Методика определения прочности сцепления защитно-отделочного покрытия с пенобетоном

Методика испытания образцов из пенобетона с нанесенным на них слоем защитно-отделочного покрытия из пенополимерцементного раствора. Капиллярное увлажнение и водонасыщение при погружении в воду. Характеристика прочности поризованного раствора при сжатии.

Рубрика Строительство и архитектура
Вид доклад
Язык русский
Дата добавления 04.06.2016
Размер файла 50,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика определения прочности сцепления защитно-отделочного покрытия с пенобетоном

Выполнила:

Щеглова Анна Сергеевна

Для возведения наружных стен отапливаемых зданий трудно выбрать более подходящий материал, чем пенобетон. Применение пенобетона в качестве материала для возведения стен является весьма эффективным теплотехническим решением, способствующим снижению затрат на стены на 20-25%, а снижение нагрузки на фундаменты еще более увеличивает эту эффективность. Однако на пути широкого применения таких стен стоит задача их защиты от атмосферных и сезонно-климатических воздействий.

Сейчас используется немало самых разнообразных способов устройства защитно-отделочных покрытий пенобетона. Их выполняют или в процессе возведения стены или после твердения пенобетона. При тонкослойных покрытиях, наносимых приемом окрашивания, возникает проблема сохранения отделочного покрытия, как в процессе строительства, так и в процессе эксплуатации таких стен. Наиболее приемлемым способом защиты пенобетонных стен, на наш взгляд, является способ их отделки поризованным раствором на композиционной основе с введением в раствор полимерных композитов, в частности дивинилстирольного латекса СКС-65ГП или поливинилацетатной дисперсии. В пользу этого выбора говорит улучшение прочностных характеристик защитно-отделочных растворов, снижение в них величины модуля упругости в зависимости от концентрации полимера. Это снижение увеличивает растяжимость композита, что значительно увеличивает его трещиностойкость. Прочность поризованного раствора при сжатии может быть доведена до 6 МПа.

Применение поризованного композита для покрытия стен из пенобетона возможно при его хорошем сцеплении с пенобетоном. Вводимые в раствор полимерные добавки улучшают адгезию двух соединяемых материалов. Прочность сцепления определяли путем откалывания фактурного слоя стальными клиньями как показано на рисунке.

Рисунок 1. Схема определения прочности сцепления при раскалывании: а - защитно-отделочный слой; б - образец из пенобетона; 1 - клинья; 2 - опоры пресса; 3 - подкладка из поролона

Предварительно, проведенными испытаниями было установлено соотношение между прочностью при сдвиге и прочностью при раскалывании, в соотношении R сдвига = 1,6 R раскал. В дальнейшем все данные будут приводиться с пересчетом на R сдвига. Образцы испытывали после высушивания до постоянного веса, кроме специальных испытаний в водонасыщенном состоянии. При испытании давление на образец передавали равномерно со скоростью 0,1-0,2 Н/сек до момента разрушения. Помимо величины разрушающей нагрузки фиксировался характер разрушения. Испытания производили в 7; 28 и 60-дневном возрасте после их изготовления.

Прочность сцепления пенополимерцементного раствора с пенобетоном в значительной степени определяется адгезионными свойствами полимерной добавки, а также ее положительным влиянием на влагоудерживающую способность раствора. Полимер, обладая в несколько раз большей адгезией, чем цемент, повышает сцепление раствора с пенобетоном, а предотвращая отсос влаги из раствора, способствует нормальной гидратации цемента в контактной зоне и более полному проявлению его адгезионных свойств. Высокие адгезионные свойства поливинилацетата хорошо известны. Свежий бетон с применением поливинилацетата склеивается со старым, достигая адгезии на отрыв до 0,1 МПа. Прочность склеивания пенобетонных призм поливинилацетатцементом при сдвиге достигает 0,8 МПа при условии воздушно-сухого хранения образцов. В тех же условиях при П:Ц= 0,1-0,15 каучукцементные составы имеют несколько меньшую адгезию, но при влажном хранении каучукцемент обладает значительно большей прочностью сцепления, чем поливинилацетатцементы. В нашем случае растворы на ПВАД и латексе показали почти одинаковые адгезионные свойства в воздушно-сухих условиях (табл.1). Преждевременная коагуляция латекса оказывает на прочность сцепления весьма неблагоприятное воздействие. Добавка латекса в этом случае не повышает адгезию по сравнению с немодифицированным составом.

Таблица 1. Прочность сцепления полимерцементного раствора с пенобетоном в МПа

Состав раствора без полимера

Полимерцементное отношение П:Ц

Прочность сцепления после твердения через

7 дней

28 дней

60 дней

0

0,30

9,25

0,29

Раствор с ПВАД

0,07

0,34

0,56

0,62

0,10

0,51

0,35

1,48

0,15

1,32

1,38

1,41

0,20

0,96

1,23

1,52

Раствор с латексом СКС-65ГП

0,07

0,55

0,71

0,82

0,10

0,72

0,88

0,86

0,15

1,35

1,48

1,42

0,20

0,11

0,10

0,15

Анализируя характер разрушения двухслойных образцов, можно заключить, что адгезия раствора растет несколько быстрее, чем его прочность. В семидневном возрасте разрушение происходит часто по раствору, а не по поверхности сцепления или пенобетону, как в более позднем возрасте. Проведенные испытания свидетельствуют о хорошем сцеплении пенополимерцементного раствора с пенобетоном при П:Ц=0,1. Дальнейшее увеличение ПВАД или латекса СКС-65 ГП вряд ли целесообразно, поскольку достигнутая адгезия уже превышает прочность пенобетона.

Для изучения действия увлажнения на прочность сцепления провели две серии опытов. В первой серии гидроизолированные с боковых граней двухслойные образцы, высушенные до постоянного веса, насыщались водой путем капиллярного подсоса через фактурный слой. Для этого образцы с фактурным слоем 18 мм устанавливали на подставки и заливали водой до погружения их в воду на глубину 13 мм. Во второй серии опытов образцы погружались в воду полностью. Прочность сцепления определяли в первом случае через 24 и 48 часов, во втором - через 12 и 24 часа сразу после извлечения из воды. Влияние увлажнения на прочность сцепления показаны в таблице 2.

Таблица 2. Влияние увлажнения на прочность сцепления пенополимерцементного раствора с пенобетоном

Вид полимера

Полимерцементное отношение П:Ц

Водонасыщение при капиллярном подсосе в течение

Водонасыщение при полном погружении в течение

24 часов

48 часов

12 часов

24 часов

Rсдв

Коэф. размягч.

Rсдв

Коэф. размягч.

Rсдв

Коэф. размягч.

Rсдв

Коэф. размягч.

0

0,08

0,33

0,09

0,38

0,16

0,65

0,18

0,74

ПВАД

0,07

0,41

0,59

0,29

0,42

0,48

0,69

0,23

0,33

0,10

0,57

0,76

0,56

0,75

0,52

0,70

0,51

0,68

0,15

0,73

0,67

0,66

0,61

0,66

0,61

0,72

0,66

СКС-65ГП

0,07

0,14

0,49

0,13

0,45

0,17

0,59

0,23

0,80

0,10

0,16

0,55

0,13

0,44

0,23

0,78

0,17

0,58

0,15

0,17

0,50

0,13

0,38

0,18

0,53

0,15

0,44

Более всего снизили прочность сцепления образцы без добавки полимера. Прочность сцепления во второй серии опытов оказалась более высокой, чем в первой. При разрушении по контактному слою в большинстве образцов, особенно при высоком П:Ц, пенобетон оставался сухим. Составы с ПВАД и латексом СКС-65 ГП, даже при двухсуточном водонасыщении, показали удовлетворительное сцепление с пенобетоном. Разрушение происходило, как правило, по пенобетону (при П:Ц=0,1-0,2) или по раствору (при П:Ц=0,07). Некоторое повышение прочности сцепления немодифицированного состава после водонасыщения, объясняется дополнительной гидратацией цемента, обезвоженного в начальной фазе твердения. При испытании образцов, увлажненных как первым, так и вторым способами и высушенных до постоянного веса, восстанавливают прочность сцепления до исходных величин.

Полученные результаты позволяют считать прочность сцепления пенополимерцементных растворов на основе ПВАД и латекса удовлетворительной при П:Ц=0,1.

Библиографический список

пенобетон отделочный раствор прочность

1. Гусев Н.И. Полимерцементные композиции для наружной отделки пенобетонных стен [Текст] / Н.И. Гусев, М.В. Кочеткова, К.С. Паршина // Региональная архитектура и строительство. - 2014. - № 2. -С. 74-78.

2. Гусев Н.И., Кочеткова М.В., Щеглова А.С. Методика исследований физико-механических свойств пенополимерцементных растворов для защиты наружных стен из пенобетона // Современная техника и технологии. 2014. № 12 [Электронный ресурс]. URL: http://technology.snauka.ru/2014/12/5244.

3. Кочеткова М.В., Гусев Н.И., Аленкина Е.С. Исследование декоративных свойств поризованных растворов на атмосферные воздействия // Современная техника и технологии. 2014. № 12 [Электронный ресурс]. URL: http://technology.snauka.ru/2014/12/5243.

4. Гусев Н.И., Кочеткова М.В., Щеглова А.С. Задачи исследования защитных свойств полимерцементных поризованных растворов для стен из пенобетона // Современные научные исследования и инновации. 2014. № 12 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/12/41725.

5. Кочеткова М.В., Гусев Н.И., Щеглова А.С. Пенобетон - эффективный материал для наружных стен отапливаемых зданий // Современные научные исследования и инновации. 2014. № 12 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/12/41724.

6. Гусев Н.И., Кочеткова М.В., Паршина К.С. Наружные стены отапливаемых зданий из высокоэффективного материала // Современные научные исследования и инновации. 2014. № 11 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/11/40691.

7. Гусев Н.И., Кочеткова М.В., Алёнкина Е.С. Выполнение строительных процессов с применением растворов и бетонов // Современные научные исследования и инновации. 2014. № 5 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2014/05/34554.

Размещено на Allbest.ru

...

Подобные документы

  • Контролируемые параметры каменных конструкций. Прочностные характеристики кладки (камней и раствора). Методы определения прочности кирпича и раствора. Задание расчетных характеристик кладки. Оценка несущей способности каменных и армокаменных конструкций.

    презентация [197,3 K], добавлен 26.08.2013

  • Кровля - верхний элемент крыши, предохраняющий здание от атмосферных и механических воздействий. Виды кровли, характеристика кровельных материалов, их преимущества и недостатки. Выбор покрытия, требования к прочности, теплопроводности, шумоизоляции.

    презентация [4,0 M], добавлен 02.02.2016

  • Проектирование сборных плит покрытия с деревянным ребристым каркасом: проверка прочности панели по нормальным напряжениям, обшивки на устойчивость. Конструирование дощатоклееных колонн поперечной рам одноэтажного дома: расчет узла крепления, болтов.

    курсовая работа [345,7 K], добавлен 18.04.2010

  • Конструктивное решение покрытия. Расчет рабочего настила на первое и второе сочетание нагрузок. Материал для изготовления балок. Расчетные сопротивления древесины. Проверка прочности, устойчивости плоской фермы деформирования и жесткости клееной балки.

    курсовая работа [556,5 K], добавлен 04.12.2014

  • Компоновочная схема здания. Расчет двускатной балки покрытия по предельным состояниям I и II группы. Определение геометрических размеров фундамента, расчет прочности конструкции, прогиба, образования и раскрытия трещин. Расчет фундамента от отпора грунта.

    курсовая работа [1,8 M], добавлен 15.12.2013

  • Выбор конструктивного решения покрытия. Подбор сечения балки. Расчет двухскатной клееной балки из пакета досок. Материал для изготовления балок. Проверка прочности, устойчивости плоской фермы деформирования и жесткости балки. Нагрузки на балку.

    курсовая работа [67,2 K], добавлен 27.10.2010

  • Подготовка основания под стяжку. Покрытия для пола. Промышленные полы. Бетонные полы. Требования предъявляемые к промышленному полу. Напольные покрытия. Линолеум. Пробковые покрытия. Ковровые покрытия.

    реферат [197,8 K], добавлен 19.06.2007

  • Изготовление бетонной многопустотной панели покрытия. Расчет и конструирование продольной и поперечной стальной арматуры. Армирование панели сварными сетками из проволоки, в верхней и нижней полках. Расчет по прочности, определение прогибов и деформации.

    курсовая работа [206,5 K], добавлен 26.01.2011

  • Состав лакокрасочных материалов, которые при нанесении на подготовленную поверхность способны образовать после высыхания прочную защитную пленку. Расчет массы образца камня в водонасыщенном состоянии. Предел прочности образцов при изгибе и сжатии.

    контрольная работа [64,0 K], добавлен 02.06.2016

  • Компоновка конструктивной схемы сборного перекрытия. Расчет и конструирование сборной предварительно напряженной плиты перекрытия. Методика вычисления прочности продольных ребер по нормальным сечениям. Определение значения прочности наклонного сечения.

    курсовая работа [360,4 K], добавлен 27.07.2014

  • Определение геометрических параметров и показателей внешнего вида. Влажность древесины деталей оконных рам. Определение предела прочности при статическом изгибе и угловых соединениях. Определение предела прочности древесины при сжатии вдоль волокон.

    лабораторная работа [21,3 K], добавлен 12.05.2009

  • Технология производства полов террацо. Технические требования к качеству покрытия пола. Разновидности художественно-декоративной штукатурки. Подготовка основания пола, установка жилок, приготовление мозаичного раствора. Шлифовка мозаичных покрытий.

    реферат [2,5 M], добавлен 31.03.2011

  • Определение нагрузки на предварительно напряженную плиту покрытия. Методика расчета полки плиты. Действие постоянной и сосредоточенной нагрузки. Вычисление параметров продольных ребер. Расчет плиты по II группе предельных состояний. Прогиб плиты.

    курсовая работа [288,7 K], добавлен 09.11.2010

  • Компоновка фрагмента фасада, междуэтажных перекрытий и покрытия здания из железобетонных плит. Сбор постоянных и временных нагрузок на простенок. Расчет простенка по прочности. Определение усилий, действующих в расчетных сечениях стены подвала.

    контрольная работа [299,0 K], добавлен 03.06.2012

  • Полы как важный элемент внутренней отделки зданий. Наименования слоев пола, требования к полу, его устройство и конструктивные элементы. Классификация пола, стилевые черты напольного покрытия. Роль функциональности материала в выборе напольного покрытия.

    контрольная работа [23,8 K], добавлен 22.01.2011

  • Установление специализированных потоков по устройству асфальтобетонного покрытия. Объем работ и расход материалов. Организация работ по установлению ведущей машины и длины захватки по устройству асфальтобетонного покрытия. Требования к асфальтобетонам.

    курсовая работа [184,9 K], добавлен 25.02.2011

  • Определение назначения и техническое описание настила и обрешетки как деревянных оснований под кровлей. Расчет изгиба балок и прочности кровельного деревянного настила. Предназначение прогонов покрытий и стен, их клепание. Клеефанерные плиты покрытия.

    лекция [8,8 M], добавлен 24.11.2013

  • Определение толщины стенки трубопровода, его прочности, деформируемости и устойчивости; радиусов упругого изгиба на поворотах, перемещения свободного конца. Расчет нагрузок от веса металла трубы и весов транспортируемого продукта и изоляционного покрытия.

    курсовая работа [1,0 M], добавлен 21.05.2015

  • Рассмотрение технологических требований к стальной ферме покрытия. Определение расчетной нагрузки. Статический расчет плоской фермы. Унификация и расчет стержней. Конструирование монтажных стыков; выявление деформативности проектированного покрытия.

    курсовая работа [698,1 K], добавлен 02.06.2014

  • Компоновка поперечной рамы. Расчет крайней колонны прямоугольного сечения. Конструирование двускатной балки покрытия. Определение потерь предварительного напряжения арматуры. Проверка трещиностойкости и прочности колонны в стадиях подъема, монтажа.

    курсовая работа [423,7 K], добавлен 02.09.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.