Понятие и классификация фундаментов

Сущность и характеристика железобетонных фундаментов. Их виды: ленточный, центрально-нагруженный и свайный. Выбор типа и конструкции фундамента в зависимости от конструктивных требований и характера работы и грунта. Определение глубины заложения.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 12.08.2015
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Понятие и классификация фундаментов

1. Характеристика

Фундаменты, так же как и перекрытия, являются неотъемлемой частью любого здания. В подавляющем большинстве случаев их выполняют из железобетона. Они передают нагрузку от опирающихся на них колонн или стен на основание. Фундаменты бывают трех типов: отдельные - под каждой колонной (рис. 1, а), ленточные - под рядами колонн в одном или двух направлениях (см. рис. 5), а также под стенами (рис. 1, б), сплошные. - под всем сооружением (рис. 1, в). Тип фундамента выбирают из сопоставления его стоимости, расхода материалов и трудовых затрат с учетом эксплуатационных и конструктивных требований. Отдельные фундаменты устраивают при относительно небольших нагрузках, хороших грунтах и достаточно редком расположении колонн. При больших нагрузках и относительно слабых грунтах делают ленточные фундаменты. Последние особенно целесообразны при неоднородных грунтах и различных по величине нагрузках. Если несущая способность ленточных фундаментов недостаточна, то устраивают сплошные фундаменты.

Рис. 1. Типы железобетонных фундаментов

2. Ленточные фундаменты

По очертанию в профиле ленточный фундамент под стену в простейшем случае представляет собой прямоугольник. Его ширину устанавливают немного больше толщины стены, предусматривая с каждой стороны небольшие уступы по 50...150 мм. Однако прямоугольное сечение фундамента на высоте допустимо лишь при небольших нагрузках на фундамент и достаточно высокой несущей способности грунта.

Рис. 2. Определение глубины заложения фундаментов:

а - схема: 1 - подошва фундамента, 2 - тело фундамента, 3 - отметка глубины заложения фундамента, 4 - отметка глубины промерзания грунта, 5 - отметка уровня грунтовых вод, 6 - планировочная отметка, 7 - стена, 8 - уровень пола I этажа, 9 - обрез фундамента, hф - глубина заложения фундамента, b - ширина подошвы фундамента

Чаще всего для передачи давления на грунт и обеспечения его несущей способности необходимо увеличивать площадь подошвы фундамента путем ее уширения. Теоретической формой сечения фундамента в этом случае является трапеция, где угол б определяет распространение давления и принимается для бутовой кладки и бутобетона от 27 до 33°, для бетона - 45°. Устройство таких трапецеидальных фундаментов связано с определенными трудозатратами, поэтому практически такие фундаменты в зависимости от расчетной ширины подошвы выполняют прямоугольными или ступенчатой формы с соблюдением правила, чтобы габариты фундамента не выходили за пределы его теоретической формы. Размеры ступеней по ширине принимают 20...25 см, а по высоте - соответственно 40...50 см.

Рис. 3. Конструктивные схемы фундаментов:

а - ленточный под стены, б - ленточный под колонны, в - столбчатый под стены, г - отдельный под колонну, д - сплошной безбалочный, е - сплошной балочный, ж - свайный, 1 - стена, 2 - ленточный фундамент, 3 - железобетонная колонна, 4 - железобетонная фундаментная балка, 5 - столбчатый фундамент, 6 - ростверк свайного фундамента, 7 - железобетонная фундаментная плита, 8 - сваи

По способу устройства ленточные фундаменты бывают монолитные и сборные. Монолитные фундаменты устраивают бутовые, бутобетонные, бетонные и железобетонные. Ширина бутовых фундаментов должна быть не менее 0,6 м для кладки из рваного бута и 0,5 м - из бутовой плиты. Высота ступеней в бутовых фундаментах составляет обычно около 0,5 м, ширина - от 0,15 до 0,25 м. Устройство монолитных бутобетонных, бетонных и железобетонных фундаментов требует проведения опалубочных работ. Кладку бутовых фундаментов производят на сложном или цементном растворе с обязательной перевязкой (несовпадением) вертикальных швов (промежутков между камнями, заполняемых раствором).

Бутобетонные фундаменты состоят из бетона класса В5 с включением в его толщу (в целях экономии бетона) отдельных кусков бутового камня. Размеры камней должны быть не более 1/3 ширины фундамента.

Монолитные бутовые фундаменты не отвечают требованиям современного индустриального строительства, а для их устройства трудно механизировать работы. Бутовые и бутобетонные фундаменты весьма трудоемки при возведении, поэтому их применяют в основном в районах, где бутовый камень является местным материалом.

Более эффективными являются бетонные и железобетонные фундаменты из сборных элементов заводского изготовления, которые в настоящее время имеют наибольшее распространение. При их устройстве трудовые затраты на строительство уменьшаются вдвое. Их можно возводить и в зимних условиях без устройства обогрева.

Сборные ленточные фундаменты под стены состоят из фундаментных блоков-подушек и стеновых фундаментных блоков. Фундаментные подушки укладывают непосредственно на основание при песчаных грунтах или на песчаную подушку толщиной 100 ... 150 мм, которая должна быть тщательно утрамбована.

Фундаментные бетонные блоки укладывают на растворе с обязательной перевязкой вертикальных швов, толщину которых принимают равной 20 мм. Вертикальные колодцы, образуемые торцами блоков, тщательно заполняют раствором. Связь между блоками продольных и угловых стен обеспечивается перевязкой блоков и закладкой в горизонтальные швы арматурных сеток из стали диаметром 6 ... 10 мм.

Блоки-подушки изготовляют толщиной 300 и 400 мм и шириной от 1000 до 2800 мм, а блоки-стенки - шириной 300, 400, 500 и 600 мм, высотой 580 и длиной от 780 до 2380 мм.

В практике строительства применяют также сборные фундаментные блоки, имеющие толщину 380 мм при толщине надземных стен 380, 510 и 640 мм. При такой конструкции прочность материала фундамента используется полнее, и в результате получается экономия бетона. Этой же цели соответствует устройство так называемых прерывистых фундаментов, в которых блоки-подушки укладывают на расстоянии 0,3 ... 0,5 м друг от друга. Промежутки между ними заполняют песком.

Строительство крупнопанельных зданий и зданий из объемных блоков потребовало разработки новых конструктивных решений фундаментов. Фундамент состоит из железобетонной плиты толщиной 300 мм и длиной 3,5 м и установленных на них панелей, представляющих собой сквозные безраскосные железобетонные фермы, имеющие толщину 240 мм и высоту, равную высоте подвального помещения. Соединяются элементы между собой с помощью сварки закладных стальных деталей.

При строительстве зданий на участках со значительными уклонами фундаменты стен выполняют с продольными уступами. Высота уступов должна быть не более 0,5 м, а длина - не менее 1,0 м. Этим же правилом пользуются при устройстве перехода фундаментов внутренних стен к фундаментам наружных при разных глубинах их заложения.

Если необходимо обеспечить независимую осадку двух смежных участков здания (например, при их разной этажности), то при устройстве ленточных монолитных фундаментов в их теле устраивают сквозные, разъединяющие фундамент зазоры. Для этого в зазоры вставляют доски, обернутые толем. В подвальных зданиях доски с наружной стороны вынимают и швы в этих местах заполняют битумом. Если фундаменты сборные, то для обеспечения необходимого зазора блоки укладывают так, чтобы вертикальные швы совпадали.

В местах пропуска различных трубопроводов (водопровода, канализации и др.) в монолитных фундаментах заранее предусматривают соответствующие отверстия, а в сборных между блоками - необходимые зазоры с последующей их заделкой.

3. Отдельные фундаменты

Центрально-нагруженные фундаменты. Эти фундаменты проектируют квадратными в плане.

По форме они могут быть ступенчатыми (рис. 4, а) или пирамидальными (рис. 4, б). Последние экономичнее по расходу материалов, но сложнее в изготовлении и применяются реже.

Обычно фундаменты проектируют так, чтобы нулевой цикл строительных работ мог быть закончен до монтажа колонн и произведена обратная засыпка грунта. Для этого верх фундамента располагают на 15 см ниже уровня чистого пола. Устанавливают фундаменты на естественный грунт, бетонную, щебеночную или песчаную подушку толщиной 10 см.

По способу изготовления различают фундаменты сборные и монолитные. В большинстве случаев применяют монолитные фундаменты. Сборные устраивают, когда они невелики по размерам, в сложных геологических или суровых зимних условиях, а также когда применение их сокращает сроки строительства и дает экономию. Монолитные фундаменты выполняют из бетона классов В12,5 ... В15, сборные - В15...В20. Центральнонагруженные фундаменты армируют сварными сетками классов А-II, A-III с одинаковой арматурой в двух направлениях. Шаг стержней обычно принимают равным 150...200 мм, диаметр - не менее 10 мм. Минимальная толщина защитного слоя при возведении монолитного фундамента на бетонной подготовке 35мм, при ее отсутствии 70мм, для сборных фундаментов 30 мм.

Рис. 4. Отдельные центральнонагруженные фундаменты:

а - монолитный под сборную колонну; б - сборный под сборную колонну; в - монолитный под монолитную колонну

Сборные фундаменты проектируют под сборные колонны, монолитные фундаменты - как под сборные, так и под монолитные. Сборные колонны жестко заделывают в специальные гнезда - стаканы, оставляемые в фундаменте при бетонировании (рис. 4, a, б). Закрепление колонн в стакане осуществляют посредством заливки цементного раствора между стенкой и колонной. Для жесткого соединения монолитных колонн с фундаментами из последних выпускают арматуру с площадью сечения, равной расчетной площади арматуры колонны у обреза фундамента (рис. 4, в). Выпуски арматуры фундамента стыкуют с арматурой колонны дуговой сваркой или внахлестку, без сварки. Стыки устраивают выше уровня пола. В пределах фундамента выпуски арматуры соединяют в каркасы хомутами и доводят до бетонной подготовки. Расчет фундамента состоит из двух частей: расчета основания (определяют форму и размеры подошвы) и тела фундамента (высоту фундамента, размеры его ступеней и сечения арматуры).

Рис. 5. К расчету отдельных центрально нагруженных фундаментов:

1 - пирамида продавливания

Расчет основания фундамента. Определение размеров подошвы фундамента производят при допущении, что реактивное давление на грунт по подошве фундамента распределяется по линейному закону, например при центральном нагружении по прямоугольной эпюре. В действительности распределение давления зависит от свойств грунта, жесткости фундамента и имеет более сложный характер. Однако, как показали исследования, принятое допущение упрощает расчет и не приводит к ошибкам.

Нагрузками, создающими давление на грунт, являются продольная сила Ncol, передаваемая колонной, и собственный вес фундамента, включая вес грунта на его ступенях Nfun. Площадь подошвы А должна быть подобрана так, чтобы среднее давление под подошвой не превышало расчетного давления на грунт R [4]:

(Ncol + Nfun)/A ? R.

Значение продольного усилия принимают с коэффициентом надежности по нагрузке гf = 1, поскольку расчет основания производят по деформациям. Обозначив глубину заложения подошвы фундамента Н и принимая нагрузку от средней плотности материала фундамента и грунта на его ступенях гm = 20 кН/м3, из (10.1) получают (Ncol + AHгm)/A ? R, откуда

A ? Ncol/(R-гmH).

По найденной площади устанавливают размеры сторон подошвы фундамента, округляя их в большую сторону до значения, кратного 30 см, если применяют металлическую инвентарную опалубку, и 10 см при использовании неинвентарной опалубки.

Расчет тела фундамента. Высоту фундамента определяют из условия его прочности на продавливание в предположении, что продавливание происходит по поверхности пирамиды, боковые стороны которой начинаются у колонны и наклонены под углом 45° к вертикали. В качестве расчетной продавливающей силы F принимают силу Ncol за вычетом отпора грунта р, распределенного по площади нижнего основания пирамиды продавливания. При квадратной колонне со стороной hcol площадь нижнего основания будет (hcol + 2h0)2, тогда

F = Ncol - p(hcol + 2h0)2,

где Ncol - расчетное продольное усилие, передаваемое колонной на фундамент, вычисляемое при гf > 1; p - отпор грунта от расчетного продольного усилия без учета веса фундамента и грунта на его ступенях.

Условие прочности на продавливание имеет вид, где иm - среднее арифметическое между периметрами верхнего и нижнего основания пирамиды продавливания:

um = [4hcol+ 4 (hcol + 2h0)]/2 = 4 (hcol + h0).

Проверку фундамента на продавливание следует производить не только по всей высоте, но и под каждой из ступеней.

Если в стакан фундамента устанавливают сборную колонну, то его глубина (м) должна также удовлетворять конструктивным требованиям обеспечения жесткого защемления колонны в фундаменте и достаточной анкеровки продольной арматуры [6]:

hsoc ? (1-1,5)hcol + 0,05;

hsoc ? lan + 0,05,

где lan - длина анкеровки арматуры колонны в стакане фундамента, lan = (20...30)d.

Определив высоты фундамента из расчета на продавливание [см. формулу (10.5)] и конструктивных требований, принимают большую из них. При h ? 450 мм фундамент выполняют одноступенчатым, при 450мм < h ? 900 мм - двухступенчатым и при h > 900 мм - трехступенчатым.

Причинами разрушения фундаментов под сборные колонны могут также быть продавливание дна стакана (см. рис. 4, а) и раскалывание фундамента (см. рис 10.5, в). Это имеет место при отсутствии надежного сопряжения колонны с фундаментом из-за некачественного омоноличивания стыка и т. п. Проверку дна стакана на продавливание осуществляют по формуле (9.2) по аналогии с изложенным ранее. Проверку фундамента на раскалывание (рис. 5, в) делают из условия [11] :

Ncol ? 2мг1A1Rb ,

где м - коэффициент трения бетона по бетону, м = 0,75; г1 - коэффициент условия работы фундамента в грунте, г1 = 1,3; A1 - площадь вертикального сечения фундамента в плоскости, проходящей по оси сечения колонны, за вычетом площади стакана.

Ступени фундамента работают под воздействием реaктивного давления грунта p снизу, подобно консолям, заделанным в массив фундамента (рис. 5, б). Поскольку фундамент не имеет поперечной арматуры, высота нижней ступени должна быть также проверена на прочность по наклонному сечению по условию восприятия поперечной силы бетоном :

Q = p(l - c)b ? 1,5Rbt bh20/с,

где правую часть неравенства принимают не менее 0,6Rbt bh0 и не более 2,5Rbt bh0; с - длина проекции рассматриваемого наклонного сечения (рис. 5, а).

Армирование фундамента по подошве определяют расчетом по нормальным сечениям 1 - 1, 2 - 2; значения изгибающих моментов в этих сечениях вычисляются как для консольных балок:

M1-1 = 0,125p (a - hcol)2b;

M2-2 = 0,125p(a - a1)2b.

Требуемую площадь арматуры, воспринимающую растягивающие напряжения при изгибе в сечении 1 - 1 на всю ширину фундамента, определяют из условия 1-1 = RsAs1z1, приняв z1?0,9h0 :

As1 = M1-1/(0,9h0Rs)·.

аналогично для сечения 2 - 2 :

As2 = M2-2/(0,9H01Rs).

Из двух значений As1 и As2 выбирают большее, по которому и производят подбор диаметра и количества стержней. Вначале задаются шагом стержней, затем определяют их количество, на единицу больше числа шагов. Деля As на число стержней, получают требуемую площадь одного стержня, по которой подбирают диаметр. При ширине подошвы фундамента более 3 м в целях экономии стали половину стержней можно не доводить до конца на 1/10 длины в каждую сторону.

4. Свайные фундаменты

Свайные фундаменты применяются при возведении зданий и сооружений на грунтах с недостаточной несущей способностью Они состоят из группы свай, объединенных поверху ростверком - железобетонной плитой (балкой). По сравнению с фундаментами на естественном основании применение свайных фундаментов уменьшает объем земляных работ, снижает трудоемкость нулевого цикла, облегчает производство работ в зимнее время.

Рис 10.6. Схема свайного фундамента:

а - на сваях - стойках, б - на висячих сваях, 1 - твердый грунт, 2 - сваи, 3 - рыхлый грунт, 4 - ростверк

По характеру работы различают сваи-стойки, опирающиеся на твердый грунт, и висячие сваи, нагрузка на которые воспринимается грунтом как по площади поперечного сечения сваи, так и силами трения по ее боковой поверхности (рис. 6). В отечественной практике известно более 150 видов свай, отличающихся материалом, способом устройства и т. п., однако наибольшее распространение получили железобетонные сваи.

По форме поперечного сечения различают железобетонные сваи сплошные и полые (пустотелые и сваи-оболочки). При диаметре поперечного сечения до 800 мм и наличии внутренней полости сваи называют пустотными, при диаметре более 800 мм - сваями-оболочками.

При небольших нагрузках широко применяют сваи квадратного сплошного сечения (цельные и составные) размерами от 200Ч200 мм до 400Ч400 мм, длиной 3...16 м без предварительного напряжения продольной арматуры и 3...20 м с предварительным напряжением. Сваи без предварительного напряжения изготовляют из бетона класса В15, арматуры классов А-II, A-III, диаметром не менее 12 мм. В верхней части сваи, непосредственно воспринимающей удар молота, устанавливают 3...5 сеток из арматурной проволоки на расстоянии 5 см друг от друга В средней части располагают две строповочные петли. (рис. 7).

Сваи с предварительно напряженной продольной арматурой изготовляют из бетонов В20...В25; по сравнению со сваями без предварительного напряжения арматуры они экономичней (по расходу арматуры) и поэтому предпочтительней. Полые круглые сваи и сваи-оболочки применяют при больших нагрузках. Их изготовляют звеньями длиной 2 ... 6 м. Стыки звеньев могут быть болтовыми, сварными или на вкладышах.

Несущая способность фундаментов на сваях-стойках (при любой их расстановке в плане) равна сумме несущих способностей отдельных свай, а несущая способность свайных фундаментов на висячих сваях зависит от числа свай, их расстановки в плане, формы, размеров поперечного сечения и длины.

Рис. 7. Железобетонная свая:

1 - продольная арматура; 2 - арматурные сетки; 3 - поперечная арматура 4 - сварной шов

железобетонный фундамент свайный конструкция

Сваи и свайные фундаменты рассчитывают по предельным состояниям. По предельным состояниям первой группы определяют несущую способность свай по грунту, прочность материала свай и ростверков [27]; по предельным состояниям второй группы рассчитывают усадку свайных фундаментов, образование и раскрытие трещин в железобетонных фундаментах и ростверках. Помимо этого сваи рассчитывают по прочности на воспринятие усилий, возникающих при монтаже, транспортировке, а также при выемке свай из пропарочных камер.

Библиографический список

1.Бойко М.Д. Диагностика повреждений и методы восстановления эксплуатационных качеств зданий. - Л.: Стройиздат, 1975.

2.СНиП 2.03.11-85. Защита строительных конструкций от коррозии. - М.: Стройиздат, 1986.

3.СНиП П-22-81. Каменные и армокаменные конструкции. - М.: Стройиздат, 1983.

4.Хило Е.П., Попович Б.С. Усиление железобетонных конструкций с изменением расчетной схемы и напряженного состояния. - Львов: Высш. школа, 1976.

5.Ануфриев Н.М. Усиление железобетонных конструкций промышленных зданий и сооружений. - Л. - М.: Изд-во литературы по строительству, 1965.

6.Гильман Я.Д., Гильман Е.Д. Усиление и восстановление зданий на лессовидных просадочных грунтах. - М.: Стройиздат, 1989.

7.Далматов Б.И., Бронин Б.Н. и др. Особенности устройства фундаментов на пылевато-глинистых грунтах в условиях реконструкции // Основания, фундаменты и механика грунтов. 1986. № 5. С.16.

8.Кутуков В.Н. Реконструкция зданий. - М.: Высш. школа, 1981.

9.Соколов В.К. Реконструкция жилых зданий. - М.: Московский рабочий, 1982.

10.Ануфриев Н.М. Исправление дефектов изготовления и монтажа сборных железобетонных конструкций промышленных зданий. - Л. - М.: Изд-во литературы по строительству, 1971.

11.Рекомендации по восстановлению и усилению полносборных зданий и полимеррастворами. - М.: Стройиздат, 1990.

12.Рекомендации по оценке состояния и усилению строительных конструкций промышленных зданий и сооружений. - М.: Стройиздат, 1989.

13.Рекомендации по обеспечению надежности и долговечности железобетонных конструкций промышленных зданий и сооружений при их реконструкции и восстановлении. - М.: Стройиздат, 1990.

14.Правила оценки физического износа жилых зданий. ВСН 53-86 (р). - М.: Гражданстрой, 1988.

15.Комиссарчик Р.Г. Методы технического обследования ремонтируемых зданий. - М.: Стройиздат, 1975.

16.Швецов Г.И., Носков И.В. и др. Справочник: Основания и фундаменты. - М.: Высш. школа, 1991.

17.Альбрехт Р. Дефекты и повреждения строительных конструкций. - М.: Стройиздат, 1979.

18.Анпилов В.Е. Формирование и прогноз режима грунтовых вод на застраиваемых территориях. - М.: Недра, 1984.

19.Покровский В.М. Гидроизоляционные работы: Справочник строителя. - М.: Стройиздат, 1985.

20.СНиП П-23-81. Стальные конструкции. Нормы проектирования. - М.: Стройиздат, 1982.

21.Попов Г.Т., Бурак Л.Я. Техническая экспертиза жилых зданий старой постройки. - Л.: Стройиздат, 1986.

22.Рекомендации по усилению каменных конструкций зданий и сооружений. - М.: Стройиздат, 1984.

23.Кудзис А.П. Железобетонные и каменные конструкции. В 2-х ч. Ч. 2. - М.: Высшая школа, 1989.

Размещено на Allbest.ru

...

Подобные документы

  • Конструирование свайных фундаментов мелкого заложения. Анализ инженерно-геологических условий. Определение глубины заложения подошвы фундамента, зависящей от конструктивных особенностей здания. Проведение проверки по деформациям грунта основания.

    курсовая работа [242,3 K], добавлен 25.11.2014

  • Оценка инженерно-геологических условий строительной площадки. Выбор глубины заложения фундаментов, сооружаемых в открытом котловане. Определение размеров подошвы фундаментов мелкого заложения (на естественном основании). Расчет свайного фундамента.

    курсовая работа [336,3 K], добавлен 13.12.2013

  • Анализ инженерно-геологических условий площадки. Проектирование фундамента мелкого заложения на естественном основании, искусственном основании в виде грунтовой подушки. Расчёт свайных фундаментов, глубины заложения фундамента. Армирование конструкции.

    курсовая работа [698,7 K], добавлен 04.10.2008

  • Определение глубины заложения фундамента сооружения. Расчет осадки фундамента методами послойного суммирования и эквивалентного слоя. Проектирование свайного фундамента. Выбор глубины заложения ростверка, несущего слоя грунта, конструкции и числа свай.

    курсовая работа [1,1 M], добавлен 01.11.2014

  • Анализ инженерно-геологических условий и определение расчетных характеристик грунтов. Проектирование фундаментов на естественном основании. Определение глубины заложения подошвы фундамента. Сопротивление грунта основания. Выбор типа, длины и сечения свай.

    курсовая работа [154,4 K], добавлен 07.03.2016

  • Назначение размеров подошвы фундаментов. Модуль деформации грунта. Определение расчетной глубины промерзания. Инженерно-геологический разрез участка, отводимого под застройку. Выбор глубины заложения фундамента. Выбор расчетных сечений и площадей.

    курсовая работа [412,7 K], добавлен 30.12.2011

  • Конструктивные особенности подземной части здания. Выбор типа и конструкции фундамента. Назначение глубины заложения фундаментов. Определение несущей способности сваи и расчетной нагрузки, допускаемой на сваю по грунту основания и прочности материала.

    дипломная работа [1,8 M], добавлен 14.11.2017

  • Оценка инженерно-геологических условий площадки строительства. Определение глубины заложения ростверка и несущей способности сваи. Расчет фундаментов мелкого заложения на естественном основании и свайного фундамента. Технология производства работ.

    курсовая работа [1002,4 K], добавлен 26.11.2014

  • Анализ грунтовых условий. Сбор нагрузок на фундамент. Назначение глубины заложения. Определение напряжений и осадки основания под участком стены с пилястрой. Расчет основания фундаментов мелкого заложения по деформации. Проектирование свайного фундамента.

    курсовая работа [1,9 M], добавлен 07.05.2014

  • Определение наименования и состояния грунтов. Построение инженерно-геологического разреза. Выбор глубины заложения фундамента. Определение осадки фундамента. Определение глубины заложения и назначение размеров ростверка. Выбор типа и размеров свай.

    курсовая работа [623,7 K], добавлен 20.04.2013

  • Характеристика проектирования оснований и фундаментов. Инженерно-геологические условия выбранной строительной площадки. Общие особенности заложения фундамента, расчет осадки, конструирование фундаментов мелкого заложения. Расчёт свайных фундаментов.

    курсовая работа [1,1 M], добавлен 08.03.2012

  • Оценка инженерно-геологических условий стройплощадки. Конструктивные особенности подземной части здания. Выбор типа и конструкции фундаментов, назначение глубины их заложения. Определение несущей способности сваи и расчет осадки свайных фундаментов.

    курсовая работа [3,1 M], добавлен 02.07.2010

  • Анализ инженерно-геологических данных. Определение значения условного расчетного сопротивления грунта. Расчет фундамента мелкого заложения, свайного фундамента и его осадки. Конструирование ростверка, его приближенный вес и глубина заложения, число свай.

    курсовая работа [973,6 K], добавлен 18.01.2014

  • Проект свайного фундамента неглубокого заложения, свайного фундамента. Выбор глубины заложения. Анализ грунтовых условий. Предварительные размеры фундамента и расчетного сопротивления. Приведение нагрузок к подошве. Подсчет объемов и стоимости работ.

    курсовая работа [2,2 M], добавлен 07.02.2013

  • Условия производства работ по устройству основания и возведению фундаментов. Характеристики грунтов и анализ инженерно-геологических условий строительной площадки. Определение глубины заложения подошвы свайного и фундамента на естественном основании.

    курсовая работа [104,6 K], добавлен 23.05.2013

  • Определение физико-механических показателей грунтов и сбор нагрузок на фундаменты. Оценка инженерно-геологических условий площадки строительства. Проектирование фундаментов мелкого заложения. Расчет ленточного свайного фундамента под несущую стену.

    курсовая работа [1,9 M], добавлен 19.04.2012

  • Основные требования к проектированию фундаментов. Расчет физико-механических свойств наслоений грунта. Анализ технологического назначения здания и его конструктивного решения. Выбор глубины заложения фундамента и определение размеров его подошвы.

    курсовая работа [1,6 M], добавлен 12.01.2013

  • Определение климатических и геоморфологических характеристик строительной площадки. Анализ инженерно-геологических данных. Оценка значения условного расчетного сопротивления грунта R0. Специфика расчета фундамента мелкого заложения, свайного фундамента.

    курсовая работа [1,1 M], добавлен 23.10.2013

  • Характеристика грунтовых условий на строительной площадке. Глубина заложения фундамента, его физико-механические свойства. Расчет типов фундаментов: мелкого заложения и свайный. Определение осадки, установка фундамента по оси. Число свай в фундаменте.

    курсовая работа [159,8 K], добавлен 27.01.2011

  • Оценка инженерно-геологических условий площадки строительства. Разработка вариантов фундаментов и выбор типа основания. Замена слабых грунтов основания песчаной подушкой. Расчет свайного фундамента глубокого заложения, определение его полной осадки.

    курсовая работа [375,8 K], добавлен 09.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.