Физико-химические процессы при строительстве и эксплуатации объектов недвижимости

Факторы снижающие долговечность строительных конструкций и сооружений. Физико-химические процессы при производстве гипсовых вяжущих. Механизм действия воздухововлекающих добавок, их виды для цементных систем. Сульфатная коррозия бетона, меры борьбы.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 13.02.2016
Размер файла 59,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КОНТРОЛЬНАЯ РАБОТА

«Физико-химические процессы при строительстве и эксплуатации объектов недвижимости»

Омск - 2015

1. Виды микроструктур искусственных строительных конгломератов. Дайте характеристику кристаллизационной дисперсной структуре материала

Искусственные строительные конгломераты (ИСК) - строительные материалы, в которых заполнитель сцементирован в монолит.

Микроструктура включает кристаллические и гелевидные продукты гидратации, цементные зерна не прореагировавшие с водой, поры и капилляры.

В зависимости от характера связей контактируемых частиц однородные микроструктуры подразделяются на коагуляционные, конденсационные и кристаллизационные.

Коагуляционными называют структуры, в образовании которых участвуют сравнительно слабые силы молекулярного взаимодействия между частицами - вандерваальсовы силы сцепления, действующие через прослойки жидкой среды.

Конденсационными называют структуры, возникающие при непосредственном взаимодействии частиц или под влиянием химических соединений в соответствии с валентностью контактирующих атомов или под влиянием ионных и ковалентных связей.

Кристаллизационными называют структуры, образовавшиеся путем выкристаллизовывания твердой фазы из расплава или раствора и последующего прямого срастания отдельных кристаллов в прочный их агрегат, в том числе под влиянием химических связей.

При деформировании кристаллоподобной структуры в ней возникают упругие напряжения, которые со временем исчезают, благодаря постепенному перемещению вакансий. Скорость этого перемещения может быть ограничена, что приводит к дилатантному типу зависимости, т.е. к увеличению вязкости с ростом напряжения. Начальная вязкость обратно пропорциональна концентрации вакансий.

При отсутствии потенциального барьера Umax = 0 происходит непосредственный (фазовый) контакт частиц h 0 = 0.

Перекристаллизация дисперсной фазы в точках контакта ведет к образованию прочной, но хрупкой структурной сетки.

2. Дайте определение понятия «краевой угол смачивания»

Смачивание -- физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости.

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) -- это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. В случае порошков надёжных методов, дающих высокую степень воспроизводимости, пока (по состоянию на 2008 год) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности (лакокрасочная, фармацевтическая, косметическая и т. д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла.

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть. В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ. Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

коррозия бетон гипсовый цементный

3. Механизм действия гидрофобизирующих добавок, их виды для цементных систем

Механизм действия гидрофобизирующих добавок состоит в том, что они при контакте с продуктами гидратации цемента осаждаются в виде мельчайших капелек на стенках мелких пор и капилляров, образуя гидрофобные покрытия. В результате этого возникает контакт, имеющий обратный угол, при котором силы поверхностного натяжения выталкивают воду из пор.

Эффективность гидрофобизирующих добавок оценивают по степени уменьшения водопоглощения бетона в соответствии с требованиями ГОСТ 30459. Показатель уменьшения водопоглощения (по массе) Пw вычисляют по формуле:

Пw = Wк / Wд, %

где Wк - водопоглощение образцов контрольного состава (без добавок), %;

Wд - водопоглощение образцов основных составов (с добавкой), %.

Применение гидрофобизирующих добавок в цементных системах способствует формированию плотной и однородной структуры. Это выражается в уменьшении количества и размеров макропор (радиус пор менее 10 мкм), а также в их более равномерном распределении в массе цементного камня. Количество макропор в цементных системах с добавками в 2...4 раза меньше, чем в без добавочных системах. Макропоры, как правило, замкнутые, имеют правильные окружные формы с ровными краями. Их размеры находятся в пределах от 0,5 до 0,05 мм с преобладанием пор размером 0,1 мм.

Гидрофобизирующие добавки способствуют модифицированию продуктов гидратации цемента.

Исследованиями установлено, что использование комплексных органоминеральных добавок КОМД-С приводит к увеличению количества гелеобразных волокнистых и тонкоигольчатых гидросиликатов кальция среди гидратных продуктов, в результате чего дисперсность структуры цементного камня повышается и она становится более однородной. Новообразования в цементном камне, получающиеся в процессе структурообразрвания при введении органоминеральной добавки, по своей природе не отличаются от гидратных образований, возникающих при добавлении соли ННХК, однако, за счет увеличения адсорбционно-связанной воды, в бетонах с добавкой КОМД-С наблюдается повышение средней плотности и прочности.

Все виды органических поверхностно-активных добавок в зависимости от их влияния на поверхностные свойства цементов и цементного камня разделяют на две основные группы: повышающие смачиваемость цементного порошка водой -- гидрофильные, и понижающие ее -- гидрофобные. В соответствии с этим портландцемеиты с гидрофильными добавками называют пластифицированными, а с гидрофобными добавками -- гидрофобными. Изготовляют также пластифицированно-гидрофобиые цементы.

Введение в портландцементы различных гидрофобизирующих добавок предложено М. И. Хигеровичем и Б. Г. Скрамтаевым. В качестве таких добавок в настоящее время применяют многие вещества, в том числе мылонафт, асидол и др.

Мылонафт -- мазеобразное вещество, состоящее преимущественно из натриевых солей нерастворимых в воде органических кислот, извлекаемых из отходов щелочной очистки керосиновых, соляровых и других дистиллятов нефти.

Асидол -- густая жидкость, смесь нефтяных кислот, извлекаемых из щелочных отходов, образовавшихся при очистке масляных и соляровых дистиллятов нефти.

Асидол-мылонафт -- мазеобразное вещество, смесь свободных нерастворимых в воде нефтяных кислот и их натриевых солей.

ГКЖ-94 -- полиэтилгидросилоксан, также кремнийорганическое вещество. Обычно они поступают потребителям в виде водной эмульсии. Порошковидные материалы имеют обозначение ГКП.

Гидрофобные добавки вводят в количестве 0,06--0,3 % по массе цемента, считая на сухое вещество. Точное дозирование добавок обязательно.

4. Механизм действия воздухововлекающих добавок, их виды для цементных систем

Поверхностно-активные органические вещества, способствующие вовлечению в бетонную смесь при ее перемешивании мелкодисперсного воздуха, равномерно распределенного в бетоне.

Воздухововлекающие добавки вводят с целью повышения морозостойкости бетонов и растворов на основе цементного вяжущего.Такие добавки в большом количестве снижают прочность бетонной смеси, поэтому их содержание должно быть не более рекомендуемых значений. В таких соотношениях прочность бетона остается практически неизменной.

Воздухововлекающие добавки гидрофобизируют капилляры и поры бетона, а воздушные пузырьки которые образуются в результате ввода в смесь добавок служат дополнительным объемом для замерзания воды в холодный период года. Таким образом удается избежать возникновения внутренних больших напряжений и разрушение бетона.

В результате ввода воздухововлекающих добавок, значительно повышаются морозостойкость и водонепроницаемость бетона.

Виды:

- Смола древесная омыленная (СДО)

- Смола нейтрализованная воздухововлекающая (СНВ)

Смолу древесную омыленную получают путем омыления частично конденсированной древесной смолы щелочью. Использование СДО позволяет снизить на 50-250 кг/м3 плотность бетона, улучшить удобоукладываемость бетонной смеси, уменьшить ее расслоение, сократить продолжительность формования изделий, снизить водопотребность смеси, улучшить деформационные и теплофизические свойства, дозировка 0,1-0,3 % от массы цемента. СДО используют в качестве противоморозной (при введении СДО понижается точка замерзания), воздухововлекающей и пластифицирующей добавки.

Смола нейтрализованная воздухововлекающая является натриевой солью абиетиновой кислоты. СНВ применяется для повышения морозостойкости и водонепроницаемости бетона, уменьшения расслаиваемости бетонной смеси при транспортировании, повышения удобоукладываемости смеси, рекомендуемая дозировка 0,005-005 % от массы цемента. Добавление СНВ в бетонную смесь позволяет повысить содержание пузырьков воздуха, уменьшить их размер. Применяется при производстве монолитного бетона повышенной морозостойкости, строительстве мостов, аэродромов в условиях крайнего севера, вечной мерзлоты, в бетонах конструкциях гидротехнических, транспортных и промышленных сооружений.

5. Физико-химические процессы при производстве и твердении гипсовых вяжущих

Свойства гипсовых и гипсобетонных изделий определяются их структурой.

Большинство гипсовых изделий получают из смеси гипсового вяжущего (ГВ) с водой. Структура получаемого камневидного тела формируется в результате взаимодействия гипсового вяжущего с водой, т.е. гидратацией ГВ. До настоящего времени процесс гидратации ГВ является предметом многих исследований.

Отличительной особенностью гипсовых вяжущих является их способность при затворении водой быстро схватываться и затвердевать. Эта способность выгодно отличает ГВ от других вяжущих. Производство изделий из гипсовых вяжущих характеризуется коротким циклом формования, высокой оборачиваемостью форм, возможностью использования конвейерной или прокатной технологий.

Схватывание и твердение ГВ основано на реакции присоединения воды к полугидрату сульфата кальция с превращением его в двугидрат:

CaSO4·0,5H2O+1,5H2O=CaSO4·2H2O

С термодинамической точки зрения процесс гидратационного твердения связан с уменьшением свободной энергии и поэтому идет самопроизвольно. Об этом свидетельствуют термодинамические характеристики этой реакции, полученные В.И. Бабушкиным и О.П. Мчедловым-Петросяном: энтальпия - ?H0298=-19,4 кДж/моль свободная энергия - ?S0298 = -5,54 кДж/моль

С кинетической точки зрения гидратация - это сложный физико-химический процесс, связанный с адсорбцией влаги частицами полугидрата сульфата кальция, растворением этих частиц, возникновением и ростом центров кристаллизации двугидрата.

Таким образом, гидратация гипсового вяжущего представляет собой непрерывный совместный процесс растворения полугидрата и выкристаллизовывания из раствора двугидрата. По мере роста кристаллов гипса и их переплетения формируется поликристаллическая структура.

В последние годы некоторых исследователей привлекает гипотеза, по которой взаимодействие различных вяжущих с водой, особенно полиминеральных, в реальных условиях протекает одновременно по смешанной схеме: по А. Ле Шателье - с растворением части вещества в воде, последующей гидратацией его и переходом в осадок гидрата, а также топохимически по А.А. Байкову - с прямым присоединением воды к твердой фазе.

Установлено, что при дегидратации гипса в процессе протонной перегруппировки в частицах вяжущего происходит образование активных центров с различной степенью энергетической неоднородности, обусловленной наличием дислокаций, ребер и вершин кристалликов. Причем активные центры, представляющие собой ион-радикалы O2- с ненасыщенными валентными связями, имеют высокую энергию и реакционную способность, чем объясняются вяжущие свойства продуктов дегидратации гипса. Физико-химическая природа реакционной поверхности делает ее легко гидратирующейся за счет активных центров, содержащих атомарный кислород, способный связывать молекулы воды путем образования водородных связей.

Лиофильная реакционная поверхность частиц полугидрата оказывает сильное структурирующее воздействие на молекулы воды. Под влиянием поверхностных сил образуется упорядоченная структура межмолекулярных водородных связей.

В области относительной влажности среды до 80 % молекулы воды "захватываются" активными центрами, в результате чего образуется хемосорбционное соединение молекул воды с твердой поверхностью обезвоженного полугидрата с переходом его в полугидрат, но без превращения в двугидрат.

Термодинамическим анализом доказано, что на гидрофильной поверхности молекулы воды адсорбируются локализованно. Следовательно, и центры кристаллизации двугидрата возникают локально.

Переход полугидрата в двугидрат происходит в области капиллярной конденсации при относительной влажности более 80 %.

По А.В. Лыкову и М.М. Дубинину, если капилляр меньше 0,1 мкм, то он может быть полностью заполнен жидкостью в результате сорбции паров воды независимо от того, есть ли у капилляра дно или он сквозной. При радиусе более 0,1 мкм мениски не смыкаются, и капиллярная конденсация может происходить только в несквозных порах.

В воде частицы вяжущего материала начинают растворяться. Согласно эмпирическому правилу Вант-Гоффа, гипс легко образует растворы с высокой степенью пересыщения. Степень пересыщения гипса равна

C = (c-co)/co= 3

Где с - растворимость полугидрата, г/л;

сo -- растворимость двугидрата, г/л.

Уже при незначительном разбавлении полугидрата водой (в 10-50 раз) высокая степень пересыщения достигается через 1 мин.

На практике же всегда работают с тестом, характеризующимся В/Г ~ 0,5-0,7, за счет чего предельное пересыщение достигается еще раньше.

Кроме того, следует учитывать, что мелкие кристаллы обладают не только высокой скоростью растворения в соответствии с уравнением Томпсона-Кельвина, но могут обеспечить и более значительное пересыщение:

k/с?)= 2M?/RoT?r

где с? -- растворимость крупных кристаллов;

сr , -- растворимость мелких кристаллов полугидрата;

? -- величина межфазной удельной энергии, ориентировочно принятой 12 эрг/см2 ;

М -- молекулярная масса;

Ro -- газовая постоянная, равная 8,3 ·107 эрг/моль град;

Т -- абсолютная температура;

? -- плотность полугидрата, равная 2,7 г/см3 ;

r * -- критический радиус мелких кристаллов.

Расчеты, проведенные по формуле Томпсона-Кельвина, показали, что начиная с размера 0,005 мкм, растворимость кристаллов полугидрата заметно возрастает.

Трех-четырехкратную и большую степень пересыщения создают кристаллы размером 0,0038 мкм.

Несмотря на то, что данные расчеты являются приближенными, тем не менее они дают ясное представление о взаимосвязи степени пересыщения, величине равновесных зародышей и их растворимости.

Вероятность образования зародышей при небольших пересыщениях близка к нулю, затем она экспоненциально возрастает и при степени перенасыщения.

Она достигает максимума тогда, когда закристаллизовавшийся объем достигнет половины первоначального.

В результате растворения полугидрата раствор становится пересыщенным по отношению к двугидрату и последний выкристаллизовывается из него. Это приводит к обеднению раствора ионами Са2+ и O42- , и вследствие этого появляется возможность растворения новых порций полугидрата снова до образования пересыщенного раствора и последующего выделения из него двугидрата. Массовое образование зародышей двугидрата приводит к тому, что пластичная гипсовая смесь уплотняется и загустевает. Это явление соответствует началу ее схватывания. В этот период за счет энергии межмолекулярного притяжения образуются коагуляционные контакты между кристалликами гипса. Характерной особенностью этих контактов является наличие между кристаллами водной прослойки, в результате чего возникшая структура эластична и тиксотропна, т.е. обладает самопроизвольным восстановлением структуры вязкой системы после ее разрушения. Прочность коагуляционных контактов - примерно 10-10 ...10-11 N на один контакт, что слабее кристаллизационных контактов на несколько порядков.

Процессы растворения частиц вяжущего и выкристаллизовывания двугидрата продолжаются до полной гидратации полугидрата. Отсутствие водных прослоек между кристалликами двугидрата вследствие гидратации приводит к образованию условно-коагуляционных контактов срастания. Гипсовое тесто все больше теряет пластичность и уплотняется. Это соответствует концу схватывания гипсовой смеси.

По мере роста кристаллов двугидрата и расхода воды на гидратацию образуются самые прочные кристаллизационные контакты срастания по границам зерен, которые обеспечивают жесткий кристаллический каркас гипсового камня.

При кристаллизации на анизотропной поверхности подложки различают два принципиально отличных механизма роста -- послойный и нормальный. Послойный рост кристалла предполагает наличие на атомно-гладкой поверхности кристаллизации ступеней, к атомам которой присоединяются атомы кристаллизующегося двугидрата.

Рост кристаллов осуществляется путем последовательного зарастания слоев, т.е. тангенциального перемещения ступеней.

При нормальном росте кристаллов гипса атомы кристаллизующегося вещества присоединяются к атомам кристалла практически в любом месте поверхности. Это возможно в том случае, когда на поверхности имеется достаточно много энергетически выгодных мест закрепления атомов, т.е. когда поверхность является атомно-шероховатой. В этом случае поверхность в процессе роста перемещается по нормали к ней.

Таким образом, развитие структуры гипсового камня протекает в два этапа. На первом этапе формируется кристаллизационный каркас, а на втором -- этот каркас обрастает кристалликами двугидрата. Эти процессы приводят к повышению прочности гипсового камня. Но, с другой стороны, как показали П.А. Ребиндер, Е.Е. Сегалова [3] и А.Ф. Полак и др. [4], в твердеющей структуре могут развиваться внутренние напряжения, снижающие прочность структуры. Однако при затвердевании литых гипсовых смесей твердеющая влажная структура достаточно хорошо сопротивляется (релаксирует) нарастающим внутренним напряжениям вследствие остаточных коагуляционных и условно-коагуляционных контактов срастания кристалликов гипса.

Таким образом, в результате физико-химических процессов образуется прочная капиллярно-пористая структура искусственного гипсового камня, которая является основой гипсовых изделий.

6. Сульфатная коррозия бетона, меры борьбы с коррозией

Сульфатная коррозия - один из широко распространенных видов химического разрушения цементных материалов, в частности, бетона. При контакте с бетоном сульфаты активно взаимодействуют с гидроксидом кальция и алюминатными составляющими цементного камня. В результате реакции сульфатов с гидроксидом кальция образуется CaSO4?2H2O, накопление которого в поровом пространстве бетона ведет к его постепенному разрушению.

К более опасным последствиям приводит взаимодействие сульфатов с алюминий содержащими минералами, в результате которого образуются различные формы гидросульфоалюмината кальция (ГСАК). Наиболее коррозионно-опасной модификацией ГСАК является эттрингит. Давление растущих кристаллов этой соли на структурные элементы цементного камня достигает значений, превышающих значения прочности бетона, что является основной причиной его интенсивного коррозионного разрушения под воздействием растворов, содержащих сульфаты.

Интенсивность коррозии бетона в сульфатсодержащих средах зависит от минералогического состава применяемого цемента. Бетоны, для изготовления которых используются цементы с ограниченным содержанием трехкальциевого силиката и, особенно, алюминий содержащих минералов, обладают, как правило, повышенной сульфатостойкостью.

Ниже рассмотрим более подробно взаимодействие цементного камня с водами, содержащими природные сульфаты.

Собственно сульфатная коррозия. При достаточно высокой концентрации аниона SO42- в жидкой фазе он реагирует с катионом кальция Ca2+ по реакции:

Ca2+ + SO42- = CaSO4?2H2O

Далее гипс насыщается водой и при кристаллизации увеличивается в объеме, что приводит к разрушению цементного камня.

Сульфоалюминатная коррозия. Эта коррозия возникает при действии на гидроалюминат цементного камня воды, содержащей CaSO4, и протекает по схеме:

3СaO?Al2O3?6H2O + 3CaSO4 + 25H2O = 3CaO?Al2O3?3CaSO4?31H2O

В результате взаимодействия образуется малорастворимый кристаллический трехсульфатный гидросульфоалюминат кальция (эттрингит), объем которого примерно в 2,8 раза больше объема исходных веществ. Развивающееся в порах кристаллизационное давление приводит к растрескиванию защитного слоя бетона. Вслед за этим происходит коррозия стальной арматуры, усиление растрескивания бетона и разрушение конструкции.

Вместе с тем к такой коррозии могут привести и агрессивные сточные воды промышленных предприятий, а также грунтовые воды. При малой концентрации сернокислых солей их агрессивное воздействие проявляется следующим образом. При действии вод, содержащих, например, сульфат натрия Na2SO4, он вначале реагирует о Са(ОН)2 по схеме:

Са(ОН)2 + Na2SO4 = CaSO4 + 2NаОН.

В последующем CaSO4 взаимодействует с гидроалюминатом, что также приводит к образованию эттрингита 3CaO?Al2O3?3CaSO4?31H2O. Следует отметить, что сульфат кальция CaSO4 практически сразу реагирует с клинкерным минералом.

Сульфатно-магнезиальная коррозия возникает при действии на цементный камень сульфата магния МgSО4, который также может присутствовать в грунтовой или морской воде. Реакция взаимодействия идет по схеме:

Са(OH)2 + MgSO4 + 2H2O = CaSO4?2H2O + Mg(OH)2.

Образуется рыхлая масса Mg(OH)2 и кристаллы CaSO4?2H2O, которые растворяются водой.

Влияние на коррозию цементного камня сказывается при концентрации MgSO4 более 0,5 - 0,75%. Происходит совмещение двух видов коррозии - магнезиальной и сульфатной.

Основные мероприятия по борьбе с коррозией бетона.

В практике редко встречается коррозия одного вида. Кроме того, трудно разграничивать коррозию, например первого и второго вида. Однако почти всегда можно выделить преобладающий вид коррозии и с учетом сопутствующих ему вторичных коррозионных воздействий запроектировать мероприятия по защите конструкций от коррозии. Среди основных мер антикоррозионной защиты следующие:

· Повышение плотности бетона различными конструктивными мерами;

· Выбор специальных цементов из клинкера определенного минералогического состава;

· Введение добавок изменяющих структуру цементного камня, уменьшающих водопотребность и т.д.;

· Обработка поверхностного слоя флюатированием, высокомолекулярными соединениями (например, битумом);

· Защита поверхности от агрессивной среды за счет окраски, оштукатуривания, оклейки гидроизоляционными материалами.

Так, например, коррозионную стойкость бетона можно повысить применением более плотных бетонов. Плотность цементного камня определяется минимальным водоцементным отношением, интенсивным уплотнением бетона при укладке и формовании, тщательно подобранным зерновым составом заполнителей.

Для подводных сооружений рекомендуется применять более водостойкие пуццолановые портландцементы и шлакопортландцементы.

Коррозионная стойкость бетонов увеличивается после автоклавной обработки. Такие бетоны полностью устойчивы в водных растворах Na2SO4 и CaSO4 и несколько более устойчивы в растворах MgSO4. Гидросиликаты кальция, образующиеся в бетонах автоклавного твердения, по отношению к сульфатам менее реакционноспособны, чем гидросиликаты, образующиеся при нормальном твердении.

Повысив плотность цементного камня, и снизив содержание в нем свободного Ca(OH)2, можно значительно увеличить стойкость бетонных изделий на основе портландцемента к коррозии выщелачивания. Причем снизить содержание гидроксида кальция в самом портландцементе можно введением в его состав добавок, связывающих Ca(OH)2 в более стойкие нерастворимые соединения. Кроме того, при выдерживании изделий на воздухе в результате взаимодействия Са(ОН)2 с СО2, на поверхности бетона образуется малорастворимый карбонат кальция СаСО3, который не выщелачивается водой.

Так как действие агрессивных растворов связано с химической реакцией между цементным камнем и агрессивной средой, то наиболее надежный способ защиты от коррозии второго и третьего вида - изменение состава и качества портландцемента. В условиях сульфатной агрессии и попеременного замораживания и оттаивания применяют глиноземистый цемент и сульфатостойкие портландцементы. Такие цементы содержат не более 5% трехкальциевого алюмината (3CaO?Al2O3). Невысокое количество трехкальциевого силиката (3CaO?SiO2) приводит к снижению гидроксида кальция в жидкой фазе твердеющего цемента и препятствует образованию эттрингита.

Наиболее эффективным средством борьбы с коррозией являются химические добавки. Их использование позволяет на три-четыре марки повысить непроницаемость (плотность) бетона. В таких бетонах резко снижается скорость диффузионного переноса агрессивных агентов в поровом пространстве и, соответственно, скорость коррозионных процессов.

С помощью химических добавок можно существенно улучшать структурные характеристики цементного камня, в частности, увеличивать в нем процентное содержание условно замкнутых пор, что позволяет повышать прочность и плотность бетона, гидрофибизировать его поверхность и др.

Когда агрессивность вод превышает установленные нормы, применяют пропитку поверхности бетонных конструкций различными химическими веществами: битумом, метилметакрилатом, стиролом, петролатумом и серой.

В качестве конструктивных способов защиты используется устройство противокоррозионной защиты изолирующими материалами.

7. Меры защиты бетонных и железобетонных конструкций от коррозии

Защита бетонных, а также каменных конструкций от коррозии заключается, с одной стороны, в снижении агрессивности среды, а с другой в повышении стойкости конструкции, в устройстве защитных покрытий или в совместном применении этих мер. Защита железобетонных конструкций строится, кроме того, на подавлении коррозионных токов, возникающих в арматуре, или на дренаже блуждающих токов.

Снижение агрессивности среды. Агрессивное действие среды может быть уменьшено путем понижения уровня грунтовых вод или отвода их от сооружений.

Осушение производится посредством дренажа. Нередко в сооружениях приходится дополнительно устраивать дренаж для защиты их от воздействия агрессивных грунтовых вод и для осушения подвальных помещений. Дренаж может быть проложен за пределами сооружения или под его полом.

Снижение агрессивного действия грунтовых вод, загрязненных кислыми промышленными стоками или агрессивной С02 (составной частью нестойкой угольной кислоты), достигается прокладкой на их пути траншей, заполненных известняковым камнем. Агрессивное действие парогазовой среды внутри сооружений может быть уменьшено усиленной вентиляцией.

Повышение коррозионной стойкости поверхностного слоя конструкций. Оно достигается обработкой их поверхности торкретированием, гидрофобизацией, силикатизацией, флюатированием, карбонизацией.

1. Торкретирование состоит в нанесении защитного цементного слоя или активированного цемента на очищенную бетонную поверхность под давлением сжатого воздуха 5--6 ати. Смесь цемента и песка (в среднем 1:3) подготавливается заранее в растворомешалке или вручную. Активированный торкрет представляет собой смесь вибромолотых цемента и песка, песка и поверхностно-активных добавок. Сухая смесь по шлангу подается к соплу, где смачивается водой, а затем наносится на защищаемую поверхность.

Торкретирование производится обычно в два слоя. Для первого слоя (10--20 мм) рекомендуется портландцемент марки не ниже 300 и песок не крупнее 5 мм. Для второго слоя (10 -- 15 мм), наносимого через 24 ч, применяется более стойкий пуццолановый портландцемент марки 500 и песок не крупнее 2 -- 2,5 мм. В верхний слой торкрета для придания ему большей стойкости в агрессивной среде и гидрофобных свойств вводится раствор битума марки 3 или 4 в бензине второго сорта. На 1 кг цемента добавляется 300 г битумного раствора, приготавливаемого в пропеллерной мешалке путем растворения кускового битума в бензине.

Для ускорения схватывания и повышения антикоррозионных свойств защитного слоя в него вводится жидкое стекло. Правда, при этом он становится менее эластичным и более хрупким.

Создание непроницаемого слоя на поверхности прочных каменных материалов достигается полировкой, способствующей заполнению пор и пустот частицами камня, и последующим нанесением разогретых парафина, воска, олифы.

2. Гидрофобизация (придание способности не смачиваться водой) поверхностей кирпичных, бетонных и других конструкций имеет целью защиту их от атмосферных осадков в условиях повышенной влажности. Для гидрофобизации строительных конструкций используются следующие кремнийорганические полимерные материалы:

водная эмульсия ГКЖ-94, представляющая собой 50 %-ный раствор кремнийорганической жидкости ГКЖ-94, содержащей в качестве эмульгатора желатину;

раствор ГКЖ-94 в уайт-спирите или керосине;

водный раствор ГКЖ-94, являющийся смесью кремнийорганических соединений.

Кремнийорганические материалы поступают готовыми ж употреблению в виде жидкости ГКЖ-94 (100 %), водной эмульсии ГКЖ-94 (50 %) и водного раствора ГКЖ-10 (20-- 25%). Гидрофобный материал требуемой концентрации необходимо приготовить из исходной водной эмульсии на рабочем месте.

Для гидрофобизации конструкций указанные материалы наносят кистью или пульверизатором на сухую, предварительно очищенную поверхность из расчета на 1 м2 поверхности 250-- 300 г 20 %-ной эмульсии, нанесенной в один слой.

3. Силикатизация поверхностного слоя состоит в нанесении на конструкцию (главным образом из естественных каменных материалов) жидкого стекла, а после его высыхания -- раствора хлористого кальция; при этом происходит реакция

Na2OSi02 + СаСl2 = CaOSi02 + 2NaCl

в результате которой образуются силикат кальция, заполняющий поры и повышающий стойкость конструкции, и соль, смываемая водой.

4. Флюатирование поверхности конструкций основано на взаимодействии свободной извести и растворов кремнефтористых солей легких металлов (магния, алюминия, цинка), которые, вступая в реакцию с углекислым кальцием, образуют нерастворимые продукты, оседающие в порах и уплотняющие конструкции.

Флюатирование бетонов начинается с нанесения на сухую очншенную поверхность раствора хлористого кальция, а затем флюагов. Флюаты наносятся кистью или распылителем в три своя с повышением их концентрации: для первого -- 2--3% но массе, для третьего -- уже 12%. Каждый слой наносится после прекращения впитывания флюата с перерывами до 4 ч на его высыхание. После нанесения очередного слоя поверхность обрабатывается насыщенным раствором гидрата окиси кальция Са(ОН)2, приготавливаемым путем растворения извести в воде.

Поверхность бетона может обрабатываться также 3 -- 7 %-ным раствором кремнефтористоводородной кислоты H2SiF6; при этом на поверхности образуется пленка фтористого кальция и кремнезема. Такая обработка повторяется несколько раз после высыхания каждого предыдущего слоя.

Расход флюата зависит от плотности и структуры обрабатываемого материала и составляет 150--300 г кристаллической соли 1 м2 поверхности.

5. Карбонизация поверхностного слоя свежеприготовленного бетона состоит в превращении гидрата окиси кальция Са(ОН)2 под воздействием углекислого газа в карбонат кальция Са(СО)3, который более стоек к внешним воздействиям.

8. Факторы снижающие долговечность строительных конструкций и сооружений

Рассмотрим пример на бетоне:

Несмотря на то, что товарный бетон - один из самых прочных и надежных строительных материалов, на его качество влияет достаточно много факторов. Как на этапе его производства, так и в процессе эксплуатации готовых конструкций. Именно поэтому мало купить цемент или бетон от проверенного поставщика - важно правильно за ним ухаживать и понимать, что может снизить долговечность бетонных конструкций.

Какие факторы снижают долговечность бетона

Качество бетона - весьма условное понятие. Оно объединяет в себе целый ряд показателей, среди которых - прочность на сжатие или растяжение, морозостойкость и водонепроницаемость. В каждом конкретном случае подбирается бетон со своим набором характеристик. По большому счету, именно ваш выбор - главный фактор, который может либо многократно повысить, либо понизить долговечность бетонных конструкций и сооружений.

Другими словами, состав бетона и арматура должны соответствовать тем условиям, в которых будет работать конструкция. Иначе «неправильный» выбор обязательно приведет (9 случаев из 10) к преждевременному разрушению. Как, например, в ситуации с плитами перекрытий в цехах тепловой обработки, когда массовые повреждения этих плит отмечались уже через 10-15 лет - против 50-70 лет в «обычных» условиях.

Итак, что влияет на долговечность плит и на какие внешние условия стоит обратить особое внимание:

· Коррозия арматуры.

· Серьезные нарушения правил эксплуатации (перегрузки, «усталость» арматуры, пролив агрессивных сред).

· Многократные процессы замораживания/оттаивания, когда бетон к этому не «подготовлен».

· Постоянное воздействие химических веществ (кислоты, щелочи).

· Повышенная проницаемость бетона.

· Истирание и износ.

Именно воздействие этих и некоторых других факторов определяет сроки службы бетонных конструкции, поэтому перед тем, как заказать строительные материалы, поговорите с опытным специалистом.

Как определить качество уже готовых конструкций

Нередко случается так, что уже после укладки бетона появляются сомнения в его качестве. В этом случае, вы можете легко подтвердить или опровергнуть ваши опасения.

Первый способ - технология акустической разведки. Она позволяет без лабораторных исследований определить, есть ли в бетоне трещины и пустоты, а также получить достоверные данные о его плотности.

И второй способ - электронное измерение механических показателей при ударе о бетон. Оно помогает определить упругость материала, которая также зависит от наличия трещин и пустот.

9. Охарактеризуйте физико-химическое воздействие строительства на атмосферу. Перечислите комплекс мер для защиты воздушного бассейна

До недавнего времени основной задачей строительства было создание искусственной среды, обеспечивающей условия жизнедеятельности человека. Окружающая среда рассматривалась лишь с точки зрения необходимости защиты от ее негативных воздействий на вновь создаваемую искусственную среду. Обратный процесс влияния строительной деятельности человека на окружающую природную среду и искусственной среды на природную в полной мере стал предметом рассмотрения сравнительно недавно. Лишь отдельные аспекты этой проблемы, в меру практической необходимости, изучались и решались поверхностно (например, удаление и утилизация отходов жизнедеятельности, забота о чистоте воздуха в населенных пунктах и т.п.). Между тем строительство является одним из мощных антропогенных факторов воздействия на окружающую среду. Антропогенное воздействие строительства разнообразно по своему характеру и происходит на всех этапах строительной деятельности начиная от добычи стройматериалов и кончая эксплуатацией готовых объектов.

Строительство нуждается в большом количестве различного сырья, стройматериалов, энергетических, водных и других ресурсов, получение которых оказывает сильное воздействие на окружающую среду. С серьезными нарушениями ландшафтов и загрязнением окружающей среды связано ведение работ непосредственно на стройплощадке. Нарушения эти начинаются с расчистки территории строительства, снятия растительного слоя и выполнения земляных работ. При расчистке территории строительства, ранее уже занимавшейся под застройку, образуется значительное количество отходов, загрязняющих окружающую среду при сжигании, или загромождающих свалочные территории, что меняет морфологию участков, ухудшает гидрологические условия, способствует эрозии. Степень воздействия на природу зависит от материалов, применяемых для строительства, технологии возведения зданий и сооружений, технологической оснащенности строительного производства, типа и качества строительных машин, механизмов и транспортных средств и других факторов.

Территория строек становится источником загрязнения соседних участков: выхлопы и шум двигателей машин, сжигание отходов. Вода широко используется в строительных процессах - в качестве компонентов растворов, как теплоноситель в тепловых сетях; после использования она сбрасывается, загрязняя грунтовые воды и почвы введенными в нее компонентами.

Однако само строительство - процесс относительно скоротечный. Значительно сложнее дело обстоит с воздействием на природу объектов, являющихся продукцией строительства - зданий, сооружений и их комплексов - урбанизированных территорий. Их влияние на окружающую природную среду еще недостаточно изучено, поэтому практически все экологические мероприятия носят рекомендательны характер. Что же касается нынешних результатов, то: уменьшается количество деревьев, загрязняются воды и почвы вследствие промышленных выбросов и накопления коммунально-бытовых отходов, происходит запыление, газовое и тепловое загрязнение воздуха, что приводит к изменению уровня радиации, выпадению осадков, изменению температур воздуха, ветрового режима, т.е. к созданию искусственных условий на урбанизированной территории.

В результате различных воздействий - временных, климатических, эксплуатационных, проявляются негативные влияния на здания и сооружения: разрушаются каменные и металлические конструкции, выцветают и разрушаются краски, меняют окраску наружные ограждающие конструкции, погибают скульптуры и орнаменты памятников старины, коррозируют крыши, фермы мостов, и т.д. В зависимости от методов восстановления объектов возникают отходы производства ремонтных работ - в случае текущего ремонта это могут быть части внутренней отделки, в случае капитального ремонта - добавляются в больших объемах дефектные детали инженерной структуры объектов, отопления, водоснабжения, вентиляции и т.д. В случае полной ликвидации объекта в современных условиях в строительный мусор с большой вероятностью попадают вещества, отрицательно влияющие на экологию - различные виды пластмасс, фенолов, формальдегидов и т.п.

Неблагоприятно воздействует урбанизация на изменение химического состава воздуха, на содержание в нем повышенных концентраций вредных газов. Минимальное количество отходов сейчас составляет от 1.5--2.5 кг твердых и от 8л. жидких отходов на человека в день, причем они содержат такие токсические вещества, как моющие и другие составы, требующие для своего разбавления большого количества чистой воды.

Охрана и оздоровление воздушного бассейна городов обеспечиваются комплексом защитных мер, в основе которых находятся система государственных законодательных актов и нормативная регламентация планировки, застройки и благоустройства населенных мест.

В соответствии с законодательно-нормативными требованиями для защиты воздушного бассейна города от загрязнения осуществляются меры конструктивно-технологического, планировочного и санитарно-технического характера.

Меры конструктивно-технологического характера включают разработку и применение технологий, обеспечивающих максимальное использование сырья, промежуточных продуктов и отходов производства по принципу безотходной или малоотходной технологии. К ним относятся также рекуперация растворителей, герметизация производственного оборудования и работа отдельных трактов в условиях разрежения, сокращение неорганизованных выбросов, замена сухих процессов мокрыми, применение бездымного, малодымного и малосернистого топлива и т. д.

Меры санитарно-технического характера имеют целью уменьшение выброса в атмосферу взвешенных и газообразных загрязнителей, образование которых характерно для данного уровня производственной технологии.

Размещено на Allbest.ur

...

Подобные документы

  • Причины и механизмы разрушения различных материалов при эксплуатации их в агрессивных средах. Химическая стойкость бетона, металла, полимерных материалов. Способы защиты от коррозии. Меры повышения долговечности строительных конструкций и изделий.

    курс лекций [70,8 K], добавлен 08.12.2012

  • Развитие исследований водостойких гипсовых вяжущих. Применение химических веществ и добавок с целью оптимизации свойств раствора. Замедлители и ускорители схватывания, их применение и принцип действия. Разжижители и их влияние на сроки схватывания.

    реферат [24,0 K], добавлен 18.10.2011

  • Бетоны на основе неорганических вяжущих веществ. Определение коррозии железобетона. Химическая, биологическая коррозия бетона. Методы защиты бетона от коррозии. Цементизация, силикатизация, битумизация и смолизация. Твердение гидросиликата и кремнезема.

    реферат [28,0 K], добавлен 08.06.2011

  • Виды разрушения материалов и конструкций. Способы защиты бетонных и железобетонных конструкций от разрушения. Основные причины, механизмы и последствия коррозии бетонных и железобетонных сооружений. Факторы, способствующие коррозии бетона и железобетона.

    реферат [39,1 K], добавлен 19.01.2011

  • Использование в строительстве бетонов, приготовленных на цементах или других неорганических вяжущих веществах. Расчет состава тяжелого бетона методом объемов. Виды химических добавок. Подбор состава легкого бетона. Декоративные (архитектурные) бетоны.

    курсовая работа [4,6 M], добавлен 22.12.2015

  • Основные виды нарушений в строительстве и промышленности строительных материалов. Классификация дефектов по основным видам строительно-монтажных работ, при производстве строительных материалов, конструкций и изделий. Отступления от проектных решений.

    реферат [91,2 K], добавлен 19.12.2012

  • Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.

    курсовая работа [36,7 K], добавлен 08.02.2011

  • Виды водозаборных гидротехнических сооружений. Принцип работы канализационной насосной станции, система ее автоматики. Монтаж полимерных КНС. Классификация сточных вод. Механические, химические, физико-химические и биологические методы их очистки.

    контрольная работа [920,5 K], добавлен 07.04.2013

  • Проектирование оптимального состава теплоизоляционного пенобетона. Применение теплоизоляционного пенобетона при возведении ограждающих конструкций. Структура бетонной смеси и физико-химические процессы, происходящие при ее формировании. Усадка пенобетона.

    курсовая работа [251,2 K], добавлен 06.08.2013

  • Новые методы монтажа и организации производства, новые виды техники, применяющиеся в современном строительстве. Процесс изготовления конструкций. Резка прокатной стали, образование отверстий, сварочные операции, грунтовка и окраска стальных конструкций.

    отчет по практике [23,1 K], добавлен 11.09.2014

  • История строительных алюминиевых сплавов, их физико-механические свойства, сортаменты, средства соединения. Основные принципы проектирования алюминиевых конструкций в строительстве. Особенности сварочных, заклепочных, болтовых и клеевых соединений.

    курсовая работа [1,8 M], добавлен 13.12.2011

  • Организация работ по технической эксплуатации зданий и сооружений. Виды ремонтов: текущий и капитальный. Техническое состояние здания и факторы, вызывающие изменения его работоспособности. Физический и моральный износ сооружений, срок их службы.

    реферат [37,9 K], добавлен 22.07.2014

  • Виды и отличительные особенности строительной продукции. Возведение, восстановление, ремонт, реконструкция, разборка и передвижка зданий и сооружений. Значение в производстве заготовительных, транспортных, подготовительных и монтажно-укладочных процессов.

    презентация [923,2 K], добавлен 21.12.2015

  • Применение железобетона в строительстве. Теории расчета железобетонных конструкций. Физико-механические свойства бетона, арматурных сталей. Примеры определения прочности простых элементов с использованием допустимых значений нормативов согласно СНиП.

    учебное пособие [4,1 M], добавлен 03.09.2013

  • Характеристика материалов, применяемых в строительстве и ремонте, пожароопасность строительных материалов. Вредны химические и физические факторы воздействующие на человека. Воздействие строительных материалов на человека. Химический состав материалов.

    контрольная работа [30,0 K], добавлен 19.10.2010

  • Основные положительные и отрицательные свойства портландцемента и цементного камня. Влияние агрессивных, физико-химических действий жидких, газообразных и твердых сред на бетон. Воздействие на него сульфатов. Основные мероприятия по борьбе с коррозией.

    реферат [69,0 K], добавлен 04.12.2013

  • Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.

    презентация [2,4 M], добавлен 14.01.2016

  • Основные технологические процессы производства портландцемента, его виды и показатели качества. Физико-технические свойства строительных материалов. Основные направления решения экологических проблем в стройиндустрии. Параметры пригодности материалов.

    контрольная работа [80,3 K], добавлен 10.05.2009

  • Изготовление штучных строительных конструкционных изделий и монолитов. Использование легкого пористого высокопрочного саморастущего бетона с регулируемой активностью. Улучшение физико-механических характеристик, упрощение технологии приготовления бетона.

    статья [208,2 K], добавлен 01.05.2011

  • Достоинства и недостатки металлических конструкций, применение их в ответственных сооружениях. Механические свойства стали в зависимости от класса прочности. Коррозия алюминиевых сплавов, меры борьбы с ней. Конструкции многоэтажных каркасных зданий.

    контрольная работа [683,2 K], добавлен 28.03.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.