Требования к выполнению молниезащиты
Изучение требований к выполнению молниезащиты при разработке проектов зданий, промышленных коммуникаций. Классификация воздействий токов молнии. Тип и размещение устройств молниезащиты. Защита от ударов молнии электрических и оптических кабелей связи.
Рубрика | Строительство и архитектура |
Вид | методичка |
Язык | русский |
Дата добавления | 23.06.2015 |
Размер файла | 477,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ВВЕДЕНИЕ
В случае, когда требования отраслевых нормативных документов являются более жесткими, чем в настоящей Инструкции, при разработке молниезащиты рекомендуется выполнять отраслевые требования. Так же рекомендуется поступать, когда предписания настоящей Инструкции нельзя совместить с технологическими особенностями защищаемого объекта. При этом используемые средства и методы молниезащиты должны обеспечивать требуемую надежность.
При разработке проектов зданий, сооружений и промышленных коммуникаций помимо требований настоящей Инструкции учитываются дополнительные требования к выполнению молниезащиты согласно другим действующим нормам, правилам, инструкциям, государственным стандартам.
При нормировании молниезащиты за исходное принято положение, что любое ее устройство не может предотвратить развитие молнии.
Применение норматива при выборе молниезащиты существенно снижает риск ущерба от удара молнии.
Тип и размещение устройств молниезащиты должны быть выбраны на стадии проектирования нового объекта, чтобы иметь возможность максимально использовать проводящие элементы последнего. Это облегчит разработку и исполнение устройств молниезащиты, совмещенных с самим зданием, позволит улучшить его эстетический вид, повысить эффективность молниезащиты, минимизировать ее стоимость и трудозатраты.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1 Термины и определения
Удар молнии в землю - электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока.
Точка поражения - точка, в которой молния соприкасается с землей, зданием или устройством молниезащиты. Удар молнии может иметь несколько точек поражения.
Защищаемый объект - здание или сооружение, их часть или пространство, для которых выполнена молниезащита, отвечающая требованиям настоящего норматива.
Устройство молниезащиты - система, позволяющая защитить здание или сооружение от воздействий молнии. Она включает в себя внешние и внутренние устройства. В частных случаях молниезащита может содержать только внешние или только внутренние устройства.
Устройства защиты от прямых ударов молнии (молниеотводы) - комплекс, состоящий из молниеприемников, токоотводов и заземлителей.
Устройства защиты от вторичных воздействий молнии - устройства, ограничивающие воздействия электрического и магнитного полей молнии.
Устройства для выравнивания потенциалов - элементы устройств защиты, ограничивающие разность потенциалов, обусловленную растеканием тока молнии.
Молниеприемник - часть молниеотвода, предназначенная для перехвата молний.
Токоотвод (спуск) - часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.
Заземляющее устройство - совокупность заземлителя и заземляющих проводников.
Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
Заземляющий контур - заземляющий проводник в виде замкнутой петли вокруг здания в земле или на ее поверхности.
Сопротивление заземляющего устройства - отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю.
Напряжение на заземляющем устройстве - напряжение, возникающее при стекании тока с заземлителя в землю между точкой ввода тока в заземлитель и зоной нулевого потенциала.
Соединенная между собой металлическая арматура - арматура железобетонных конструкций здания (сооружения), которая обеспечивает электрическую непрерывность.
Опасное искрение - недопустимый электрический разряд внутри защищаемого объекта, вызванный ударом молнии.
Безопасное расстояние - минимальное расстояние между двумя проводящими элементами вне или внутри защищаемого объекта, при котором между ними не может произойти опасного искрения.
Устройство защиты от перенапряжений - устройство, предназначенное для ограничения перенапряжений между элементами защищаемого объекта (например, разрядник, нелинейный ограничитель перенапряжений или иное защитное устройство).
Отдельно стоящий молниеотвод - молниеотвод, молниеприемники и токоотводы которого расположены таким образом, чтобы путь тока молнии не имел контакта с защищаемым объектом.
Молниеотвод, установленный на защищаемом объекте - молниеотвод, молниеприемники и токоотводы которого расположены таким образом, что часть тока молнии может растекаться через защищаемый объект или его заземлитель.
Зона защиты молниеотвода - пространство в окрестности молниеотвода заданной геометрии, отличающееся тем, что вероятность удара молнии в объект, целиком размещенный в его объеме, не превышает заданной величины.
Допустимая вероятность прорыва молнии - предельно допустимая вероятность удара молнии в объект, защищаемый молниеотводами.
Надежность защиты определяется как 1 - .
Промышленные коммуникации - силовые и информационные кабели, проводящие трубопроводы, непроводящие трубопроводы с внутренней проводящей средой.
1.2 Классификация зданий и сооружений по устройству молниезащиты
Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.
Непосредственное опасное воздействие молнии - это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов - радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.
Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.
Рассматриваемые объекты могут подразделяться на обычные и специальные.
Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.
Специальные объекты:
объекты, представляющие опасность для непосредственного окружения;
объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);
прочие объекты, для которых может предусматриваться специальная молниезащита, например строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.
В табл.2.1 даны примеры разделения объектов на четыре класса.
Таблица 2.1 Примеры классификации объектов
Объект |
Тип объекта |
Последствия удара молнии |
|
1 |
2 |
3 |
|
Обычные объекты |
Жилой дом |
Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом |
|
Ферма |
Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т.д. |
||
Театр; школа; универмаг; спортивное сооружение |
Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий |
||
Банк; страховая компания; коммерческий офис |
Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных |
||
Больница; детский сад; дом для престарелых |
Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Наличие тяжело больных и необходимость помощи неподвижным людям |
||
Промышленные предприятия |
Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции |
||
Музеи и археологические памятники |
Невосполнимая потеря культурных ценностей |
||
Специальные объекты с ограниченной опасностью |
Средства связи; электростанции; пожароопасные производства |
Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов |
|
Специальные объекты, представляющие опасность для непосредственного окружения |
Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков |
Пожары и взрывы внутри объекта и в непосредственной близости |
|
Специальные объекты, опасные для экологии |
Химический завод; атомная электростанция; биохимические фабрики и лаборатории |
Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды |
При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл.2.2.
Таблица 2.2 Уровни защиты от ПУМ для обычных объектов
Уровень защиты |
Надежность защиты от ПУМ |
|
I |
0,98 |
|
II |
0,95 |
|
III |
0,90 |
|
IV |
0,80 |
Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ.
По желанию заказчика в проект может быть заложен уровень надежности, превышающий предельно допустимый.
1.3 Параметры токов молнии
Параметры токов молнии необходимы для расчета механических и термических воздействий, а также для нормирования средств защит от электромагнитных воздействий.
1.3.1 Классификация воздействий токов молнии
Для каждого уровня молниезащиты определяются предельно допустимые параметры тока молнии. Данные, приведенные в настоящей Инструкции, относятся к нисходящим и восходящим молниям.
Соотношение полярностей разрядов молнии зависит от географического положения местности. При отсутствии местных данных принимают это соотношение равным 10% для разрядов с положительными токами и 90% для разрядов с отрицательными токами.
Механические и термические действия молнии обусловлены пиковым значением тока , полным зарядом , зарядом в импульсе и удельной энергией . Наибольшие значения этих параметров наблюдаются при положительных разрядах.
Повреждения, вызванные индуцированными перенапряжениями, обусловлены крутизной фронта тока молнии. Крутизна оценивается в пределах 30%-ного и 90%-ного уровней от наибольшего значения тока. Наибольшее значение этого параметра наблюдается в последующих импульсах отрицательных разрядов.
1.3.2 Параметры токов молнии, предлагаемые для нормирования средств защиты от прямых ударов молнии
Значения расчетных параметров для принятых в табл.2.2 уровней защищенности (при соотношении 10% к 90% между долями положительных и отрицательных разрядов) приведены в табл.2.3.
Таблица 2.3 Соответствие параметров тока молнии и уровней защиты
Параметр молнии |
Уровень защиты |
|||
I |
II |
III, IV |
||
Пиковое значение тока , кА |
200 |
150 |
100 |
|
Полный заряд , Кл |
300 |
225 |
150 |
|
Заряд в импульсе , Кл |
100 |
75 |
50 |
|
Удельная энергия , кДж/Ом |
10000 |
5600 |
2500 |
|
Средняя крутизна , кА/мкс |
200 |
150 |
100 |
1.3.3 Плотность ударов молнии в землю
Плотность ударов молнии в землю, выраженная через число поражений 1 км земной поверхности за год, определяется по данным метеорологических наблюдений в месте размещения объекта.
Если же плотность ударов молнии в землю , 1/(кмгод) неизвестна, ее можно рассчитать по следующей формуле :
, (2.1)
где - среднегодовая продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности.
1.3.4 Параметры токов молнии, предлагаемые для нормирования средств защиты от электромагнитных воздействий молнии
Кроме механических и термических воздействий ток молнии создает мощные импульсы электромагнитного излучения, которые могут быть причиной повреждения систем, включающих оборудование связи, управления, автоматики, вычислительные и информационные устройства и т.п. Эти сложные и дорогостоящие системы используются во многих отраслях производства и бизнеса. Их повреждение в результате удара молнии крайне нежелательно по соображениям безопасности, а также по экономическим соображениям.
Удар молнии может либо содержать единственный импульс тока, либо состоять из последовательности импульсов, разделенных промежутками времени, за которые протекает слабый сопровождающий ток. Параметры импульса тока первого компонента существенно отличаются от характеристик импульсов последующих компонентов. Ниже приводятся данные, характеризующие расчетные параметры импульсов тока первого и последующих импульсов (табл.2.4 и 2.5), а также длительного тока (табл.2.6) в паузах между импульсами для обычных объектов при различных уровнях защиты.
Таблица 2.4 Параметры первого импульса тока молнии
Параметр тока |
Уровень защиты |
|||
I |
II |
III, IV |
||
Максимум тока , кА |
200 |
150 |
100 |
|
Длительность фронта , мкс |
10 |
10 |
10 |
|
Время полуспада , мкс |
350 |
350 |
350 |
|
Заряд в импульсе *, Кл |
100 |
75 |
50 |
|
Удельная энергия в импульсе **, МДж/Ом |
10 |
5,6 |
2,5 |
|
________________* Поскольку значительная часть общего заряда приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенному значению.** Поскольку значительная часть общей удельной энергии приходится на первый импульс, полагается, что общий заряд всех коротких импульсов равен приведенному значению. |
Таблица 2.5 Параметры последующего импульса тока молнии
Параметр тока |
Уровень защиты |
|||
I |
II |
III, IV |
||
Максимум тока , кА |
50 |
37,5 |
25 |
|
Длительность фронта , мкс |
0,25 |
0,25 |
0,25 |
|
Время полуспада , мкс |
100 |
100 |
100 |
|
Средняя крутизна , Кл/мкс |
200 |
150 |
100 |
Таблица 2.6 Параметры длительного тока молнии в промежутке между импульсами
Параметр тока |
Уровень защиты |
|||
I |
II |
III, IV |
||
Заряд *, Кл |
200 |
150 |
100 |
|
Длительность , с |
0,5 |
0,5 |
0,5 |
Средний ток приблизительно равен . Форма импульсов тока определяется следующим выражением:
, (2.2)
где - максимум тока; - время; - постоянная времени для фронта; - постоянная времени для спада; - коэффициент, корректирующий значение максимума тока. Значения параметров, входящих в формулу (2.2), описывающую изменение тока молнии во времени, приведены в табл.2.7.
Таблица 2.7 Значения параметров для расчета формы импульса тока молнии
Параметр |
Первый импульс |
Последующий импульс |
|||||
Уровень защиты |
Уровень защиты |
||||||
I |
II |
III, IV |
I |
II |
III, IV |
||
, кА |
200 |
150 |
100 |
50 |
37,5 |
25 |
|
0,93 |
0,93 |
0,93 |
0,993 |
0,993 |
0,993 |
||
, мкс |
19,0 |
19,0 |
19,0 |
0,454 |
0,454 |
0,454 |
|
, мкс |
485 |
485 |
485 |
143 |
143 |
143 |
Длительный импульс может быть принят прямоугольным со средним током и длительностью , соответствующими данным табл.2.6.
2. ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ
2.1 Комплекс средств молниезащиты
Комплекс средств молниезащиты зданий или сооружений включает устройства защиты от прямых ударов молнии [внешняя молниезащитная система (МЗС)] и устройства защиты от вторичных воздействий молнии (внутренняя МЗС). В частных случаях молниезащита может содержать только внешние или только внутренние устройства. В общем случае часть токов молнии протекает по элементам внутренней молниезащиты.
Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.
Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.
Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.
2.2 Внешняя молниезащитная система
Внешняя МЗС в общем случае состоит из молниеприемников, токоотводов и заземлителей. Их материал и сечения выбираются по табл.3.1.
Таблица 3.1 Материал и минимальные сечения элементов внешней МЗС
Уровень защиты |
Материал |
Сечение, мм |
|||
молниеприемника |
токоотвода |
заземлителя |
|||
I-IV |
Сталь |
50 |
50 |
80 |
|
I-IV |
Алюминий |
70 |
25 |
Не применяется |
|
I-IV |
Медь |
35 |
16 |
50 |
Примечание. Указанные значения могут быть увеличены в зависимости от повышенной коррозии или механических воздействий.
2.2.1 Молниеприемники
Общие соображения
Молниеприемники могут быть специально установленными, в том числе на объекте, либо их функции выполняют конструктивные элементы защищаемого объекта; в последнем случае они называются естественными молниеприемниками.
Молниеприемники могут состоять из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).
Естественные молниеприемники
Следующие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники:
а) металлические кровли защищаемых объектов при условии, что:
электрическая непрерывность между разными частями обеспечена на долгий срок;
толщина металла кровли составляет не менее , приведенной в табл.3.2, если необходимо предохранить кровлю от повреждения или прожога;
толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;
кровля не имеет изоляционного покрытия. При этом небольшой слой антикоррозионной краски, или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;
неметаллические покрытия на или под металлической кровлей не выходят за пределы защищаемого объекта;
б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);
в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т.п., если их сечение не меньше значений, предписанных для обычных молниеприемников;
г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;
д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее , приведенной в табл.3.2, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.
Таблица 3.2 Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника
Уровень защиты |
Материал |
Толщина , мм, не менее |
|
I-IV |
Железо |
4 |
|
I-IV |
Медь |
5 |
|
I-IV |
Алюминий |
7 |
2.2.2 Токоотводы
Общие соображения
В целях снижения вероятности возникновения опасного искрения токоотводы располагают таким образом, чтобы между точкой поражения и землей:
а) ток растекался по нескольким параллельным путям;
б) длина этих путей была ограничена до минимума.
Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта
Если молниеприемник состоит из стержней, установленных на отдельно стоящих опорах (или одной опоре), на каждой опоре предусматривается не менее одного токоотвода.
Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного троса, на каждом конце провода (троса) выполняется не менее одного токоотвода.
Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждой ее опоре выполняется не менее одного токоотвода. Общее количество токоотводов принимается не менее двух.
Расположение токоотводов при неизолированных устройствах молниезащиты
Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл.3.3.
Таблица 3.3 Средние расстояния между токоотводами в зависимости от уровня защищенности
Уровень защиты |
Среднее расстояние, м |
|
I |
10 |
|
II |
15 |
|
III |
20 |
|
IV |
25 |
Токоотводы должны быть объединены горизонтальными поясами вблизи поверхности земли и через каждые 20 м по высоте здания.
Указания по размещению токоотводов
Желательно, чтобы токоотводы равномерно располагались по периметру защищаемого объекта. По возможности они прокладываются вблизи углов зданий.
Не изолированные от защищаемого объекта токоотводы прокладываются следующим образом:
если стена выполнена из негорючего материала, токоотводы могут быть закреплены на поверхности стены или проходить в стене;
если стена выполнена из горючего материала, токоотводы могут быть закреплены непосредственно на поверхности стены так, чтобы повышение температуры при протекании тока молнии не представляло опасности для материала стены;
если стена выполнена из горючего материала и повышение температуры токоотводов представляет для него опасность, токоотводы должны располагаться таким образом, чтобы расстояние между ними и защищаемым объектом всегда превышало 0,1 м. Металлические скобы для крепления токоотводов могут быть в контакте со стеной.
Не следует прокладывать токоотводы в водосточных трубах. Рекомендуется размещать токоотводы на максимально возможных расстояниях от дверей и окон.
Токоотводы прокладываются по прямым и вертикальным линиям так, чтобы путь до земли был по возможности кратчайшим. Не рекомендуется прокладка токоотводов в виде петель.
Естественные элементы токоотводов
Следующие конструктивные элементы зданий могут считаться естественными токоотводами:
а) металлические конструкции при условии, что:
электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п.3.2.4.2;
они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов.
Примечание. Металлические конструкции могут иметь изоляционное покрытие;
б) металлический каркас здания или сооружения;
в) соединенная между собой стальная арматура здания или сооружения;
г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что:
их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм;
металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:
примерно 50% соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);
электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.
В прокладке горизонтальных поясов нет необходимости, если металлические каркасы здания или стальная арматура железобетона используются как токоотводы.
2.2.3 Заземлители
Общие соображения
Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты совмещается с заземлителями электроустановок и средств связи. Если эти заземлители разделяются по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.
Специально прокладываемые заземляющие электроды
Целесообразно использовать следующие типы заземлителей: один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.
Сильно заглубленные заземлители оказываются эффективными, если удельное сопротивление грунта уменьшается с глубиной и на большой глубине оказывается существенно меньше, чем на уровне обычного расположения.
Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.
Глубина закладки и тип заземляющих электродов должны обеспечивать минимальную коррозию, а также возможно меньшую сезонную вариацию сопротивления заземления в результате высыхания и промерзания грунта.
Естественные заземляющие электроды
В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п.3.2.2.5 настоящей Инструкции. Если арматура железобетона используется как заземляющие электроды, повышенные требования должны быть предъявлены к местам ее соединений, чтобы исключить механическое разрушение бетона. Если используется преднапряженный бетон, следует учесть возможные последствия протекания тока молнии, который может вызвать недопустимые механические нагрузки.
2.2.4 Крепление и соединения элементов внешней МЗС
Крепление
Молниеприемники и токоотводы жестко закрепляются, так, чтобы исключить любой разрыв или ослабление крепления проводников под действием электродинамических сил или случайных механических воздействий (например, от порыва ветра или падения снежного пласта).
Соединения
Количество соединений проводника сводится к минимальному. Соединения выполняются сваркой, пайкой, допускаются также вставка в зажимной наконечник или болтовое крепление.
2.3 Выбор молниеотводов
2.3.1 Общие соображения
Выбор типа и высоты молниеотводов производится исходя из значений требуемой надежности . Объект считается защищенным, если совокупность всех его молниеотводов обеспечивает надежность защиты не менее .
Во всех случаях система защиты от прямых ударов молнии выбирается так, чтобы максимально использовались естественные молниеотводы, сначала рассматривая только их, а если обеспечиваемая ими защищенность недостаточна - в комбинации со специально установленными молниеотводами.
В общем случае выбор молниеотводов должен производиться при помощи соответствующих компьютерных программ, способных вычислять зоны защиты или вероятность прорыва молнии в объект (группу объектов) любой конфигурации при произвольном расположении практически любого числа молниеотводов различных типов.
При прочих равных условиях высоту молниеотводов можно снизить, если вместо стержневых конструкций применять тросовые, особенно при их подвеске по внешнему периметру объекта.
Если защита объекта обеспечивается простейшими молниеотводами (одиночным стержневым, одиночным тросовым, двойным стержневым, двойным тросовым, замкнутым тросовым), размеры молниеотводов можно определять, пользуясь заданными в настоящем нормативе зонами защиты.
В случае проектирования молниезащиты для обычного объекта возможно определение зон защиты по защитному углу или методом катящейся сферы согласно стандарту Международной электротехнической комиссии (IEC 1024) при условии, что расчетные требования Международной электротехнической комиссии оказываются более жесткими, чем требования настоящей Инструкции.
2.3.2 Типовые зоны защиты стержневых и тросовых молниеотводов
Зоны защиты одиночного стержневого молниеотвода
Стандартной зоной защиты одиночного стержневого молниеотвода высотой является круговой конус высотой , вершина которого совпадает с вертикальной осью молниеотвода (рис.3.1). Габариты зоны определяются двумя параметрами: высотой конуса и радиусом конуса на уровне земли .
Рис. 3.1 Зона защиты одиночного стержневого молниеотвода
Приведенные ниже расчетные формулы (табл.3.4) пригодны для молниеотводов высотой до 150 м. При более высоких молниеотводах следует пользоваться специальной методикой расчета.
Таблица 3.4 Расчет зоны защиты одиночного стержневого молниеотвода
Надежность защиты |
Высота молниеотвода , м |
Высота конуса , м |
Радиус конуса , м |
|
0,9 |
От 0 до 100 |
0,85 |
1,2 |
|
От 100 до 150 |
0,85 |
|||
0,99 |
От 0 до 30 |
0,8 |
0,8 |
|
От 30 до 100 |
0,8 |
|||
От 100 до 150 |
0,7 |
|||
0,999 |
От 0 до 30 |
0,7 |
0,6 |
|
От 30 до 100 |
||||
От 100 до 150 |
Для зоны защиты требуемой надежности (рис.3.1) радиус горизонтального сечения на высоте определяется по формуле
. (3.1)
Зоны защиты одиночного тросового молниеотвода
Стандартные зоны защиты одиночного тросового молниеотвода высотой ограничены симметричными двускатными поверхностями, образующими в вертикальном сечении равнобедренный треугольник с вершиной на высоте и основанием на уровне земли 2 (рис.3.2).
Рис. 3.2 Зона защиты одиночного тросового молниеотвода: - расстояние между точками подвеса тросов
Приведенные ниже расчетные формулы (табл.3.5) пригодны для молниеотводов высотой до 150 м. При большей высоте следует пользоваться специальным программным обеспечением.
Здесь и далее под понимается минимальная высота троса над уровнем земли (с учетом провеса).
Таблица 3.5 Расчет зоны защиты одиночного тросового молниеотвода
Надежность защиты |
Высота молниеотвода , м |
Высота конуса , м |
Радиус конуса , м |
|
1 |
2 |
3 |
4 |
|
0,9 |
От 0 до 150 |
0,87 |
1,5 |
|
0,99 |
От 0 до 30 |
0,8 |
0,95 |
|
От 30 до 100 |
0,8 |
|||
От 100 до 150 |
0,8 |
|||
0,999 |
От 0 до 30 |
0,75 |
0,7 |
|
От 30 до 100 |
||||
От 100 до 150 |
Полуширина зоны защиты требуемой надежности (см. рис.3.2) на высоте от поверхности земли определяется выражением:
. (3.2)
При необходимости расширить защищаемый объем к торцам зоны защиты собственно тросового молниеотвода могут добавляться зоны защиты несущих опор, которые рассчитываются по формулам одиночных стержневых молниеотводов, представленным в табл.3.4. В случае больших провесов тросов, например, у воздушных линий электропередачи, рекомендуется рассчитывать обеспечиваемую вероятность прорыва молнии программными методами, поскольку построение зон защиты по минимальной высоте троса в пролете может привести к неоправданным затратам.
Зоны защиты двойного стержневого молниеотвода
Молниеотвод считается двойным, когда расстояние между стержневыми молниеприемниками не превышает предельного значения . В противном случае оба молниеотвода рассматриваются как одиночные.
Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного стержневого молниеотвода (высотой и расстоянием между молниеотводами) представлена на рис.3.3. Построение внешних областей зон двойного молниеотвода (полуконусов с габаритами , ) производится по формулам табл.3.4 для одиночных стержневых молниеотводов. Размеры внутренних областей определяются параметрами и , первый из которых задает максимальную высоту зоны непосредственно у молниеотводов, а второй - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами граница зоны не имеет провеса (). Для расстояний высота определяется по выражению
. (3.3)
Рис. 3.3 Зона защиты двойного стержневого молниеотвода
Входящие в него предельные расстояния и вычисляются по эмпирическим формулам табл.3.6, пригодным для молниеотводов высотой до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.
Таблица 3.6 Расчет параметров зоны защиты двойного стержневого молниеотвода
Надежность защиты |
Высота молниеотвода , м |
, м |
, м |
|
0,9 |
От 0 до 30 |
5,75 |
2,5 |
|
От 30 до 100 |
2,5 |
|||
От 100 до 150 |
5,5 |
2,5 |
||
0,99 |
От 0 до 30 |
4,75 |
2,25 |
|
От 30 до 100 |
* |
|||
От 100 до 150 |
4,5 |
1,5 |
||
0,999 |
От 0 до 30 |
4,25 |
2,25 |
|
От 30 до 100 |
* |
|||
От 100 до 150 |
4,0 |
1,5 |
Размеры горизонтальных сечений зоны вычисляются по следующим формулам, общим для всех уровней надежности защиты:
максимальная полуширина зоны в горизонтальном сечении на высоте
; (3.4)
длина горизонтального сечения на высоте
, (3.5)
причем при ;
ширина горизонтального сечения в центре между молниеотводами 2 на высоте
. (3.6)
Зоны защиты двойного тросового молниеотвода
Молниеотвод считается двойным, когда расстояние между тросами не превышает предельного значения . В противном случае оба молниеотвода рассматриваются как одиночные.
Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного тросового молниеотвода (высотой и расстоянием между тросами ) представлена на рис.3.4. Построение внешних областей зон (двух односкатных поверхностей с габаритами , ) производится по формулам табл.3.5 для одиночных тросовых молниеотводов.
Рис. 3.4 Зона защиты двойного тросового молниеотвода
Размеры внутренних областей определяются параметрами и , первый из которых задает максимальную высоту зоны непосредственно у тросов, а второй - минимальную высоту зоны посередине между тросами. При расстоянии между тросами граница зоны не имеет провеса (). Для расстояний высота определяется по выражению
. (3.7)
Входящие в него предельные расстояния и вычисляются по эмпирическим формулам табл.3.7, пригодным для тросов с высотой подвеса до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.
Таблица 3.7 Расчет параметров зоны защиты двойного тросового молниеотвода
Надежность защиты |
Высота молниеотвода , м |
, м |
, м |
|
1 |
2 |
3 |
4 |
|
0,9 |
От 0 до 150 |
6,0 |
3,0 |
|
0,99 |
От 0 до 30 |
5,0 |
2,5 |
|
От 30 до 100 |
5,0 |
|||
От 100 до 150 |
||||
0,999 |
От 0 до 30 |
4,75 |
2,25 |
|
От 30 до 100 |
||||
От 100 до 150 |
Длина горизонтального сечения зоны защиты на высоте определяется по формулам:
, при ;
при . (3.8)
Для расширения защищаемого объема на зону двойного тросового молниеотвода может быть наложена зона защиты опор, несущих тросы, которая строится как зона двойного стержневого молниеотвода, если расстояние между опорами меньше , вычисленного по формулам табл.3.6. В противном случае опоры рассматриваются как одиночные стержневые молниеотводы.
Когда тросы непараллельны или разновысоки либо их высота изменяется по длине пролета, для оценки надежности их защиты следует воспользоваться специальным программным обеспечением. Так же рекомендуется поступать при больших провесах тросов в пролете, чтобы избежать излишних запасов по надежности защиты.
Зоны защиты замкнутого тросового молниеотвода
Расчетные формулы п.3.3.2.5 могут использоваться для определения высоты подвеса замкнутого тросового молниеотвода, предназначенного для защиты с требуемой надежностью объектов высотой 30 м, размещенных на прямоугольной площадке площадью во внутреннем объеме зоны при минимальном горизонтальном смещении между молниеотводом и объектом, равном (рис.3.5). Под высотой подвеса троса подразумевается минимальное расстояние от троса до поверхности земли с учетом возможных провесов в летний сезон.
Рис. 3.5 Зона защиты замкнутого тросового молниеотвода
Для расчета используется выражение
, (3.9)
в котором константы и определяются в зависимости от уровня надежности защиты по следующим формулам:
а) надежность защиты =0,99
; (3.10)
; (3.11)
б) надежность защиты =0,999
; (3.12)
. (3.13)
Расчетные соотношения справедливы, когда 5 м. Работа с меньшими горизонтальными смещениями троса нецелесообразна из-за высокой вероятности обратных перекрытий молнии с троса на защищаемый объект. Замкнутые тросовые молниеотводы не рекомендуются, когда требуемая надежность защиты меньше 0,99.
Если высота объекта превышает 30 м, высота замкнутого тросового молниеотвода определяется с помощью программного обеспечения. Так же следует поступать для замкнутого контура сложной формы.
После выбора высоты молниеотводов по их зонам защиты рекомендуется проверить фактическую вероятность прорыва компьютерными средствами, а в случае большого запаса по надежности провести корректировку, задавая меньшую высоту молниеотводов.
2.3.3 Определение зон защиты по рекомендациям МЭК
Ниже приводятся правила определения зон защиты для объектов высотой до 60 м, изложенных в стандарте МЭК (IEC 1024-1-1). При проектировании может быть выбран любой способ защиты, однако практика показывает целесообразность использования отдельных методов в следующих случаях:
метод защитного угла используется для простых по форме сооружений или для маленьких частей больших сооружений;
метод фиктивной сферы - для сооружений сложной формы;
применение защитной сетки целесообразно в общем случае и особенно для защиты поверхностей.
В табл.3.8 для уровней защиты I-IV приводятся значения углов при вершине зоны защиты, радиусы фиктивной сферы, а также предельно допустимый шаг ячейки сетки.
Таблица 3.8 Значения углов при вершине зоны защиты, радиусы фиктивной сферы и предельно допустимый шаг ячейки сетки
Уровень защиты |
Радиус фиктивной сферы , м |
Угол , град, при вершине молниеотвода для зданий различной высоты , м |
Шаг ячейки сетки, м |
||||
20 |
30 |
45 |
60 |
||||
I |
20 |
25 |
* |
* |
* |
5 |
|
II |
30 |
35 |
25 |
* |
* |
10 |
|
III |
45 |
45 |
35 |
25 |
* |
10 |
|
IV |
60 |
55 |
45 |
35 |
25 |
20 |
Стержневые молниеприемники, мачты и тросы размещаются так, чтобы все части сооружения находились в зоне защиты, образованной под углом к вертикали. Защитный угол выбирается по табл.3.8, причем является высотой молниеотвода над поверхностью, которая будет защищена.
Метод защитного угла не используется, если больше, чем радиус фиктивной сферы, определенный в табл.3.8 для соответствующего уровня защиты.
Метод фиктивной сферы используется, чтобы определить зону защиты для части или областей сооружения, когда согласно табл.3.4 исключено определение зоны защиты по защитному углу. Объект считается защищенным, если фиктивная сфера, касаясь поверхности молниеотвода и плоскости, на которой тот установлен, не имеет общих точек с защищаемым объектом.
Сетка защищает поверхность, если выполнены следующие условия:
проводники сетки проходят по краю крыши, крыша выходит за габаритные размеры здания;
проводник сетки проходит по коньку крыши, если наклон крыши превышает 1/10;
боковые поверхности сооружения на уровнях выше, чем радиус фиктивной сферы (см. табл.3.8), защищены молниеотводами или сеткой;
размеры ячейки сетки не больше приведенных в табл.3.8;
сетка выполнена таким способом, что ток молнии имел всегда не менее двух различных путей к заземлителю; никакие металлические части не должны выступать за внешние контуры сетки.
Проводники сетки прокладываются, насколько это возможно, кратчайшими путями.
2.3.4 Защита электрических металлических кабельных линий передачи магистральной и внутризоновых сетей связи
Защита вновь проектируемых кабельных линий
На вновь проектируемых и реконструируемых кабельных линиях магистральной и внутризоновых сетей связи защитные мероприятия следует предусматривать в обязательном порядке на тех участках, где вероятная плотность повреждений (вероятное число опасных ударов молнии) превышает допустимую, указанную в табл.3.9.
Таблица 3.9 Допустимое число опасных ударов молнии на 100 км трассы в год для электрических кабелей связи
Тип кабеля |
Допустимое расчетное число опасных ударов молнии на 100 км трассы в год |
||
в горных районах и районах со скальным грунтом при удельном сопротивлении выше 500 Ом·м и в районах вечной мерзлоты |
в остальных районах |
||
Симметричные одночетверочные и однокоаксиальные |
0,2 |
0,3 |
|
Симметричные четырех- и семичетверочные |
0,1 |
0,2 |
|
Многопарные коаксиальные |
0,1 |
0,2 |
|
Кабели зоновой связи |
0,3 |
0,5 |
Защита новых линий, прокладываемых вблизи уже существующих
Если проектируемая кабельная линия прокладывается вблизи существующей кабельной линии и известно фактическое число повреждений последней за время эксплуатации сроком не менее 10 лет, то при проектировании защиты кабеля от ударов молнии норма на допустимую плотность повреждений учитывает отличие фактической и расчетной повреждаемости существующей кабельной линии.
В этом случае допустимая плотность повреждений проектируемой кабельной линии находится умножением допустимой плотности из табл.3.9 на отношение расчетной и фактической повреждаемостей существующего кабеля от ударов молнии на 100 км трассы в год:
.
Защита существующих кабельных линий
На существующих кабельных линиях защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т.п.), но принимается не менее 100 м в каждую сторону от места повреждения. В этих случаях предусматривается прокладка грозозащитных тросов в земле. Если повреждается кабельная линия, уже имеющая защиту, то после устранения повреждения производится проверка состояния средств грозозащиты и только после этого принимается решение об оборудовании дополнительной защиты в виде прокладки тросов или замены существующего кабеля на более молниестойкий. Работы по защите должны осуществляться сразу после устранения грозового повреждения.
2.3.5 Защита оптических кабельных линий передачи магистральной и внутризоновых сетей связи
Допустимое число опасных ударов молнии в оптические линии магистральной и внутризоновых сетей связи
На проектируемых оптических кабельных линиях передачи магистральной и внутризоновых сетей связи защитные мероприятия от повреждений ударами молнии предусматриваются в обязательном порядке на тех участках, где вероятное число опасных ударов молнии (вероятная плотность повреждений) в кабели превышает допустимое число, указанное в табл.3.10.
Таблица 3.10 Допустимое число опасных ударов молнии на 100 км трассы в год для оптических кабелей связи
Назначение кабеля |
В горных районах и районах со скальным грунтом при удельном сопротивлении выше 500 Ом·ми в районах вечной мерзлоты |
В остальных районах |
|
Кабели магистральной сети связи |
0,1 |
0,2 |
|
Кабели внутризоновой сети связи |
0,3 |
0,5 |
Рекомендуемые категории молниестойкости оптических кабельных линий
При проектировании оптических кабельных линий передачи предусматривается использование кабелей, имеющих категорию по молниестойкости не ниже приведенных в табл.3.11, в зависимости от назначения кабелей и условий прокладки. В этом случае при прокладке кабелей на открытой местности защитные меры могут потребоваться крайне редко, только в районах с высоким удельным сопротивлением грунта и повышенной грозовой деятельностью.
Таблица 3.11 Рекомендуемые категории по молниестойкости оптических кабельных линий
Районы |
Для магистральной сети связи |
Для внутризоновых сетей связи |
|
С удельным сопротивлением грунта до 1000 Ом·м |
I-III |
I-IV |
|
С удельным сопротивлением грунта свыше 1000 Ом·м |
l, ll |
I-III |
|
С многолетнемерзлым грунтом |
I |
l, ll |
Защита существующих оптических кабельных линий
На существующих оптических кабельных линиях передачи защитные мероприятия осуществляются на тех участках, где произошли повреждения от ударов молнии, причем длина защищаемого участка определяется условиями местности (протяженностью возвышенности или участка с повышенным удельным сопротивлением грунта и т.п.), но должна быть не менее 100 м в каждую сторону от места повреждения. В этих случаях необходимо предусматривать прокладку защитных проводов.
Работы по оборудованию защитных мер осуществляются сразу после устранения грозового повреждения.
2.3.6 Защита от ударов молнии электрических и оптических кабелей связи, проложенных в населенном пункте
При прокладке кабелей в населенном пункте, кроме случая пересечения и сближения с ВЛ напряжением 110 кВ и выше, защита от ударов молнии не предусматривается.
молния здание защита электрический
2.3.7 Защита кабелей, проложенных вдоль опушки леса, вблизи отдельно стоящих деревьев, опор, мачт
Защита кабелей связи, проложенных вдоль опушки леса, а также вблизи объектов высотой более 6 м (отдельно стоящих деревьев, опор линии связи, линий электропередачи, мачты молниеотводов и т.п.) предусматривается, если расстояние между кабелем и объектом (или его подземной частью) менее расстояний, приведенных в табл.3.12 для различных значений удельного сопротивлений земли.
Таблица 3.12 Допустимые расстояния между кабелем и заземляющим контуром (опорой)
Удельное сопротивление грунта, Ом·м |
Наименьшее допустимое расстояние, м |
|
До 100 |
5 |
|
Более 100 до 1000 |
10 |
|
Более 1000 |
15 |
3. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ
3.1 Общие положения
В разд.4 изложены основные принципы защиты от вторичных воздействий молнии электрических и электронных систем с учетом рекомендации МЭК (стандарты МЭК 61312). Эти системы используются во многих отраслях производства, применяющих достаточно сложное и дорогостоящее оборудование. Они более чувствительны к воздействию молнии, чем устройства предыдущих поколений, применяются специальные меры по защите их от опасных воздействий молнии.
3.2 Зоны защиты от воздействия молнии
Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов напряжений в пространстве зоны.
Зона 0 - зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.
Зона 0 - зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.
Зона 1 - зона, где объекты не подвержены прямому удару молнии и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0; в этой зоне электромагнитное поле может быть ослаблено экранированием.
Прочие зоны - эти зоны устанавливаются, если требуется дальнейшее уменьшение тока и (или) ослабление электромагнитного поля; требования к параметрам зон определяются в соответствии с требованиями к защите различных зон объекта.
Общие принципы разделения защищаемого пространства на зоны м...
Подобные документы
Основные требования к современным промышленным зданиям. Объемно-планировочные решения промышленных зданий. Типы многоэтажных промышленных зданий. Ячейковые и зальные промышленные здания. Унифицированные параметры одноэтажных производственных зданий.
презентация [9,0 M], добавлен 20.12.2013Определение состава схем и чертежей электрооборудования, их назначение и правила чтения. Изучение порядка монтажа закрытых электрораспределительных устройств зданий. Описание технических условий монтажа кабелей, электрических сетей и проводной проводки.
контрольная работа [23,6 K], добавлен 29.12.2013Основы проектирования промышленных предприятий. Внутрицеховое подъемно-транспортное оборудование. Унификация в промышленном строительстве. Модульная система и параметры зданий. Стальной каркас одноэтажных зданий. Требования к стенам и их классификация.
курс лекций [2,9 M], добавлен 16.11.2012Элементы оконных блоков промышленных зданий. Наружное и внутреннее открывание деревянных окон для многоэтажных зданий со спаренными и раздельными переплетами. Обрамление воротного проема, основные виды и оборудование ворот. Двери производственных зданий.
презентация [846,1 K], добавлен 18.04.2016Обзор типологии промышленных зданий, предназначенных для размещения промышленных производств и обеспечивающих необходимые условия для труда людей и эксплуатации технологического оборудования. Технология строительства быстровозводимых промышленных зданий.
реферат [22,4 K], добавлен 26.10.2011Ознакомление с видами конструктивных систем каркаса: стоечно-балочной и рамной. Рассмотрение элементов каркаса одноэтажных промышленных зданий. Изучение классификации фундаментов. Определение и характеристика особенностей оснований для фундаментов.
презентация [4,0 M], добавлен 05.08.2017Суть эффективного и рационального использования топливно-энергетических ресурсов, энергосбережение в промышленных и общественных зданиях и сооружениях. Элементы тепловых сетей, энергетическая паспортизация зданий и экспертиза проектов теплозащиты.
контрольная работа [29,0 K], добавлен 06.02.2010Теоретические основы создания строительных чертежей. Общие требования к выполнению и составлению строительных чертежей, их оформлению, условным обозначениям, масштабированию и чтению. Общие и специфические требования к текстовым документам работы.
курсовая работа [3,9 M], добавлен 27.07.2010Основные требования, которым должно отвечать любое здание. Требования к функциональной целесообразности. Элементы и конструктивные схемы зданий. Классификация строительных материалов и конструкций по степени возгораемости. Эстетические качества здания.
реферат [30,6 K], добавлен 09.12.2011Типология и классификация гражданских зданий. Основные требования, предъявляемые к зданиям. Основные положения модульной системы. Конструктивные схемы бескаркасных, каркасных зданий и зданий со смешанным каркасом. Модульная система координации размеров.
реферат [2,2 M], добавлен 15.01.2011Классификация материалов, предназначенных для повышения архитектурно-декоративных и эксплуатационных характеристик зданий и сооружений, защиты конструкций от атмосферных воздействий. Отделочные материалы для фасадов зданий и внутренней отделки помещений.
реферат [213,0 K], добавлен 01.05.2017Общие сведения о зданиях и сооружениях. Технико-экономическая оценка проектов жилых и общественных зданий и сооружений. Объемно-планировочные и конструктивные решения жилых зданий. Основания и фундаменты зданий. Инженерное оборудование зданий.
курс лекций [269,4 K], добавлен 23.11.2010Понятие о каркасах, область их применения и классификация по разных признакам, разновидности и функциональные особенности. Главные элементы сборного и монолитного железобетонного каркаса. Привязка колонн и стен многоэтажных зданий к координатным осям.
презентация [9,7 M], добавлен 20.12.2013Строительная техника зданий с зальными помещениями. Изучение плоскостных и пространственных большепролетных конструкции. Описание архитектуры балок, арок, сводов, куполов. Висячие (вантовые) конструкции. Трансформируемые и пневматические покрытия.
реферат [5,4 M], добавлен 09.05.2015Элементы, конструктивные схемы и классификация зданий. Классификация объектов по сложности. Строительные нормы и правила. Конструктивные элементы зданий. Материал и конструкции перекрытий. Функциональные части и детали конструкций оконных блоков.
презентация [1,5 M], добавлен 20.04.2014Порядок усиления конструкций покрытий одноэтажных промышленных зданий. Этапы проведения опалубочных работ. Исправление дефектов конструкций зданий индустриального строительства. Окраска поверхностей водными, масляными и синтетическими составами.
контрольная работа [2,4 M], добавлен 21.06.2009Изучение условий прокладки газопроводов и описание требований к соединениям труб газопровода. Определение требований к помещениям при установке газовых приборов. Характеристика материалов газопроводных систем зданий. Состав газорегуляторных установок.
шпаргалка [28,1 K], добавлен 30.10.2013Изучение архитектурно-строительных требований к индустриальной отделке фасадов зданий. Характеристика выбора материала и конструкций пола, дефектов отделки и окраски фасадов зданий. Анализ техники безопасности при производстве работ по отделке фасадов.
курсовая работа [48,2 K], добавлен 17.08.2011Структура и назначение генерального плана застройки. Обоснование выбора территории предприятия под застройку и объемно-планировочные решения зданий. Планирование системы инженерно-технических сетей и коммуникаций, озеленения территории предприятия.
контрольная работа [381,4 K], добавлен 07.06.2012Виды капитального строительства на предприятиях лесопромышленного комплекса. Сущность проектирования промышленного здания: привязка типовых проектов к конкретным условиям места строительства. Расчет ограждающих конструкций по теплотехническим требованиям.
курсовая работа [585,7 K], добавлен 14.12.2012