Выбор стали для строительных конструкций
Металлы – наиболее распространенные и широко используемые материалы в производстве. Выбор стали для строительных конструкций. Формы и назначения металлических построек. Буквенные обозначения состояния стали. Механические свойства металлических сплавов.
Рубрика | Строительство и архитектура |
Вид | реферат |
Язык | русский |
Дата добавления | 26.11.2015 |
Размер файла | 210,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Марки стали
2. Свойства стали
3. Классификация стали
4. Сортамент стали
5. Выбор стали для строительных конструкций
Литература
Введение
Металлы - наиболее распространенные и широко используемые материалы в производстве и в быту человека. Особенно велико значение металлов в наше время, когда большое их количество используют в машиностроительной промышленности, на транспорте, в промышленном, жилищном и дорожном строительстве, а также в других отраслях народного хозяйства.
Металлические конструкции применяются во всех инженерных сооружениях значительных пролетов, высоты и нагрузок. В зависимости от конструктивной формы и назначения металлические конструкции можно разделить на восемь видов:
1. Промышленные здания - цельнометаллические или со смешанным каркасом (колонны железобетонные). Цельнометаллические в зданиях с большим пролетом, высотой и грузоподъемностью.
2. Большепролетные покрытия зданий - спортивные сооружения, рынки, выставочные павильоны, театры, ангары и др. (пролеты до 100-150 м).
3. Мосты, эстакады - мосты на железнодорожных и автомобильных магистралях.
4. Листовые конструкции - резервуары, газгольдеры, бункеры, трубопроводы большого диаметра и др.
5. Башни и мачты - радио и телевидения в геодезической службе, опоры линии электропередачи, нефтяные вышки и др.
6. Каркасы многоэтажных зданий. Применяются в многоэтажных зданиях, в условиях плотной застройки больших городов.
7. Крановые и другие подвижные конструкции - мостовые, башенные, козловые краны, конструкции экскаваторов и др.
8. Прочие конструкции по использованию атомной энергии в мирных целях, разнообразные конструкции радиотелескопов для космической и радиосвязи, платформы для разведки и добычи нефти и газа в море и др.
Металлические конструкции обладают следующими достоинствами:
1. Надежность. Материал (сталь, алюминиевые сплавы) обладает большой однородностью структуры.
2. Легкость. Металлические конструкции самые легкие.
3. Индустриальность. Изготовление и монтаж металлических конструкций производится специализированными организациями с использованием высокопроизводительной техники.
4. Непроницаемость. Обладают высокой прочностью и плотностью, непроницаемостью для газов и жидкостей.
Для строительных металлических конструкций используются, в основном, стали и алюминиевые сплавы. Сплав железа с углеродом называется сталью, если содержание углерода будет не более 1,7%. Как и в чугуне, кроме углерода, в стали всегда имеются следующие примеси: марганец, кремний, сера и фосфор. Сталь имеет более высокие физико-механические свойства по сравнению с чугуном: ее можно закаливать, ковать, прокатывать; она имеет высокую прочность и значительную пластичность, хорошо обрабатывается. В расплавленном состоянии сталь обладает достаточной текучестью для получения отливок. Сталь с малым содержанием углерода (такую сталь раньше ошибочно называли железом) мягкая, не закаливается, обладает высокой пластичностью, хорошо сваривается, легко куется и прокатывается в горячем и холодном состоянии.
По данным Международного института чугуна и стали (IISI) в производстве стали в 2008 году, лидирует Азия (56,1% доля в мировом пространстве). В рейтинге ведущих мировых производителей стали в 2008 году, российская компания «Северсталь» занимает 15 место, с годовой добычей 16,8 млн.тонн (По данным Metal Bulletin's Top Steelmakers of 2008).
1. Марки стали
Основной стандарт определяющий основной химический состав, буквенные обозначение присутствующих в стали легирующих компонентов обозначен в ГОСТ 4543-71 «Прокат из легированной конструкционной стали». На сегодняшний день изготавливают различные стали с добавками компонентов нерегламентированных настоящим ГОСТом 4543-71, зачастую их обозначают первой буквой названия элемента за некоторым исключением.
В таблице предоставлены буквенные значения основных элементов.
Буквенные обозначения состояния стали
СП- Спокойная сталь
ПС-Полуспокойная сталь
КП-Кипящая сталь
Сталь обыкновенного качества нелегированная обозначается, например сталь 3, ст.3сп(спокойная сталь)
Сталь качественная конструкционная нелегированная обозначается обычно как ст.10-ст.45 ( так же ст.20, ст.35, ст.40 двухзначное число данной стали обозначает содержание углерода в стали (например сталь 45 содержание углерода 0,45%)
Сталь Низколегированная обычно обозначается как 09Г2С, 10Г2, 10ХСНД-15ХСНД. Сталь 09Г2С условно расшифровывается так 09Г2С - 09 означает содержание углерода 0,09%, 09Г2С - Г2 означает присутствие в стали легирующего элемента кремний содержание которого в сумме не менее 2,5%, 09Г2С - С означает содержание кремния. Стали 10ХСНД и 15ХСНД цифры после букв не прописываются, потому что среднее содержание легирующих элементов не менее 1%.
Также низколегированные стали обозначаются буквой С - строительные стали с соответствующим минимальным пределом текучести, С-345, С-355 , ( так же бывают С-355Т буква Т означает термоупрочненую сталь. Если присутствует буква К то это означает повышенную стойкость к коррозии.
Сталь конструкционная рессорно-пружинная , это такие стали как 65Г-70Г, 60С2А, 60С2ФА. Например сталь 65Г означает содержание углерода 0,65% и легирующий элемент Г- Марганец
Сталь конструкционная легированная, обычно это такие марки как 15Х-40Х ( так же ст.20Х ст.30Х) например сталь 40Х означает содержание углерода буква Х легирующий элемент хром. Так же примером обозначим хромо-кремнемарганцевую сталь 35ХГСА, сталь имеет повышенное сопротивление ударным нагрузкам очень прочная сталь. Например сталь 35ХГСА содержит углерод равный 0,3% а так же легирующие элементы Х-Хром, Г- Марганец, С-Кремний, А-Азот примерно около 1,0%.
Буква А в начале обозначения марки стали говорит о том что это Автоматная сталь например А12,АС12ХН, АС14, АС19ХГН, АС35Г2 в большинстве используется в автомобилестроении, для обработки на специализированных станках с большой скоростью резания. Буква А в конце маркировки сталей относит её к высококачественным сталям. Например 40ХГНМ относится к качественным сталям , а 40ХГНМА уже к высококачественным.
Сталь Котельная эту марку называют котельной работает под высоким давлением такая сталь тоже является конструкционной например 20К, 20КТ, 22К среднее содержание углерода в ней 0,20%
Сталь конструкционная шарикоподшипниковая например такие как ШХ-15, ШХ-20. Обозначение шарикоподшипниковой стали начинается с буквы Ш. Так же бывает сплав стали ШХ15СГ, буквы СГ означают повышенное содержание кремния и марганца что придает стали наиболее лучшие характеристики. Например сталь ШХ15 расшифровывается буква Ш -шарикоподшипниковая сталь, Х указывает на содержание хрома около 1,5%.
Сталь быстрорежущая. Быстрорез краткое наименование. Обозначается буквой Р например такие Р9, Р18 или Р6М5, следующая за буквой Р число обозначает содержание элемента В- вольфрама. Например сталь Р6М5К5 обозначает следующее Р-быстрорежущая, цифра 6 содержание вольфрама, М5 означает содержание молибдена, К5 указывает на содержание в марке Р6М5К5 К-кобальт. Углерод не указывается потому что его содержание всегда около 4,5% во всех быстрорезах. Если содержание ванадия выше 2,5% то указывается буква Ф например Р18К5Ф2.
Литейные стали имеют букву Л в конце марки обозначаются так же как и конструкционные стали например 110Г1Л ГОСТ 977--75, 997-88
Алюминиевые сплавы обозначаются буквой А, например АМГ, АМЦ , АД-1Н (Д- означает дюралюминиевый, Н- означает нагартованный)
Сталь высококачественная, при изготовлении высококачественной стали применяются разные методы изготовления.
Электрошлаковый переплав обозначается буквой Ш в конце значения например: нержавеющая сталь 95Х18-Ш, 20ХН3А-Ш.
Вакуумно-дуговой переплав обозначается в конце значения буквами ВД например ЭП33-ВД.
Элетрошлаковый с последующим вакуумно-дуговым переплавом обозначается ШВД.
Вакуумно-индукционная плавка имеет обозначение ВИ.
Электронно-лучевой переплав имеет буквенное обозначение ЭЛ.
Газокислородно-рафинированный переплав имеет значение ГР.
2. Свойства
сталь строительный конструкция металл
Наиболее важными для работы со сталью являются механические свойства: прочность, упругость, пластичность, склонность к упругому разрушению, ползучесть, твердость, а также свариваемость, коррозионная стойкость, склонность к старению и технологичность.
Прочность - характеризует сопротивляемость материала внешним силовым воздействиям без разрушения.
Упругость - свойство материала восстанавливать свою первоначальную форму после снятия внешних нагрузок.
Пластичность - свойство материала сохранять деформативное состояние после снятия нагрузки, т.е. получать остаточные деформации без разрушения.
Хрупкость - склонность разрушаться при малых деформациях.
Ползучесть - свойство материала непрерывно деформироваться во времени без увеличения нагрузки.
Твердость - свойство поверхностного слоя металла сопротивляться упругой и пластической деформациям или разрушению при внедрении в него индентора из более твердого материала.
Прочность металла при статическом нагружении, а также его упругие и пластические свойства определяются испытанием стандартных образцов на растяжение с записью диаграммы зависимости между напряжением Х и относительным удлинением е.
Предельно допустимые напряжения определяются требованиями надежной эксплуатации конструкций, Если, например, при любых временных возмущениях конструкция должна возвращаться в исходное состояние, то предельным является предел текучести (для стали), если же допускаются остаточные деформации, то - предел прочности (временное сопротивление)
Диаграммы «напряжение - относительная деформация» а - при растяжении, б - при растяжении - сжатии 1, 2 - соответственно жесткая и гибкая сталь, 3 - бетон
В металлургии, для конструктора имеют в первую очередь значение механические и физические свойства стали. Только когда нужно обеспечить определенные эксплуатационные показатели, например жаростойкость или окалиностойкость, наиболее важное значение имеет химический состав, т. е. конкретная группа специальных металлов. Предел текучести согласно стандарту определяется как напряжение, при котором растягивающее усилие, несмотря на удлинение образца, впервые остается постоянным или даже снижается.
Временное сопротивление разрыву определяется как напряжение, получающееся при применении наибольшего растягивающего усилия на первоначальную площадь поперечного сечения образца. Предел ползучести при какой-либо температуре согласно стандарту DIN 50119 определяется как статическая нагрузка (Н/мм2 или МПа), отнесенная к начальному сечению образца при комнатной температуре, которая по истечении определенной продолжительности испытания (например, через 104 или 105 ч) вызывает определенную деформацию растяжения (например, 1%). Такие свойства стали как предел длительной прочности представляет собой статическую нагрузку, которая при тех же условиях вызывает разрушение образца. Этот показатель зависит от продолжительности испытаний.
Постоянный предел длительной прочности определяется как наивысшее статическое напряжение, которое образец может выдержать бесконечно долго без разрушения. Этот показатель имеет скорее теоретическое, чем практическое значение. Относительное удлинение согласно стандарту DIN 50145 представляет собой остаточное изменение длины после разрушения разрывного образца, отнесенное к его начальной рабочей длине. Эти, как и некоторые другие механические и физические свойства стали измеряются в процентах.
Относительное сужение согласно стандарту DIN 50145 определяется как наибольшее остаточное изменение площади сечения после разрушения образца, отнесенное к его начальной площади. Для определения способности материала к деформации применяют способы испытания на загиб и на холодный изгиб. Различие между обоими методами испытания заключается в том, что при испытании на загиб образец, опирающийся на два подвижных ролика с определенным расстоянием между ними, выгибается вокруг оправки заданного диаметра, тогда как при испытании свойств стали на холодный изгиб вследствие жесткой опоры образца течение материала в зоне его растяжения исключается.
Испытание на циклическую прочность предназначается для определения характеристик механического поведения материала или конструктивных деталей при длительном или часто повторяющемся пульсирующем или знакопеременном нагружении. Такое свойство стали, как ударная вязкость по стандарту DIN 50115 представляет собой работу разрушения, поглощаемую образцом при испытании на ударный изгиб с надрезом, отнесенную к площади поперечного сечения образца в месте надреза (Дж/см2). В стандартах поясняются различные формы образцов для определения ударной вязкости.
Также одно из основных свойств стали - стойкость к старению. Согласно стандарту DIN 17135 такими качествами обладает металл, вязкость которого даже и после длительного вылеживания лишь незначительно изменяется по сравнению с ее уровнем в исходном состоянии. По принятому соглашению признаком стойкости к старению материалов, сдаваемых по вышеупомянутому стандарту, считается получение ударной вязкости (измеряемой на образцах при 20 °С) после искусственного старения с холодным растяжением на 5 или 10 % и отпуска в течение 0,5 ч при 250 °С не ниже некоторого заданного значения. Для оценки чувствительности к хрупкому разрушению применяют, как правило, испытание на описанную выше ударную вязкость при определенных температурах. В качестве критериев оценки используют работу ударного разрушения (Дж), удельную работу разрушения, наклон кривой, площадь кристаллической части в изломе разрушенного образа, угол изгиба и рабочую диаграмму.
Влияние различных факторов на свойства стали
Старение
Под старением понимают изменение свойств низкоуглеродистой стали без заметного изменения ее микроструктуры, Старение снижает пластичность листовой стали немного повышает прочность, но снижает, сопротивление хрупкому разрушению и порог хладноломкости.
Различают термическое и деформационное (иногда термодеформационное) старение. Термическое старение вызвано понижением растворимости углерода и азота в малоуглеродистых сталях, резко охлажденных с температур 650...700 °С (после прокатки, сварки и т.п.) до комнатной температуры. Во время последующей выдержки при комнатной температуре (естественное старение) или небольшом на, нагреве (50...150 °С) (искусственное старение) из феррита выделяются третичный цементит, иногда нитриты Fe6N2 , Fc4N. Образуются также атмосферы Коттрелла, т.е. группы атомов углерода и азота вокруг дислокаций.
Деформационное старение происходит в сталях, подвергавшихся холодной деформации (холодная гибка, правка и т.п.), и связано в основном с образованием атмосфер Коттрелла у скоплений дислокаций. Процесс развивается в течение 15...16 суток при 20 °С и за несколько минут при 200...350 °С.
Образование дисперсных атмосфер Коттрелла затрудняет движение дислокаций. Старение малоуглеродистых строительных сталей может стать причиной разрушения конструкции, особенно при низких температурах. Чтобы уменьшить склонность стали к старению, при выплавке применяют дегазацию и модифицирование алюминием, титаном и ванадием. которые связывают азот и нитриды. Для ряда сталей предусмотрены специальные испытания на определение склонности к старению.
Влияние температуры
Механические свойства стали при нагревании ее до температуры t = 200…250 °С практически не меняются. При температуре 250...300°С прочность стали несколько повышается, пластичность снижается. Сталь в изломе имеет крупнозернистое строение и становится более хрупкой (синеломкость). Не следует при этой температуре деформировать сталь или подвергать ее ударным воздействиям.
Нагрев выше 400°С приводит к резкому падению предела текучести и временного сопротивления, а при t = 600...650°С наступает температурная пластичность и сталь теряет свою несущую способность.
При отрицательных температурах прочность стали возрастает, ударная вязкость падает и сталь становится более хрупкой.
Зависимость ударной вязкости от температуры характерна тем, что переход от вязкого разрушения к хрупкому происходит, как правило, скачкообразно, в узком температурном диапазоне, называемом порогом хладноломкости. Ударная вязкость, определенная при испытании образцов с надрезами типа U, обозначается KCU, а образцов с надрезами типа V и трещиной - соответственно KCV и КСТ. Обычно в качестве порога хладноломкости принимают температуру, при которой ударная вязкость становится меньше определенного значения: KCU, KCV и КСТ соответственно 30...40, 20 и 15 Дж/см2. Температуру, при которой ударная вязкость снижается до этого установленного значения, принимают за порог хладноломкости или критическую температуру перехода стали в хрупкое состояние Тcr. Данные о критических температурах хрупкости позволяют установить температурный интервал, при котором рекомендуется использовать в конструкциях ту или иную сталь.
В соответствии с действующими нормами проектирования стальных конструкций повышение их надежности против хрупкого разрушения достигается в основном выбором марки стали с гарантией ударной вязкости при пониженной температуре, а также специальными мероприятиями на стадиях конструирования и изготовления. Однако такой подход не всегда гарантирует от хрупких разрушений стальных конструкций. В настоящее время ведутся разработки по созданию более объективных методов оценки сопротивляемости конструкций хрупкому разрушению. Для сталей, используемых в строительных конструкциях, среди факторов, вызывающих хрупкое разрушение, одним из доминирующих является снижение температуры. В связи с этим сопротивление элементов стальных конструкций хрупкому разрушению отождествляют с понятием их хладостойкости.
Среда, виды коррозии, методы борьбы
Свыше 70% стальных конструкций эксплуатируются в атмосфере промышленных районов или подвержены непосредственному воздействию агрессивных сред. Агрессивность среды во многих случаях предопределяет выбор материала и конструктивной формы, оптимальный вид защитных покрытий и правила эксплуатации конструкций.
Показателями среды, определяющими степень ее агрессивности по отношению к строительным конструкциям, являются относительная влажность, температура, возможность образования конденсата, состав и концентрация газов и пыли, туманы агрессивных жидкостей, а также способы их воздействия на конструкции (непосредственно или через воздушную среду). В зависимости от факторов, формирующих эксплуатационную среду, строительные конструкции можно подразделить на: конструкции, эксплуатирующиеся на открытом воздухе, в общезаводской атмосфере, конструкции, эксплуатирующиеся внутри зданий, во внутрицеховой атмосфере. Условия эксплуатации конструкций в общезаводской атмосфере определяются климатическими особенностями региона расположения объекта и загрязненностью атмосферы технологическими выделениями. В нормах по климатологии территория России разделена в зависимости от влажности на три зоны (сухая, нормальная и влажная). Условия эксплуатации конструкций во внутрицеховой атмосфере предопределяются технологическим процессом.
Главным фактором, определяющим интенсивность коррозионного износа (разрушения), является относительная влажность. Наибольшая скорость коррозии реализуется при периодическом выпадении конденсата, однако скорость резко возрастает при достижении так называемой критической влажности, обычно принимаемой для стали 70...75%.
Установлено четыре степени агрессивности воздействия среды: I - неагрессивная (примерная скорость коррозии незащищенной стальной поверхности до 0,01 мм/год); II - слабоагрессивная (0,01...0,05 мм/год); III - среднеагрессивная (0,05...0,1 мм/год); IV -сильноагрессивная (более 0,1 мм/год). Нормы проектирования по защите строительных конструкций от коррозии влажностный режим помещений (или влажность воздуха для открытых конструкций) подразделяют на сухой, нормальный, влажный и мокрый. Нормами также установлены группы А, В, С и D в зависимости от вида и концентрации загрязненности воздуха агрессивными реагентами, солями, аэрозолями и пылью. На основании данных многолетних натурных наблюдений по степени агрессивности среды цехи основных отраслей промышленности распределены так:
I - сборочные, механические и ремонтные цехи, закрытые складские помещения;
II - здания сталеплавильных и прокатных цехов, обжиговые и агломерационные цехи;
III - открытые конструкции, эксплуатируемые в индустриальной атмосфере, объекты связи, опоры линий передач, здания металлургических комбинатов, некоторые цехи цветной металлургии (обогатительные, сушильные и др.), химических комбинатов, открытые эстакады и т.п.;
IV - основные цехи предприятий цветной металлургии и химической промышленности.
По условиям протекания, которые весьма разнообразны, различают следующие виды коррозии: почвенная, структурная, электрокоррозия, контактная, щелевая, под напряжением, при трении, коррозионная кавитация, биокоррозия.
Строительные стальные конструкции подвержены главным образом электрохимической, атмосферной коррозии, которая определяется электрохимическими процессами на поверхности стали в присутствии влаги.
Для прогнозирования долговечности строительных конструкций важно знать не только скорость протекания, но и характер коррозионных разрушений. Коррозионное разрушение может иметь сплошной (общий) характер или сосредоточиваться на отдельных участках (местная коррозия). Сплошная коррозия распространяется по всей поверхности металла с одинаковой (равномерная коррозия) или неодинаковой (неравномерная коррозия) скоростью на различных участках.
Местная коррозия помимо ослабления сечения вызывает концентрацию напряжении, что повышает вероятность хрупкого разрушения стали. Поэтому местные коррозионные повреждения представляют особую опасность, особенно для конструкций, эксплуатируемых при пониженных температурах.
Кроме агрессивности эксплуатационной среды скорость коррозии зависит от химического состава стали. По коррозионной стойкости строительные стали можно разделить на три группы: 1) марганцовистые стали и сталь 14ГСМФР; 2) все стали, кроме входящих в первую и третью группы; 3) медистые и атмосферостойкие стали.
Стали 09Г2, 14Г2 и 14ГСМФР. входящие в первую группу, имеют пониженную коррозионную стойкость, их не следует применять в сильно - и среднеагрессивных средах.
Стали 09Г2С, 10Г2С1, 15Г2СФ по коррозионной стойкости аналогичны низкоуглеродистой стали.
Медистые стали (10ХСНД, 15ХСНД, 10ХНДП) имеют повышенную коррозионную стойкость и корродируют почти в 1,5 раза медленнее низкоуглеродистой стали. Атмосферостойкая сталь (10ХНДП) может быть применена без антикоррозионной защиты для открытых конструкции, расположенных в сухой климатической зоне.
При положительных температурах коррозионный износ практически не влияет на механические свойства стали. Снижение прочности коррдирующих конструкций происходит за счет потери толщины сечений. Однако, когда глубина коррозионных повреждений соизмерима с толщинами элементов конструкций, уменьшение прочностных характеристик стали при комнатной температуре становится существенным. Поэтому для тонкостенных элементов конструкций (t < 6 мм) следует учитывать это обстоятельство при проведении проверочных расчетов.
Более интенсивное снижение прочностных характеристик строительных сталей из-за коррозии имеет место при отрицательных температурах. При - 60° С для стали 09Г2С снижение предела текучести достигает 15...20%.
Как было отмечено выше, местные коррозионные повреждения являются концентраторами напряжений и снижают ударную вязкость. Отрицательное влияние коррозионного разрушения на сопротивляемость сталей хрупкому разрушению следует учитывать при количественных оценках работоспособности материала.
Обеспечение долговечной эксплуатации стальных конструкций возможно только при надежной защите их от разрушающего воздействия агрессивных сред. Способы защиты конструкций от коррозии можно разделить на три группы: воздействия на металл, воздействия на среду, комбинированные.
Для строительных конструкций широкое распространение получили методы нанесения защитных покрытий. В настоящее время из всех видов покрытий наиболее распространенными, доступными и достаточно эффективными являются лакокрасочные. Для защиты строительных конструкций от коррозии рекомендуют более 70 различных марок лакокрасочных материалов.
Выбор состава покрытий является технико-экономической задачей, при решении которой учитываются стоимость защитного покрытия, его долговечность, трудоемкость нанесения и другие факторы. Долговечность защитного покрытия в условиях производственной среды устанавливают обычно из опыта эксплуатации покрытий в аналогичных средах или экспериментальным путем.
Защитные свойства покрытия определяются тремя факторами: механическими и химическими свойствами пленки покрытия, сцеплением пленки с защищаемой поверхностью и коррозионной стойкостью конструкционного материала. Покрытие в большинстве случаев должно состоять из шпатлевки, грунтовки и покрывных слоев. Назначение грунтовки - обеспечить прочное сцепление (адгезию) лакокрасочной пленки с поверхностью металла. Адгезия зависит от качества подготовки поверхности элементов под окраску.
Нормативные и расчетные сопротивления строительных сталей
Нормативные сопротивления, устанавливаемые нормами проектирования стальных конструкций, являются основными характеристиками сопротивления материалов силовым воздействиям.
В связи с тем, что механические свойства материалов зависят от исходных материалов, технологии производства и других факторов, нормативные сопротивления устанавливаются на основе статистической обработки механических свойств материалов, выпускаемых нашей промышленностью. Значения нормативных сопротивлений устанавливаются таким образом, чтобы математические значения случайных отклонений для материалов с пониженными значениями механических свойств составляли не более 5%.
Для углеродистой стали, стали повышенной прочности и алюминиевых сплавов за основную характеристику нормативного сопротивления принято значение предела текучести. Однако в тех случаях, когда переход материала в пластическое состояние выражен нечетко (площадка текучести отсутствует), или иногда предел текучести близок к временному сопротивлению, а также в случаях, когда по характеру работы конструкций допустимо развитие больших пластических деформаций и несущая способность определяется прочностью, за нормативное сопротивление принимается значение временного сопротивления. Таким образом, установлены два вида нормативных сопротивлений -- по пределу текучести
Rн=ут
и временному сопротивлению --
Rн=ув
Числовые значения ?т и ?в являются нормативными сопротивлениями
Расчетное сопротивление R определяется делением нормативного сопротивления Rн на коэффициент безопасности по материалам kм.
Расчетные сопротивления, как и нормативные, установлены двух видов -- по пределу текучести и временному сопротивлению. Коэффициент безопасности по материалу при назначении расчетного сопротивления по пределу текучести установлен на основании анализа кривых распределения испытаний стали и ее работы в конструкции с таким расчетом, чтобы при всех учитываемых обстоятельствах исключить использование в конструкции стали с пониженными значениями предела текучести. При назначении расчетного сопротивления по пределу текучести для стали классов С 38/23 -- С 60/45 kм= 1,1--1,2.
При назначении расчетного сопротивления по временному сопротивлению коэффициент безопасности по материалу приходится принимать повышенным. Допустим, что по непредвиденным обстоятельствам напряжения в конструкции достигнут предела текучести, в этом случае растянутые и изгибаемые элементы получат повышенные деформации, но не разрушатся, а если напряжения достигнут временного сопротивления, то произойдет разрыв элемента, что совершенно недопустимо. Поэтому при назначении расчетного сопротивления по временному сопротивлению для стали классов С 38/23 -- С 44/29 kм=1,45, для стали классов С 46/33 и С 52/40 kм=1,5, а для стали классов С 60/45 --С 85/75 kм= 1,6. Расчетные сопротивления срезу определены умножением значений расчетных сопротивлений растяжения на коэффициент перехода 0,6. Обстоятельства, не учитываемые непосредственно в расчетах и не нашедшие отражения при установлении расчетных характеристик, но способные повлиять на несущую способность или деформативность конструкций, учитываются в необходимых случаях коэффициентами условий работы конструкций тК.
3. Классификация стали
99% всей стали - материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы - теплостойкие, нержавеющие, и т.п. Его главные качества - прочность (способность выдерживать при работе достаточные напряжения), пластичность (способность выдерживать достаточные деформации без разрушения как при производстве конструкций, так в местах перегрузок при их эксплуатации), вязкость (способность поглощать работу внешних сил, препятствуя распространению трещин), упругость, твердость, усталость, трещиностойкость, хладостойкость, жаропрочность.
Классификация сталей и сплавов производится:
по химическому составу;
по структурному составу;
по качеству (по способу производства и содержанию вредных примесей);
по степени раскисления и характеру затвердевания металла в изложнице;
по назначению.
Химический состав
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:
малоуглеродистые - менее 0,3% С;
среднеуглеродистые - 0,3...0,7% С;
высокоуглеродистые - более 0,7 %С.
Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.
В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:
низколегированные - менее 2,5%;
среднелегированные - 2,5...10%;
высоколегированные - более 10%.
Структурный состав
Легированные стали и сплавы делятся также на классы по структурному составу:
в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
в нормализованном состоянии - перлитный, мартенситный и аутенитный.
К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.
Классификация стали по содержанию примесей
По качеству, то есть по способу производства и содо примесей, стали и сплавы делятся на четыре группы
Классификация сталей по качеству
Группа S, % Р, %
Обыкновенного качества (рядовые) менее 0,06 менее 0,07
Качественные менее 0,04 менее 0,035
Высококачественные менее 0,025 менее 0,025
Особовысококачественные менее 0,015 менее 0,025
Стали обыкновенного качества
Стали обыкновенного качества (рядовые) по химическому составу -углеродистые стали, содержащие до 0,6% С. Эти стали выплавляются в конвертерах с применением кислорода или в больших мартеновских печах. Примером данных сталей могут служить стали СтО, СтЗсп, Ст5кп.
Стали обыкновенного качества, являясь наиболее дешевыми, уступают по механическим свойствам сталям других классов.
Стали качественные
Стали качественные по химическому составу бывают углеродистые или легированные (08кп, 10пс, 20). Они также выплавляются в конвертерах или в основных мартеновских печах, но с соблюдением более строгих требований к составу шихты, процессам плавки и разливки.
Углеродистые стали обыкновенного качества и качественные по степени раскисления и характеру затвердевания металла в изложнице делятся на спокойные, полуспокойные и кипящие. Каждый из этих сортов отличается содержанием кислорода, азота и водорода. Так в кипящих сталях содержится наибольшее количество этих элементов.
Стали высококачественные
Стали высококачественные выплавляются преимущественно в электропечах, а особо высококачественные - в электропечах с электрошлаковым переплавом (ЭШП) или другими совершенными методами, что гарантирует повышенную чистоту по неметаллическим включениям (содержание серы и фосфора менее 0,03%) и содержанию газов, а следовательно, улучшение механических свойств. Это такие стали как 20А, 15Х2МА.
Стали особовысококачественные
Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.
Классификация стали по назначению
По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.
Конструкционные стали
Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.
Строительные стали
К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.
Стали для холодной штамповки
Для холодной штамповки применяют листовой прокат из низкоуглеродистых качественных марок стали 08Ю, 08пс и 08кп.
Цементируемые стали
Цементируемые стали применяют для изготовления деталей, работающих в условиях поверхностного износа и испытывающих при этом динамические нагрузки. К цементируемым относятся малоуглеродистые стали, содержащие 0,1-0,3% углерода (такие, как 15, 20, 25), а также некоторые легированные стали (15Х, 20Х, 15ХФ, 20ХН 12ХНЗА, 18Х2Н4ВА, 18Х2Н4МА, 18ХГТ, ЗОХГТ, 20ХГР).
Улучшаемые стали
К улучшаемым сталям относят стали, которые подвергают улучшению - термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.
Высокопрочные стали
Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях - таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.
Износостойкие стали
Износостойкие стали применяют для деталей, работающих в условиях абразивного трения, высокого давления и ударов (крестовины железнодорожных путей, траки гусеничных машин, щеки дробилок, черпаки землеройных машин, ковши экскаваторов и др.)- Пример износостойкой стали - высокомарганцовистая сталь 110Г13Л.
Коррозионно-стойкие (нержавеющие) стали
Коррозионно-стойкие (нержавеющие) стали - легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях - нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость.
Структура для наиболее характерных сплавов этого назначения может быть:
ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 - для слабых агрессивных сред (воздух, вода, пар);
ферритной (15X28) - для растворов азотной и фосфорной кислот;
аустенитной (12Х18НЮТ) - в морской воде, органических и азотной кислотах, слабых щелочах;
мартенситно-стареющей (ЮХ17Н13МЗТ, 09Х15Н8Ю) - в фосфорной, уксусной и молочной кислотах.
Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.
Коррозионно-стойкие стали
Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.
Жаропрочные стали
Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
Для жаропрочных и жаростойких машиностроительных сталей используются малоуглеродистые (0,1-0,45% С) и высоколегированные (Si, Cr, Ni, Со и др.). Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах.
Рабочие температуры современных жаропрочных сплавов составляют примерно 45-80% от температуры плавления. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74):
при 400-550°С - 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ;
при 500-600°С - 15Х5М, 40ХЮС2М, 20X13;
при 600-650°С - 12Х18Н9Т, 45Х14Н14В2М, ЮХЦН23ТЗМР,
ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.
Жаростойкие стали
Жаростойкие (окалиностойкие) стали обладают стойкостью против химического разрушения поверхности в газовых средах, в том числе серосодержащих, при температурах +550-1200°С в воздухе, печных газах (15X5, 15Х6СМ, 40Х9С2, ЗОХ13Н7С2, 12X17, 15X28), окислительных и науглероживающих средах (20Х20Н14С2, 20Х23Н18) и работают в ненагруженном или слабонагруженном состоянии, так как могут проявлять ползучесть при приложении больших нагрузок. Жаростойкие стали характеризуют по температуре начала интенсивного окисления. Величина этой температуры определяется содержанием хрома в сплаве. Так, при. 15% Cr температура эксплуатации изделий составляет +950°С, а при 25% Cr до +130СГС. Жаростойкие стали также легируют никелем, кремнием, алюминием.
Криогенные стали
Криогенные машиностроительные стали и сплавы (ГОСТ 5632-72) по химическому составу являются низкоуглеродистыми (0,10% С) и высоколегированными (Cr, N1, Mn и др.) сталями аустенитного класса (08Х18НЮ, 12Х18НЮТ, ОЗХ20Н16АГ6, ОЗХ13АП9 и др.). Основными потребительскими свойствами этих сталей являются пластичность и вяз-кость, которые с понижением температуры (от +20 до -196°С) либо не меняются, либо мало уменьшаются, т.е. не происходит резкого уменьшения вязкости, характерного при хладноломкости. Криогенные машиностроительные стали классифицируют по температуре эксплуатации в диапазоне от -196 до -296°С и используют для изготовления деталей криогенного оборудования.
Инструментальные стали
Инструментальные стали по назначению делят на стали для режущих, измерительных инструментов, штамповые стали.
Быстрорежущие стали
Быстрорежущие стали применяют для изготовления различного режущего инструмента, работающего на высоких скоростях резания, так как они обладают высокой теплостойкостью - до +650°С. Наибольшее распространение получили быстрорежущие стали марок Р9, Р18, Р6М5, Р9Ф5, РЮК5Ф5.
Стали для штампов горячего деформирования
Эти стали должны иметь высокие механические свойства (прочность и вязкость) при повышенных температурах и обладать износостойкостью, окалиностойкостью, разгаростойкостью и высокой теплопроводностью. Примером таких сталей могут служить стали 5ХНМ, 5ХНВ, 4ХЗВМФ, 4Х5В2ФС, ЗХ2В8Ф, 4Х2В5МФ.
Валковые стали
Данные стали применяют для рабочих, опорных и прочих валков прокатных станов, бандажей составных опорных валков, ножей для холодной резки металла, обрезных матриц и пуансонов. К валковым сталям относят такие марки стали, как 90ХФ, 9X1, 55Х, 60ХН, 7Х2СМФ.
Требования к стали для валков
Высокая прокаливаемость. Для обеспечения высокой закаливаемости необходимо использование таких марок стали, устойчивость переохлажденного аустенита которых в обеих областях превращения, во возможности, достаточна для развития мартенситного превращения при минимальных скоростях охлаждения, например, в масле.
Глубокая прокаливаемость. Прокаливаемость - это глубина закаленного слоя или, другими словами, глубина проникновения мартенсита. Она зависит от химического состава, размеров деталей и условий охлаждения. Легирующие элементы, а также увеличение содержания углерода (0,8%) в стали способствуют увеличению ее прокаливаемости, поэтому необходимую прокаливаемость обеспечивают за счет оптимизации химического состава стали. Для данного типа стали необходима практически сквозная прокаливаемость, так как при этом обеспечивается жесткость валка, без которой затруднительно получение высокой точности проката. Среди элементов, увеличивающих прокаливаемость - кремний и бор.
Высокая износостойкость. Необходима для безаварийной работы стана. При высокой износостойкости образование абразивных частиц износа не происходит, система подшипников работает более надежно.
Высокая контактная прочность. Контактная прочность рабочего слоя валков должна быть выше контактных напряжений, возникающих в процессе прокатки с учетом естественных нагрузок.
Минимальная склонность к деформации и короблению в процессе термической обработки и неизменность размеров в процессе эксплуатации.
Удовлетворительная обрабатываемость при мехобработке, хорошая шлифуемость и полируемость для обеспечения высокой чистоты поверхности валков и, следовательно, высокого качества поверхности прокатываемого материала.
4. Сортамент стали
Сортаментом называют набор изделий, выпускаемых металлургической промышленностью для использования в различных отраслях народного хозяйства. В сортамент входят следующие виды изделий.
Сортамент горячекатаного листового проката, ГОСТ 19903-74*.
1. Прокат, изготовляемый в листах, толщина 0,4ё160 мм, ширина 500ё3800 мм.
2. Листовой прокат, изготовляемый в рулонах, толщина листа 1,2ё160, ширина листа 500ё2200 мм.
Сортамент широкополосного универсального проката, ГОСТ 82-70*, толщина 6, 7, 8, 9, 10, 11,12, 14, 16, 18, 22, 25, 29, 30, 32, 35, 40, 45, 50, 55, 60 мм, ширина, 200ё1050 мм.
Сортамент горячекатанных полос, ГОСТ 103-76*, толщина 6ё60 мм, ширина 11ё200 мм.
Фасонный прокат.
Двутавры - наиболее применимый для балок профиль. Выпускаются 3 вида горячекатанных двутавров:
1) балки двутавровые c уклоном внутренних граней полок 6ё9 % и отношением ширины полки к высоте двутавра 0,55-0,32, высотой 100ё600 мм. По условиям проката толщина стенок завышена, что снижает эффективность этих двутавров;
2) двутавры стальные горячекатаные с параллельными гранями полок по ГОСТ 26020-83 выпускаются трех типов: Б (балочные), с отношением ширины к высоте двутавра 0,55ё0,32, высотой от 100 до 1000 мм, Ш (широкополочные) c отношением ширины к высоте двутавра 0,75ё0,45 и высотой от 193 до 700 мм, К (колонные), c высотой от 195 до 400 мм. Они более удобны в конструктивном отношении, чем предыдущие.
Выпускаются также двутавры с параллельными узкими полками по ТУ-14-2-205-76;
3) двутавры стальные по ГОСТ 19425-74* с утолщёнными полками для балок путей подвесного транспорта высотой 100ё450 мм.
Тавры с параллельными гранями полок получаются продольной резкой пополам (по высоте) из двутавров по ГОСТ 26020-83 с параллельными гранями полок. При этом получают:
из двутавров типа Б - тавры БТ с соответствующими размерами,
- » - Ш - » - ШТ - » -,
- » - К - » - КТ - » -.
Швеллеры горячекатаные выпускаются 3 видов:
1) с уклоном внутренних граней полок (до 12 %) высотой 50ё400 мм и шириной 32ё115 мм по ГОСТ 8240-89;
2) параллельными гранями полок с такими же высотой и шириной и по тому же стандарту;
3) узкими полками и параллельными гранями высотой 120ё300 мм и шириной 30ё65 мм по ТУ 14-2-204-76.
Уголки горячекатаные выпускаются:
1) равнополочные - по ГОСТ 8509-93 с размерами пролок (ширина b и толщина s) от 20 Ч 3 мм до 250 ґ 30 мм;
2) неравнополочные - по ГОСТ 8510-86* c размерами полок от 25 ґ 16 ґ 3 мм до 200 ґ 125 ґ 15 мм.
Гнутые стальные профили выпускаются из стальных горячекатаных полос. Эта технология изготовления профилей требует меньших энергозатрат и трудозатрат на переналадку оборудования по сравнению с прокатом стали в горячем состоянии, а также позволяет получить профили с меньшей толщиной элементов. Наибольшее распространение получили:
1) гнутые равнополочные швеллеры по ГОСТ 8278-83* из сталей марок С235 и С245. Размеры профилей (высота ґ ширина ґ толщина) от 25 ґ 26 ґ 2 мм до 410 ґ 310 ґ 6 мм (рис. 2.4, a).
То же из сталей марок С255 и С375 до 310 Ч 100 Ч 6 мм;
2) гнутые равнополочные С-образные по ГОСТ 8182-83, размеры профилей (высота ґ ширина ґ длина отгиба ґ толщина) от 62 ґ 66 ґ 17,5 ґ ґ 3 мм до 250 ґ 100 ґ 45 ґ 5 мм (рис. 2.4, б);
3) гнутые равнополочные Z-образные профили по ГОСТ 1327-78*.
Размеры профилей (высота ґ ширина полки ґ толщина) от 40 ґ 32 ґ 2 мм до 340 ґ 50 ґ 3 мм (рис. 2.4, в).
Трубы имеют достаточно большой радиус инерции и хорошо обтекаются ветром. Поэтому они выгодны в сжатых элементах, при работе в сильно агрессивных средах, в разного назначения башнях и мачтах. Используются трубы стальные электросварные прямошовные по ГОСТ 10704-91 с размерами (наружный диаметр ґ толщина стенки) 83 ґ 3 мм до 426 ґ 9 мм (сокращённый сортамент).
Замкнутые гнутосварные профили выпускаются:
1) квадратного сечения (квадратный) по ТУ 36-2287-80 с размерами (сторона ґ толщина) от 80 ґ 3 мм до 180 ґ 8 мм (рис. 2.5, а).
2) прямоугольного сечения по ТУ 67-287-80 с размерами (высота ґ ґ ширина ґ толщина) от 100 ґ 60 ґ 3 мм до 200 ґ 160 ґ 8 мм (рис. 2.5, б).
Профилированные листы (штамп-настил) по ГОСТ 24045-94 (рис. 2.6) изготовляются из ленты толщиной 0,6ё1,0 мм, что значительно меньше, чем при прокате:
1) тип С (стены) высота гофра 10 и 18 мм, толщина 0,6 и 0,7 мм, ширина листа 918 и 1022 мм;
2) тип Н (настилы) высота гофра 57, 60, 75 и 114 мм, толщина листа 0,7 0,8 0,9 и 1,0 мм, ширина листа 801, 902, 646 и 807 мм.
Канаты из высокопрочной проволоки выпускают светлые (без покрытия) и с покрытием из цинка, алюминия или полимерных материалов по ГОСТ 14954-80*, ГОСТ 7669-80*, ТУ 14-4-90-78.
5. Выбор сталей для строительных конструкций
Выбор стали ведется на основе вариантного проектирования и технико-экономического анализа с учетом рекомендаций норм. Поэтому следует стремиться к большей унификации конструкций, сокращению числа профилей и сталей. Выбор стали, зависит от следующих параметров, влияющих на работу материала:
температуры среды;
характера нагружения;
вида напряженного состояния;
способа соединения элементов;
толщины проката.
В зависимости от условий работы материала все виды конструкций разделены на четыре группы:
К первой группе относятся сварные конструкции, работающие в особо тяжелых условиях, поэтому возможно хрупкое и усталостное разрушение, К свойствам сталей для этих конструкций предъявляются наиболее высокие требования.
Ко второй группе относятся сварные конструкции, работающие на статическую нагрузку при воздействии одноосного и однозначного двухосного поля растягивающих напряжений (например, фермы, ригели рам, балки перекрытий и покрытий и т. д.), а также конструкции первой группы при отсутствии сварных соединений.
Общим для конструкций этой группы является повышенная опасность хрупкого разрушения. Вероятность усталостного разрушения меньше, чем для первой группы.
К третьей группеотносятся сварные конструкции, работающие при преимущественном воздействии сжимающих напряжений (например, колонны, стойки, опоры под оборудование и др.), а также конструкции второй группы при отсутствии сварных соединений.
В четвертую группу включены вспомогательные конструкции и элементы (связи, элементы фахверка, лестницы, ограждения и т. п.), а также конструкции третьей группы при отсутствии сварных соединений.
Если для конструкций третьей и четвертой групп достаточно ограничиться требованиями к прочности при статических нагрузках, то для конструкций первой и второй групп важна оценка сопротивления стали динамическим воздействиям и хрупкому разрушению.
В материалах для сварных конструкций обязательно следует оценить свариваемость.Требования к элементам конструкций, не имеющих сварных соединений, могут быть снижены.
В пределах каждой группы конструкций, в зависимости от температуры эксплуатации, к сталям предъявляют требования по ударной вязкости при различных температурах.
В нормах содержится перечень сталей в зависимости от группы конструкций и климатического района строительства.
Литература
1. ГОСТ 380-94 "Сталь углеродистая обыкновенного качества"
2. "Металлические конструкции" Е.И. Беленя, Стройиздат 1976
3. СНиП II-23-81 "Стальные конструкции"
4. ГОСТ 8239-72 " Сортамент прокатной стали"
5. http://m-h-s.ru/vybor-stali-dlya-stroitelnyh-konstrukciy-i-ee-svoystva
6. http://www.tehnoarticles.ru/svarkametalla/10.html
Размещено на Allbest.ru
...Подобные документы
Состав, строение, свойства строительных металлов. Поведение металлических строительных конструкций при пожаре. Методы огнезащиты металлических конструкций. Применение низколегированных сталей. Расчет предела огнестойкости железобетонной панели перекрытия.
курсовая работа [94,9 K], добавлен 30.10.2014Общая характеристика металлических конструкций. Состав и свойства строительных сталей. Основные этапы проектирования строительных конструкций. Нагрузки и воздействия. Основы расчёта металлических конструкций по предельным состояниям. Сварные соединения.
презентация [5,1 M], добавлен 23.01.2017Достоинства и недостатки металлических конструкций, применение их в ответственных сооружениях. Механические свойства стали в зависимости от класса прочности. Коррозия алюминиевых сплавов, меры борьбы с ней. Конструкции многоэтажных каркасных зданий.
контрольная работа [683,2 K], добавлен 28.03.2018Контролируемые параметры для металлических конструкций: размеры элементов; прогибы, искривления, смещения; предел текучести и временное сопротивление металла; относительное удлинение. Определение прочностных характеристик стали. Испытание на растяжение.
презентация [1,6 M], добавлен 26.08.2013Анализ возможности применения расчетной методики по определению фактических пределов огнестойкости металлических строительных конструкций на примере здания административно-торгового комплекса "Автоцентр Lexus". Экспертиза строительных конструкций.
дипломная работа [3,5 M], добавлен 14.02.2014Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.
контрольная работа [26,6 K], добавлен 28.06.2010Новые методы монтажа и организации производства, новые виды техники, применяющиеся в современном строительстве. Процесс изготовления конструкций. Резка прокатной стали, образование отверстий, сварочные операции, грунтовка и окраска стальных конструкций.
отчет по практике [23,1 K], добавлен 11.09.2014Изучение основных методов и норм расчета сварных соединений. Выполнение расчета различных видов сварных соединений; конструирование узлов строительных металлических конструкций. Определение несущей способности, а также изгибающего момента стыкового шва.
курсовая работа [455,1 K], добавлен 02.12.2014Определение огнестойкости металлических конструкций. Основные способы увеличения огнестойкости металлических конструкций. Основы огнезащиты металлов. Сущность метода испытания конструкций на огнестойкость. Защита объектов от огневого воздействия.
реферат [4,1 M], добавлен 17.11.2011Общие сведения о строительных материалах. Строение и химический состав бетона, его физические и механические свойства. Наиболее известные виды кирпича, его визуальные и геометрические характеристики. Влажность древесины и свойства, связанные с ней.
презентация [3,2 M], добавлен 19.02.2014Подсчет объемов работ и выбор метода при монтаже конструкций промышленного здания. Основные факторы, влияющие на выбор типа крана. Выбор грузозахватных и монтажных приспособлений. Контроль и оценка качества работ при производстве и приемке работ.
курсовая работа [306,8 K], добавлен 26.02.2015Общая характеристика здания. Методика обследования строительных конструкций, выбор и обоснование используемого материала. Поверочные расчеты. Методика и этапы проведения реконструкции. Технический паспорт дома. Усиление фундамента и устранение протечки.
курсовая работа [83,9 K], добавлен 11.12.2012Материалы для металлических конструкций. Преимущества и недостатки, область применения стальных конструкций (каркасы промышленных, многоэтажных и высотных гражданских зданий, мосты, эстакады, башни). Структура стоимости стальных конструкций. Сортамент.
презентация [335,6 K], добавлен 23.01.2017Основы закономерности длительной прочности древесины и пластмасс. Сравнение методик расчета болтовых соединений металлических конструкций и нагельных соединений деревянных конструкций. Применение металлических зубчатых пластин в зарубежном строительстве.
лекция [1,4 M], добавлен 24.11.2013Принципы и правила проектирования металлических конструкций балочной площадки промышленного здания. Характеристика основной технологической последовательности конструирования и расчета её элементов. Компоновка и подбор сечения балки, расчет базы колонн.
курсовая работа [1,4 M], добавлен 18.10.2010Однопролетная шарнирно-опертая балка. Расчет толщины настила и погонной нагрузки на второстепенную балку. Расчетный изгибающий момент для длины балки настила. Расчетное сопротивление стали на срез. Определение внутренних усилий и высоты стенки.
курсовая работа [1,5 M], добавлен 02.06.2012Оценка технического состояния жилого дома. Расчет физического износа основного строения. Фиксирование дефектов и повреждений строительных конструкций. Определение общего технического состояния объекта. Оценка инвестиционной привлекательности здания.
курсовая работа [23,0 K], добавлен 15.11.2010Выбор методов производства строительных работ, спецификация сборных железобетонных изделий. Технология строительных процессов и технология возведения зданий и сооружений. Требования к готовности строительных конструкций, изделий и материалов на площадке.
курсовая работа [115,1 K], добавлен 08.12.2012История строительных алюминиевых сплавов, их физико-механические свойства, сортаменты, средства соединения. Основные принципы проектирования алюминиевых конструкций в строительстве. Особенности сварочных, заклепочных, болтовых и клеевых соединений.
курсовая работа [1,8 M], добавлен 13.12.2011Компоновочная схема здания. Ведомость монтируемых элементов сборных конструкций. Основные методы монтажа конструкций. Выбор основных грузозахватных приспособлений и монтажных кранов. Калькуляция трудовых затрат. График производства монтажных работ.
курсовая работа [9,5 M], добавлен 20.02.2015