Контроль качества строительных материалов и конструкций

Производство испытаний зданий и сооружений неразрушающими методами, что сохраняет эксплуатационную пригодность объекта без нарушения несущей способности. Использование геодезических приборов и инструментов при освидетельствовании и испытании конструкций.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 26.10.2016
Размер файла 23,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего образования

"Национальный исследовательский мордовский государственный университет им. Н.П. Огарёва"

(ФГБОУ ВО "МГУ им. Н.П. Огарёва")

Архитектурно-строительный факультет

Контрольная работа

по дисциплине "Обследование и испытание зданий и сооружений"

на тему "Контроль качества строительных материалов и конструкций"

Выполнила: студентка 501 гр. з/о

Специальность: "Строительсво-62"

Шафеева И.К.

Проверил: Лукин А.Н.

Саранск 2016

План

  • Введение
  • 1. Метод проникающих сред
  • 2. Механические методы испытаний
  • 3. Метод пластической деформации
  • 4. Метод упругого отскока
  • 5. Метод отрыва со скалыванием и скалывания ребра конструкции
  • 6. Акустические методы испытаний
  • 7. Метод ударного импульса
  • 8. Магнитные методы испытания
  • 9. Индукционный метод
  • 10. Инфракрасный метод испытания
  • 11. Радиоизотопный метод испытания
  • 12. Электрофизические методы испытания
  • 13. Использование геодезических приборов и инструментов при освидетельствовании и испытания конструкций

Введение

Существенное повышение качества строительных материалов, изделий и конструкций может быть достигнуто при условии совершенствования производства и методов контроля качества на всех этапах строительного производства.

Контроль качества строительных материалов, изделий и конструкций производится двумя основными способами.

1) Состоит в выявлении предельных несущих способностей объектов, что связано с доведением их до разрушения. Этот способ эффективен при проведении стандартных испытаниях образцов из стали, бетона и других конструкционных материалов. При испытании моделей сооружений и их фрагментов конструкции могут доводиться до предельных состояний. Что же касается реальных объектов, то их разрушение для выявления предельных несущих способностей экономически не всегда оправдано.

2) Связан с производством испытаний неразрушающими методами, что позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности. Этот способ наиболее приемлем при обследовании зданий и сооружений, находящихся в эксплуатации. Неразрушающими методами можно, например, определить влажность заполнителей бетона, степень уплотнения бетонной смеси в процессе формования, плотность и прочность бетонов в изделиях, провести дефектоскопию конструкций.

Неразрушающие методы испытаний построены в основном на косвенном определении свойств и характеристик объектов и могут быть классифицированы по следующим видам:

- метод проникающих сред, основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;

- механические методы испытаний, связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии;

- акустические методы испытаний, связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;

- магнитные методы испытаний (индукционный и магнитопорошковый);

- радиационные испытания, связанные с использованием нейтронов и радиоизотопов;

- радиоволновые методы, построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;

- электрические методы, основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта;

- использование геодезических приборов и инструментов при освидетельствовании и испытаниях конструкций.

Кратко рассмотрим каждый из перечисленных методов.

1. Метод проникающих сред

Основаны на проверке непроницаемости кровли с помощью невязких жидких или легко обнаруживаемых газообразных сред, которые находят сквозные отверстия и каналы в водоизоляционном ковре и беспрепятственно проникают сквозь кровлю сверху вниз или наоборот. К таким методам относятся дымовой, газовый, вакуумный, а также оросительный и гидростатический методы, каждый из которых имеет определенную область применения, свои преимущества и недостатки. Дымовой метод. Предназначен для испытания рулонных кровель с механическим креплением к воздухонепроницаемому основанию.

Метод основан на закачивании под испытываемый участок водоизоляционного ковра дымовоздушной смеси от дымогенератора с помощью электрического компрессора или вентилятора через приклеенный к водоизоляционному ковру (над отверстием) патрубок. Смесь выходит в атмосферу через трещины и другие сквозные повреждения в кровле и визуально обнаруживается, указывая на места протечек. При повышении давления дымовоздушной смеси под кровлей кроме герметичности можно проверить качество ее крепления к основанию. Недостатком метода является необходимость устройства отверстий в водоизоляционном ковре для закачивания под него дыма, а преимуществом - большая площадь кровли, которая может быть испытана за один раз.

2. Механические методы испытаний

К механическим неразрушающим методам контроля относятся: метод пластических деформаций, метод отрыва со скалыванием и скалывания ребра конструкции и метод упругого отскока. Применение данных методов, позволяет получить достоверную оценку прочности строительных материалов, не нарушая целостность элементов конструкций. Назначение необходимого количества контролируемых участков и их расположение осуществляется в соответствии с ГОСТ 18105-86, а также из конструктивных особенностей конструкций (в наиболее нагруженных и поврежденных участках) и условий доступности к ним.

3. Метод пластической деформации

Ряд приборов, позволяющих определить твердость поверхностного слоя бетона с использованием метода пластической деформации достаточно разнообразен. При проведении работ по обследованию зданий и сооружений применяются следующие приборы:

- шариковый молоток И.А. Физделя: определение прочности сводится к нанесению серии ударов по предварительно подготовленной поверхности (не менее пяти) и замеру диаметров отпечатков. После статистической обработки определяется кубиковая прочность бетона на сжатие с использованием тарировочной кривой. Прибор характеризуется малой трудоёмкостью проведения испытания, но относительно не высокой точностью показаний за счёт большой вариации силы удара.

- эталонный молоток Кашкарова: его рабочим органом является шарик подшипника диаметром 15 мм, твердостью не менее 60 HCR. Эталоном служит стальной стержень Ш 10, из арматурной стали класса А-I. Выполняя замеры диаметров отпечатков - на эталоне и на бетоне, с точностью не менее 0,1 мм, определяем их соотношение. По среднему арифметическому значению этих отношений при пяти ударах и тарировочным кривым определяем кубиковую прочность бетона на сжатие. Тарировочные кривые, составлены для бетона влажностью 2 - 6%. При отклонении фактической влажности материала от данных значений выполняется корректировка, полученных значений прочности бетона. Точность измерения прочности молотком Кашкарова составляет ±15%.

4. Метод упругого отскока

здание сооружение неразрушающий испытание

Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника - не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.

При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.

Для определения прочности бетона методом упругого отскока используем склерометр ОМШ-1. Принцип действия прибора основан на ударе с нормированной энергией бойка о поверхность бетона и измерении высоты его отскока в условных единицах шкалы прибора, являющейся косвенной характеристикой прочности бетона на сжатие.

Для поверки склерометра ОМШ-1 применяется наковальня ОН-1. Наковальня предназначена для эксплуатации в закрытых помещениях.

Наковальня состоит из массивного цилиндрического основания, в которое запрессован пуансон из закалённой стали, и направляющей гильзы, закреплённой на основании и обеспечивающей требуемое положение склерометра при ударе.

5. Метод отрыва со скалыванием и скалывания ребра конструкции

Определение прочности материала осуществляется с помощью ПОС-50МГ 4 "Скол". Данный метод является наиболее точным, по сравнению с другими существующими неразрушающих методов определения прочности бетона. Метод отрыва со скалыванием основан на линейной (в достаточно широком диапазоне) зависимости между сопротивлением бетона одноосному сжатию и отрыву конусного фрагмента бетона в поперечном направлении. Данный метод применяют для корректировки (тарировки) в натурных условиях градировочных зависимостей других механических средств неразрушающего контроля по ГОСТ 22690 обладающих меньшей трудоёмкостью при проведении испытаний.

Использование метода скалывания ребра позволяет определять прочность бетона путем местного (локального) разрушения (скалывания) выступающего ребра (угла). Преимущество этого способа перед методом отрыва со скалыванием состоит в том, что он не требует сверления скважин в бетоне. Метод получения значений прочности бетона путем его скалывания ребра учитывают не только прочностные свойства растворной составляющей бетона, но и влияние крупного заполнителя на его сцепление с раствором. На каждом участке проводят не менее двух сколов, расстояние между которыми в осях должно быть не менее 200 мм. Величину скола определяют как среднее арифметическое значение. Этот метод применяют для определения прочности как тяжёлого, так и лёгкого бетона в диапазоне от 10 до 70 МПа.

6. Акустические методы испытаний

При определении прочности бетона ультразвуковым методом используем электронный ультразвуковой прибор Пульсар 1.1, работа которого основана на импульсном ультразвуковом методе. Этот метод относится к физическим методам определения прочности бетона, который нашел широкое применение для неразрушающих испытаний железобетонных конструкций. Данный метод основан на измерении скорости распространения в бетоне продольных ультразвуковых волн и степени их затухания.

Скорость ультразвука связана функциональной зависимостью с динамическим модулем упругости бетона первого рода.

Значение можно вычислить по формулам, если известны длина ультразвуковой волны в бетоне, поперечные размеры тела и измеренная в опыте скорость ультразвука.

Для среды, ограниченной одним измерением, т.е. для плит прозвучиваемых с торцов (л больше габаритов), p - плотность бетона; м - коэффициент Пуассона, принимаемый для бетона равным 0,16-0,2.

Для среды, ограниченной двумя измерениями, т.е. для стержней, прозвучиваемых с торцов (больше поперечных размеров стержня), значение находится из выражения:

Прочность бетона на сжатие устанавливается по вычисленным значениям с помощью заранее установленных экспериментальным путем зависимостей для бетонов определенного состава. Эти зависимости обычно выражают в виде тарировочного графика "прочность бетона - динамический модуль упругости".

Следует иметь в виду, что тарировочные зависимости между и, а также между и можно использовать с достаточной точностью только для определения бетонов, для которых строились эти зависимости. Расчет прочности по тарировочным графикам, формулам и таблицам, полученным для бетонов других составов, может привести к значительным ошибкам. Точность определения прочности бетона импульсным методом с применением тарировочных кривых составляет 8 - 15%. Определение прочности бетона по скорости ультразвука производится согласно ГОСТ 17624-87 "Бетоны. Ультразвуковой метод определения прочности".

С помощью ультразвукового импульсного метода можно выявить внутренние дефекты конструкции (пустоты, каверны, участки с пониженной плотностью) и определить глубину трещин.

7. Метод ударного импульса

Специалистами предприятия ООО НПП "Инженер-Строй" применяется прибор ИПС - МГ 4. Он предназначен для неразрушающего контроля прочности бетона, железобетонных изделий, конструкций и строительной керамики (кирпича) методом ударного импульса в соответствии с ГОСТ 22690-88. Прибор позволяет также оценивать физико-механические свойства строительных материалов в образцах и изделиях (прочность, твердость, упруго-эластические свойства), выявлять неоднородности, зоны плохого уплотнения и др. Прибор соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ 12997-84*, относится к нестандартным средствам измерений и является рабочим средством измерений. Цикл замеров на одном участке состоит из 10 …15 замеров. После выполнения 15 замеров прибор автоматически производит обработку результата. Прибор производит математическую обработку результатов которая включает в себя: усреднение результатов, отбраковку результатов, более чем ±10% отклонения от среднего значения прочности на участке (изделий), усреднение оставшихся после обработки измерений. По окончанию цикла измерения прибор представляет результат.

Устройством для обнаружения дефектов методами неразрушающего контроля в изделиях из различных металлических и неметаллических материалов, является дефектоскоп. Дефектоскопы используются на транспорте, в различных областях машиностроения, в химической промышленности, нефтегазовой промышленности, в энергетике, строительстве, в научно-исследовательских лабораториях для определению свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов.

8. Магнитные методы испытания

С помощью магнитометрического метода, основанного на взаимодействии магнитного поля с введенным в него ферромагнетиком - феррозондом (металлом) можно определить расположение и сечение арматуры, размер защитного слоя бетона. Магнитные методы нашли широкое применение для построения газоанализаторов на кислород, магнитная восприимчивость которого на два порядка превышает восприимчивость других газов.

Схема кулонометрической установки для определения толщины гальванопокрытий, они основаны на принципе вихревых токов, изменении магнитного потока, изменения силы притяжения магнита.

Применяют в основном для неразрушающего контроля изделий из ферромагнитных материалов, находящихся в намагниченном состоянии.

Основаны на измерении силы отрыва магнита от поверхности деталей из ферромагнитного металла, покрытых слоем немагнитного или слабомагнитного материала, либо на измерении магнитного потока в цепи, образованной сердечником электромагнита, покрытием и металлом детали.

Магнитные методы применительно к исследованию монокристаллов протеинов; характер связи металла с инсулином.

Находят широкое применение в решении проблем химии, металлургии и геологии.

Магнитопорошковая дефектоскопия изделий из ферромагнитных материалов - разработка технологий неразрушающего контроля, подбор магнитных порошков и концентратов магнитной суспензии, определение максимально достижимой чувствительности контроля, разработка технологии размагничивания деталей и конструкций сложной конфигурации, количественная оценка уровня допустимой остаточной намагниченности деталей и агрегатов. Магнитопорошковым методом могут контролироваться также стыковые сварные соединения, в том числе соединения, полученные электронно-лучевой сваркой.

- Магнитная толщинометрия - контроль толщины любых немагнитных покрытий, наносимых на ферромагнитные детали; контроль толщины магнитных покрытий (Ni, Co и др.), нанесенных на немагнитные или слабомагнитные материалы.

- Магнитная структуроскопия - контроль физико-механических характеристик; сортировка сталей по маркам; контроль качества термической обработки (структуры или твердости).

- Неразрушающий контроль небольших партий изделий с целью обнаружения тонких, невидимых глазом поверхностных дефектов материала типа трещин (закалочных, сварочных, шлифовочных, усталостных, штамповочных, литейных и др.), волосовин, флокенов, закатов, заковов, надрывов, рихтовочных трещин, некоторых видов расслоений и др.

Наряду с деталями, имеющими механически обработанные поверхности, контролю могут подвергаться детали, выплавленные методами точного литья (корковое литье, литье по выплавляемым моделям и др.). При этом обнаруживаются трещины, неспаи, рыхлоты и другие дефекты, а также цепочки пор.

9. Индукционный метод

Индукционными магнитными методами измеряют по существу наведенный в детектирующих катушках потенциал, возникающий при воздействии на образец переменного поля.

Специалистами предприятия ООО НПП "Инженер-Строй" применяется прибор ИПА - МГ 4, который позволяет измерять толщину защитного слоя бетона или определения диаметр арматурного стержня. Прибор оборудован выносным щупом, который плавно перемещают по поверхности контролируемого объекта, добиваясь минимального значения цифрового кода нижней строки индикатора и максимального тона звукового сигнала. Также, зная расположение оси и диаметр арматурного стержня, определяется толщина защитного слоя и соответственно наоборот, зная величину защитного слоя, определяется диаметр арматуры.

10. Инфракрасный метод испытания

Его можно применять при поиске скрытых протечек в рулонных кровлях с любым основанием. Инфракрасный метод позволяет определить местонахождение скоплений влаги в верхних слоях покрытия поиском зон повышенных температур поверхности кровли, поскольку участки покрытия, содержащие влагу, имеют более высокую теплопроводность и теплоемкость, чем сухие участки. В теплое время года тепловая энергия от солнца лучше поглощается влажными участками покрытия и затем сохраняется в течение нескольких часов после заката, поэтому при осуществлении инфракрасного метода кровлю, как правило, сканируют ночью. Основными преимуществами инфракрасного метода являются достигаемая сплошность обследования кровли и высокая производительность, а недостатками - высокая стоимость инфракрасных камер, существенная зависимость метода от погоды, возможность его применения только в ночное время суток (как правило, до полуночи).

11. Радиоизотопный метод испытания

Предпочтительнее других методов применять при проверке влагосодержания балластных и инверсионных кровель. Ограничено применение метода на кровлях из материалов, в состав которых входят углеводороды (в том числе битум). Метод основан на проверке присутствия водородных молекул (водяного пара) в верхних слоях покрытия. Метод осуществляется с помощью радиоизотопного влагомера, который способен определять влажность материала по количеству медленных отраженных нейтронов (выпущенных из быстрого нейтронного источника), так как при увеличении влажности материала количество отраженных нейтронов увеличивается, и показания радиоизотопного влагомера, соответственно, возрастают. Преимуществом метода является возможность его применения в широком диапазоне погодных условий и при любом уклоне кровли, а недостатком - его экологическая опасность.

Результаты выполняемого в Ростовском государственном строительном университете исследования по совершенствованию методов дефектоскопии строительных конструкций подтверждают работоспособность. А также достаточную эффективность каждого из представленных в данной статье методов и позволяют рекомендовать их (с учетом указанных преимуществ и ограничений по использованию) для массового применения при выявлении скрытых протечек в рулонных кровлях как строящихся, так и эксплуатируемых зданий.

12. Электрофизические методы испытания

Основаны на проверке электроизоляционных свойств водоизоляционного ковра, которые резко ухудшаются в местах скрытых протечек кровли. К таким методам относятся метод разности потенциалов, а также высоковольтный и емкостной методы. Метод разности потенциалов (низковольтный метод). Предназначен для обнаружения скрытых протечек в кровлях, в которых водонепроницаемый ковер не является электрическим проводником, а основание выполнено из металла или железобетона.

Поиск скрытых протечек осуществляют измерением разности потенциалов в различных точках переменного электрического поля, создаваемого на поверхности кровли с помощью низковольтного импульсного генератора тока (напряжением до 40 В), один из выводов которого соединен с основанием кровли. А другой - с электропроводящим контуром (из гибкого неизолированного электрического провода), укладываемым на смоченную водой поверхность обследуемого участка кровли (рис. 2).

Применение метода особенно эффективно на участках кровли, где протечки продолжались в течение продолжительного времени и ее основание оказалось обильно смоченным водой. Недостатком метода является невозможность его осуществления на участках кровли с выступающими над ее поверхностью заземленными элементами инженерного оборудования из электропроводных материалов.

Высоковольтный метод. По области применения и физической сущности высоковольтный метод подобен низковольтному методу. Отличие первого метода от второго заключается в том, что на поверхность кровли подается положительный высоковольтный заряд с безопасным по величине электрическим током (от аккумулятора или источника постоянного тока), причем не на электропроводящий контур, а на щеточный электрод с щетиной из медной проволоки (рис. 3). Положительными сторонами метода являются достаточно высокая его производительность, а также возможность точно определять местонахождение скрытых протечек. Недостаток метода - невозможность его применения при обследовании кровель в утепленных покрытиях и кровель с защитным слоем из гравия или с загрязненной поверхностью.

13. Использование геодезических приборов и инструментов при освидетельствовании и испытания конструкций

Для выявления деформаций зданий, вызванных неравномерной осадкой фундаментов (крена, прогиба, выгиба, перекоса), отклонений от проектного положения конструкций из-за ошибок при их возведении (смещения в плане и по высоте, наклон и др.) и составления исполнительных планов здания применяют геодезические методы обследования.

Основными инструментами при этом являются высокоточные или точные нивелиры, теодолиты высокой и средней точности, фототеодолиты, нивелирные рейки, мерные ленты.

Размещено на Allbest.ru

...

Подобные документы

  • Основные способы осуществления контроля качества строительных материалов, изделий и конструкций, их характеристика, оценка преимуществ и недостатков. Использование геодезических приборов и инструментов при освидетельствовании и испытании конструкций.

    реферат [28,3 K], добавлен 25.01.2011

  • Определение общего состояния строительных конструкций зданий и сооружений. Визуально-инструментальное обследование, инженерно-геологические изыскания. Определение физико-химических характеристик материалов конструкций. Диагностики несущих конструкций.

    курсовая работа [36,7 K], добавлен 08.02.2011

  • Железобетон, как композиционный строительный материал. Принципы проектирования железобетонных конструкций. Методы контроля прочности бетона сооружений. Специфика обследования состояния железобетонных конструкций в условиях агрессивного воздействия воды.

    курсовая работа [2,2 M], добавлен 22.01.2012

  • Структурированные системы мониторинга и управления инженерными системами зданий и сооружений. Источники данных и контроль состояния конструкций. Алгоритмы, применяемые при мониторинге строительных конструкций. Датчики, применяемые в системах мониторинга.

    курсовая работа [54,6 K], добавлен 25.10.2015

  • Дефекты каменных конструкций, причины их возникновения. Характеристика способов усиления фундаментов, стен, перекрытий. Увеличение несущей площади фундамента и несущей способности грунта. Методы усиления каменных конструкций угле- и стеклопластиками.

    реферат [1,0 M], добавлен 11.05.2019

  • Особенности работы и разрушения каменных и армокаменных конструкций. Определение их прочности и технического состояния по внешним признакам. Влияние агрессивных сред на каменную кладку. Мероприятия по обеспечению долговечности промышленных зданий.

    курсовая работа [1,2 M], добавлен 27.12.2013

  • Расчеты строительных конструкций. Расчет несущей способности изгибаемого железобетонного элемента прямоугольной формы, усиленного двусторонним наращиванием сечения. Усиление ленточного фундамента. Усиление кирпичного простенка металлическими обоймами.

    курсовая работа [3,3 M], добавлен 16.04.2008

  • Оценка технического состояния как установление степени повреждения и категории технического состояния строительных конструкций или зданий и сооружений, этапы и принципы ее проведения. Цели обследования строительных конструкций, анализ результатов.

    контрольная работа [26,6 K], добавлен 28.06.2010

  • Частичный или полный ремонт деревянных конструкций. Методика обследования деревянных частей зданий и сооружений. Фиксация повреждений деревянных частей зданий и сооружений. Защита деревянных конструкций от возгорания. Использование крепежных изделий.

    презентация [1,4 M], добавлен 14.03.2016

  • Рассмотрение особенностей испытания современных строительных конструкций статической нагрузкой. Ознакомление с измерительными приборами для статических и динамических испытаний. Изучение основных правил обработки измеренных с помощью приборов величин.

    реферат [722,0 K], добавлен 01.04.2015

  • Основные виды нарушений в строительстве и промышленности строительных материалов. Классификация дефектов по основным видам строительно-монтажных работ, при производстве строительных материалов, конструкций и изделий. Отступления от проектных решений.

    реферат [91,2 K], добавлен 19.12.2012

  • Эксплуатация оснований, фундаментов и стен подвальных помещений. Зависимость прочности и устойчивости здания от несущей способности фундамента. Деформации зданий. Схема водопонижения при помощи иглофильтров с электроосушением и битумизации грунтов.

    реферат [59,6 K], добавлен 11.05.2014

  • Реконструкция здания после пожара. Влияние огневого воздействия на прочностные характеристики конструкций. Предварительное обследование зданий, подвергшихся воздействию пожара. Детальное обследование конструкций зданий, подвергшихся воздействию пожара.

    контрольная работа [6,9 M], добавлен 10.12.2014

  • Изучение основных методов и норм расчета сварных соединений. Выполнение расчета различных видов сварных соединений; конструирование узлов строительных металлических конструкций. Определение несущей способности, а также изгибающего момента стыкового шва.

    курсовая работа [455,1 K], добавлен 02.12.2014

  • Особенности конструктивных решений здания. Определение качества строительных материалов и конструкций в полевых условиях. Средства измерений и приборы для проведения неразрушающего контроля, диагностики и испытаний. Характеристика блоков сбора сигналов.

    курсовая работа [2,4 M], добавлен 12.01.2022

  • Порядок и основные этапы, правила обследования зданий на предмет их пригодности, значение данного процесса в безопасной эксплуатации зданий. Виды повреждения строительных конструкций и степень их опасности, принципы нормирования и их обоснование.

    курс лекций [479,5 K], добавлен 12.03.2010

  • Выбор методов производства строительных работ, спецификация сборных железобетонных изделий. Технология строительных процессов и технология возведения зданий и сооружений. Требования к готовности строительных конструкций, изделий и материалов на площадке.

    курсовая работа [115,1 K], добавлен 08.12.2012

  • Характеристика основных этапов работ по обследованию конструкций, зданий и сооружений. Составление инженерно-технического отчета. Используемые приборы при обследовании. Обследование железобетонных плит и ригелей. Формирование цены в ООО "Реконструкция".

    отчет по практике [33,0 K], добавлен 19.10.2011

  • Основные материалы, применяемые для отделки строительных конструкций и сооружений, домов и квартир. Номенклатура основных асбестоцементных изделий. Технологическая схема производства асбестоцементных листов. Контроль качества сырья и готовой продукции.

    курсовая работа [80,6 K], добавлен 18.12.2010

  • Технология производства работ по возведению здания. Область применения технологической карты. Определение объемов работ при монтаже сборных конструкций, параметров монтажного крана. Подсчет трудовых ресурсов. Контроль качества работ, техника безопасности.

    курсовая работа [1,7 M], добавлен 11.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.