакционная емкость раствора низкая. Реакции с Са(ОН)2 протекают на поверхности бетона Выделяющийся при этом Mg(OH)2 образует на поверхности бетона пленку, которая даже способствует предохранению бетона от дальнейшего разрушения, т е. при малых концентрациях растворов скорость диффузии Са(СН)2 из внутренних слоев бетона достаточна, чтобы восполнить то количество, которое ушло на реакцию с солями. При длительном взаимодействии с такими растворами во внутренних слоях бетона развивается коррозия I вила [вынос Са(ОН)21 При больших концентрациях MgCi2 реакционная емкость раствора велика, количество Са(ОН)2 не достаточно для нейтрализации, поэтому раствор диффундирует внутрь бетона. коррозия бетон углекислотный сероводородный
При действии MgS04 на бетон «критическая» концентрация определяется соотношением между суммарной поверхностью взаимодействия цементного камня и количеством раствора. Если время соприкосновения раствора MgS04 с поверхностью цементного камня больше времени полного насыщения этого объема сульфатом кальция (CaS04), то гипс выпадает в осадок. Вместе с тем к такой коррозии могут привести и агрессивные сточные воды промышленных предприятий, а также грунтовые воды. При малой концентрации сернокислых солей их агрессивное воздействие проявляется следующим образом. При действии вод, содержащих, например, сульфат натрия Na2SO4, он вначале реагирует о Са(ОН)2 по схеме:
Са(ОН)2 + Na2SO4 = CaSO4 + 2NаОН.
4. Углекислотная коррозия
По интенсивности взаимодействия с бетонами газовые среды подразделяются на три группы. Первую группу образуют газы , формирующие слаборастворимые или нерастворимые соли кальция, которые уплотняют поверхностные слои бетона. К этой группе относятся :углекислый газ, фтористый водород, фтористый кремний ,фтористый ангидрид. Однако нужно иметь в веду ,что в этом случае снижается щелочность бетона ,что увеличивает склонность к коррозии арматуры. Вторая группа газов образует в парах бетона соли увеличенного объема. К этой группе относятся сернистые соединения : SO4, SO2, H2S. Процессы коррозии в этих газах сопровождаются образованием сульфатов, аналогично коррозии в сульфатных водах. Третьей группе газов относится хлор , хлористый водород , оксиды азота и другие газы. Углекислый газ СО2, находящийся в воздухе, растворяется в воде, образуя угольную кислоту Н2СО3. При наличии в воде достаточного количества карбоната кальция СаСО, чтобы нейтрализовать угольную кислоту, Н2СО3 и СаСО3 должны находиться в равновесном состоянии: СаСО3 + Н2СО3 <->Са (НСО3)2. Эта угольная кислота не является агрессивной по отношению к цементному камню. Если количество углекислоты больше, чем равновесное, она становится агрессивной и способна разрушить цементный камень по реакциям:
Са (ОН)2 + Н2СО3 = СаСО3 + 2Н2О;
СаСО3 + Н2СО3 = Са (НСО3)2.
Гидрокарбонат кальция легко растворяется и вымывается водой. Углекислотная коррозия происходит в результате действия растворов неорганических и органических кислот при их рН < 7. Не входят сюда кремнефтористо-водородная и поликремниевые кислоты. Кислоты содержатся в сточных, болотных водах; в выбросах промышленных предприятий может быть сернистый газ, хлор и другие, образующие с водой кислоты. Кислоты взаимодействуют с гидроксидом кальция, в результате чего получаются бессвязные кальциевые соли, легко вымываемые водой. Например, при действии соляной кислоты НСI на цементный камень получается растворимый хлорид кальция:
Са (ОН)2 + 2НСl = СаСl2 + 2Н2О.
Органические кислоты -- азотная, уксусная, молочная, винная, олеиновая, гуминовая, фульвовая и другие -- также разрушают цементный камень.
Наиболее опасными средами при коррозии бетонов 2 вида являются кислоты, разрушение в которых сопровождается образованием рыхлых и легко растворимых новообразований.
5. Сульфатная коррозия
Коррозия бетонов третьего вида происходит при контакте с техническими растворами ,сточными водами, морской водой и другими водами,особенно содержащими сульфаты в виде растворимого гипса сернокислого кальция.
Это вид коррозии, который связан с образованием соединений кристаллизующихся с увеличением объема. Примером такой коррозии являются взаимодействие с сульфатами кальция и натрия. Известно, что гидроалюминаты кальция могут присоединять гипс и образовывать гидросульфоалюминат. Последний кристаллизуется с увеличением объема, что вызывает внутренние напряжения и разрушение цементного камня.Однако не всегда наличие гидросульфоалюмината кальция в цементном камне говорит и сульфатной коррозии. Это вещество имеется в первичной структуре цементного камня. Только увеличение количества гидросульфатоалюмината говорит о происходящей сульфоалюминатной коррозии.Одним из методов борьбы с сульфатной коррозией является понижение содержания трехкальциевого алюмината (не более 5%). При этом содержание плавней компенсируется за счет увеличения содержания окиси железа.Наличие в пластовых водах хлоридов уменьшает отрицательное влияние сульфатов.
6 .Сероводородная коррозия
Это один из распространенных на нефтяных и газовых месторождениях видов коррозии. При сероводородной коррозии наблюдается образование малорастворимых сульфидов кальция, алюминия и железа. Это приводит к понижению равновесной концентрации Са(ОН)2, Al(OH)3, Fe(OH)3, что в свою очередь вызывает разрушение гидратов кальция.Наиболее энергично образуется сульфид железа, поэтому для повышения стойкости против сероводородной коррозии следует ограничивать в цементах содержание окислов железа, марганца и других тяжелых металлов. По отношению к цементному камню безвредны силикаты, карбонаты, щелочи и их соли. Однако сильные щелочи действуют на аллюминаты.Нефть и нефтепродукты не опасны, но если в них есть нафтеновые кислоты и сульфаты, то они также разрушают цементный камень.
7. Физическая коррозия бетонов
Коррозия этого вида вызывается фильтрацией сквозь толщу бетона мягкой воды, вымывающей его составные части, особенно гидрат окиси кальция -- гашеную известь. Этот процесс, называемый выщелачиванием извести, весьма опасен для бетона, поскольку известь является составляющей почти всех цементов.
Внешним признаком коррозии такого вида является белый налет на поверхности конструкции в месте выхода воды, что и послужило основанием назвать данный вид коррозии «белой смертью» бетона.
В технической литературе можно встретить термин «карбонизация», который характеризует этот процесс. Карбонизация бетона ведет к потере бетоном его защитных свойств: арматура подвергается воздействию агрессивной среды. В результате карбонизации на поверхности бетона образуются тонкие трещины, которые впоследствии могут привести к отслаиванию бетона.
Если приток воды очень мал и она испаряется на поверхности бетона, то гидрат окиси кальция остается в толще бетона, уплотняет его и прекращает фильтрацию. Этот процесс называется самозалечиванием бетона.
Для предотвращения физико-химической коррозии рекомендуется изоляция сооружений от агрессивных вод, содержащих сульфаты, а также их отвод, снижение концентрации солей, воздействующих на растворы.
Биологическая коррозия бетона.
Биологическая коррозия - прямое или косвенное воздействие низших форм живых организмов, влияющих на внешний вид или технические свойства бетона. К таким организмам относятся бактерии, морские водоросли, грибки, лишайники, мхи и т. д.
Биоповреждения неорганических строительных материалов, к которым относится бетон, преимущественно сводятся к нарушению сцепления составляющих компонентов этих материалов в результате воздействия минеральных или органических кислот микробного происхождения. Бетонные сооружения разрушаются вследствие химических реакций между цементным камнем и продуктами жизнедеятельности микроорганизмов.
Пористая структура бетона способствует вовлечению микроорганизмов в коррозионные процессы. Первые упоминания об участии бактерий в коррозии бетона относятся к 1901 г. При обследовании бетонного водопроводного канала в поверхностном слое поврежденного бетона были обнаружены нитрифицирующие бактерии.
Благодаря переменности сечений контактирующих пор микроструктура цементного камня обладает непроницаемостью для частиц или микроорганизмов определенного размера, как правило, намного меньше среднего размера пор. Омываемый жидкостью бетон фильтруют воду, а мелкие частицы и микроорганизмы задерживаются на поверхности материала и вступают с ним во взаимодействие.
Продукты жизнедеятельности микроогранизмов такие как: кислоты, сульфиды, аммиак и другие, являются агрессивными и вызывают разрушение бетона, а также арматуры в железобетонных конструкциях.
Неорганические и органические кислоты и сероводород образуются тионовыми, нитрифицирующими, углеводородокисляющими, сульфатредуцирующими бактериями, грибами, дрожжами и другими микроорганизмами. Наиболее активны в коррозионном отношении литотрофные бактерии, окисляющие неорганические соединения: серу, сульфиды, сульфат закиси железа, аммиак с образованием серной и азотной кислот.
Плесневые грибы - типичные возбудители окислительного брожения. Окислительное брожение, вызываемое плесневыми грибами и так называемыми окислительными бактериями, может происходить только в случае, если у микроорганизмов есть особые энзимы - редуктазы, способствующие неполному разрушению углеводородов в присутствии кислорода воздуха. В качестве промежуточных продуктов этого биохимического процесса образуются органические кислоты (глюконовая, щавелевая, янтарная и лимонная), вызывающие коррозию металлов и органических материалов - разъедание, снижение веса, изменение окраски, потерю прочности - так называемые вторичные явления.
С точки зрения условий развития процессов биокоррозии, которые связаны с жизнедеятельностью живых организмов, следует различать два основных случая, имеющих значение и для разработки мер защиты от этого вида коррозии. В первом случае биоорганизмы - животные, растения, чаще всего микроорганизмы - находятся в непосредственном контакте с наружной или внутренней (для пористых материалов) поверхностью строительной конструкции и в процессе метаболизма взаимодействуют с материалом, в результате чего снижается прочность или ухудшаются другие эксплуатационные качества материала, т.е. происходит повреждение материала и сокращение сроков его эксплуатационной пригодности.
Во втором случае биоорганизмы являются продуцентами веществ, агрессивных по отношению к строительному материалу, но непосредственно в пространстве и времени не связаны со строительной конструкцией. Коррозионные процессы могут развиваться на значительном расстоянии от места обитания биоорганизмов, вырабатывающих агрессивные по отношению к строительному материалу вещества. Этот процесс может быть отдален во времени от момента, когда наступает контакт агрессивного компонента со строительной конструкцией.
При твердении бетон покрывается защитной пленкой, образованной углекислым кальцием. Пока пленка цела, она препятствует диффузии воды внутрь бетонной кладки и тем самым защищает бетон от разрушения. Тионовые бактерии, поселяющиеся на поверхности карбонатного слоя, разрушают его, изменяя рН прилегающей воды за счет образуемой ими кислоты. Кроме того, тионовые бактерии приносят вред продуцированием сульфатов, поскольку последние образуют эттрингит, ускоряющий разрушение цементного камня.
Интенсивное развитие коррозии бетона и железобетона наблюдается в условиях техногенных сред. Высокая влажность, наличие органического вещества, жиров и продуктов их гидролиза, аммиака, растворов солей создают благоприятные условия для интенсивного развития активных в коррозионном отношении микроорганизмов.
Например, исследование микрофлоры бетона, гидроизоляции, кирпича, штукатурки на ряде мясокомбинатов показало, что во всех пробах стройматериалов присутствуют микроорганизмы, способные вызывать коррозию. Так, численность гетеротрофных бактерий, использующих для своего развития органические вещества и образующих аммиак и органические кислоты, достигала 103 клеток на 1 г материала.
8. Защита от коррозии
Для повышения стойкости к процессам коррозии и долговечности бетона необходимо выполнять антикоррозионную защиту, которую условно можно разделить на первичную и вторичную защиту. К первичным методам защиты относится введение различных модифицирующих добавок. Они могут быть пластифицирующие (увеличивающие), стабилизирующие (предупреждающие расслоение), водоудерживающие, а также регулирующие схватывание бетонных смесей.
Повышение стойкости бетонов к процессам коррозии может обеспечиваться соответствующим подбором составов, увеличением плотности путем уменьшения водоцементного отношения, выбором специальных вяжущих и заполнителей, применением наиболее эффективных методов уплотнения смеси, путем обработки поверхностного слоя (флюатирование, пропитка полимерами), введением различных солей (силикатов и алюминатов натрия, хлористого железа, стеаратов кальция), поверхностно-активных веществ, абиетанов натрия, кремнийорганических соединений, щелочестойких латексов, поливинилацетатов, изменяющих структуру, повышающих плотность, уменьшающих водопотребность и т.д.
К числу вредных добавок для бетонов относятся те, которые способствуют образованию легкорастворимых веществ (например, сахар, образующий легкорастворимый кальциевый сахарит и др.). Морская вода очень вредно влияет на бетон из обычного цемента в виду возможности обменного образования кальциевых соединений с растворами солей легкорастворимых соединений.
Заключение
В процессе эксплуатации бетонные конструкции находятся в постоянном контакте с окружающей средой. Взаимодействие агрессивной среды с бетоном приводит к его коррозионному разрушению, механизм и интенсивность которого зависят от большого числа взаимосвязанных факторов.
Сложные, в большинстве случаев недостаточно изученные процессы, определяющие механизм и интенсивность коррозионного разрушения бетонных конструкций, находятся в прямой зависимости со свойствами агрессивной среды, в контакте с которой они эксплуатируются. Как уже отмечалось выше, наиболее опасной является химическая коррозия, которая вызывается взаимодействием агрессивных газов и жидкостей с составными частями затвердевшего портландцемента, главным образом с Ca(OH)2 и 3СaOAl2O36H2O. Поэтому, учитывая будущие условия эксплуатации бетона, заранее предусматривают комплекс мероприятий, предотвращающих коррозию. Вероятность коррозии третьего вида в первую очередь рассматривают при строительстве морских гидротехнических сооружений и возведении фундаментов в районах, где грунтовые воды содержат сульфаты натрия или кальция.
Размещено на Allbest.ru
...Подобные документы
Основные сведения теории коррозии металлов и исследование общих положений по защите от коррозии строительных конструкций. Анализ степени агрессивного воздействия среды. Способы защиты от поверхностной и закладной коррозии в железобетонных конструкциях.
курсовая работа [30,4 K], добавлен 01.02.2011Виды разрушения материалов и конструкций. Способы защиты бетонных и железобетонных конструкций от разрушения. Основные причины, механизмы и последствия коррозии бетонных и железобетонных сооружений. Факторы, способствующие коррозии бетона и железобетона.
реферат [39,1 K], добавлен 19.01.2011Бетоны на основе неорганических вяжущих веществ. Определение коррозии железобетона. Химическая, биологическая коррозия бетона. Методы защиты бетона от коррозии. Цементизация, силикатизация, битумизация и смолизация. Твердение гидросиликата и кремнезема.
реферат [28,0 K], добавлен 08.06.2011Сложные инженерные сооружения. Роль антикоррозионной защиты в функционировании мостовых конструкций. Основные способы защиты мостов от коррозии. Особенности механизма защитного действия цинконапыленных покрытий. Преимущества цинкнаполненных покрытий.
презентация [2,2 M], добавлен 22.01.2016Изучение основных видов коррозии цементного камня. Анализ влияния объёма и глубины нейтрализации цементного состава на кинетические константы. Прогнозирование долговечности строительных материалов. Построение графиков зависимостей кинетических констант.
курсовая работа [367,8 K], добавлен 17.04.2014Определение и краткая история высокопрочного бетона. Общие положения технологии производства бетонов: значение качества цемента, заполнителей, наполнителей и воды. Основные характеристики структурных элементов бетона. Способы повышения его прочности.
реферат [25,9 K], добавлен 07.12.2013Факторы и условия формирования структуры бетона. Водопроницаемость цемента и водостойкость бетона. Особенности структурообразования в цементных растворах. Процесс формирования модифицированных бетонов. Характеристика структуры водостойких бетонов.
курсовая работа [2,2 M], добавлен 14.03.2019Виды и эффективные методы защиты сталей от коррозии. Характеристика изгибаемых железобетонных элементов, конструкции плит и балок. Сущность и особенности соединений элементов из дерева на врубках. Примеры данных соединений и область их применения.
контрольная работа [2,7 M], добавлен 12.11.2013Виды строительных бетонов и их особенности. Дорожные и гидротехнические бетоны. Пропариваемые бетоны. Бетоны с активными минеральными добавками. Мелкозернистые бетоны. Бетоны термосного твердения. Бетоны с противоморозными добавками. Легкие бетоны.
реферат [26,9 K], добавлен 26.05.2008Причины и механизмы разрушения различных материалов при эксплуатации их в агрессивных средах. Химическая стойкость бетона, металла, полимерных материалов. Способы защиты от коррозии. Меры повышения долговечности строительных конструкций и изделий.
курс лекций [70,8 K], добавлен 08.12.2012Виды и свойства гидротехнических бетонов. Технология приготовления и транспортировки бетонной смеси. Последовательность загрузки материалов и время ее перемешивания. Производство бетонных и железобетонных работ в зимних условиях. Контроль их качества.
реферат [108,5 K], добавлен 16.03.2015Назначение и классификация ячеистых бетонов. Виды сырьевых материалов, требования, предъявляемые к ним; вяжущие вещества, кремнеземистый компонент, порообразователи, корректирующие добавки. Технология крупноразмерных изделий. Контроль качества продукции.
курсовая работа [253,7 K], добавлен 18.11.2009Механические свойства бетона и состав бетонной смеси. Расчет и подбор состава обычного бетона. Переход от лабораторного состава бетона к производственному. Разрушение бетонных конструкций. Рациональное соотношение составляющих бетон материалов.
курсовая работа [113,6 K], добавлен 03.08.2014Оценка грузоподъемности моста. Определение расчетных усилий в главных балках от нагрузок А-11 и НК-80. Расчет требуемой площади ненапрягаемой арматуры. Технология ремонта выбоин и раковин в сжатой зоне бетона. Устранение коррозии железобетонных элементов.
курсовая работа [962,9 K], добавлен 23.03.2017Использование в строительстве бетонов, приготовленных на цементах или других неорганических вяжущих веществах. Расчет состава тяжелого бетона методом объемов. Виды химических добавок. Подбор состава легкого бетона. Декоративные (архитектурные) бетоны.
курсовая работа [4,6 M], добавлен 22.12.2015Назначение и классификация ячеистых бетонов. Виды сырьевых материалов и требования, предъявляемые к ним. Технические характеристики пенообразователей. Особенности технологии производства стеновых блоков из ячеистого бетона. Контроль качества продукции.
курсовая работа [2,6 M], добавлен 15.11.2009Понятия водопоглощения и коэффициента насыщения пор водой. Экспериментальные методы определения адгезии и когезии. Условия формирования известняков, их минералогический состав, свойства и области применения. Способы защиты природного камня от коррозии.
контрольная работа [884,2 K], добавлен 12.09.2012Изучение конвертерного и мартеновского способов производства стали, основных свойств и марок чугуна. Анализ цветных металлов и их сплавов, защиты металлов от коррозии и огня. Классификация природных каменных, минеральных вяжущих материалов, древесины.
учебное пособие [4,3 M], добавлен 17.01.2012Изделий крупнопанельного домостроения как одна из областей применения самоуплотняющихся бетонов, общая характеристика составов строительного материала. Рассмотрение путей получения самоуплотняющихся песчаных бетонов с применением различных наполнителей.
презентация [148,4 K], добавлен 20.03.2019Перевод систем газоснабжения со сжиженного на природный газ. Расчет расхода газа внутриквартальной сети. Построение профиля подземного газопровода. Обеспечение его защиты от электрохимической коррозии. Производство работ на строительство трубопровода.
дипломная работа [349,3 K], добавлен 15.07.2015