Строительные вяжущие материалы

Характеристика производства тяжелого бетона. Классификация, свойства и сферы применения газобетона и пенобетона. Описание пластификаторов и ускорителей твердения бетона. Характеристика кровельных, гидроизоляционных и герметизирующих материалов.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 11.12.2016
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

· Электропроводность -- способность материала проводить электрический ток. Данное свойство у древесины напрямую зависит от влажности.

· Цвет -- своеобразный индикатор, показывающий качество, возраст и состояние древесины. Качественная и здоровая древесина имеет равномерный цвет без пятен и прочих вкраплений. Если в древесине присутствуют вкрапления и пятна, это свидетельство её загнивания. Цвет древесины может изменяться также под влиянием атмосферных условий.

· Запах зависит от содержания в древесине смол и дубильных веществ. Свежесрубленное дерево имеет более сильный запах, а по мере высыхания дерева и испарения влаги и эфирных смол запах ослабевает.

· Текстура -- рисунок, образующийся при распиливании дерева. Плоскость распила пересекает годичные кольца и слои древесины, образовавшиеся в разное время, в результате образуется характерный узор годичных линий, по которому и отличают древесину от других материалов.

· Вес древесины -- различают удельный и объёмный вес древесины. Удельный вес -- масса единицы объёма древесины без учёта пустот и влаги. Данный вес не зависит от породы древесины и составляет 1,54 г/смі. Объёмный вес -- это масса единицы объёма древесины в естественном состоянии, то есть с учётом влаги и пустот.

· Наличие пороков -- особенностей и недостатков строения древесины и ствола дерева, возникающих во время его роста или после спиливания. Отдельные группы пороков могут возникать в древесине при обработке её человеком (дефекты обработки древесины) или при поражении её грибами.

7. Кровельные, гидроизоляционные и герметизирующие материалы

позволяют надежно и длительный период эксплуатировать сооружения. От их долговечности во многих случаях зависит и долговечность конструкций.

Кровельные материалы должны обладать не только прочностью, но и атмосферостойкостыо, водостойкостью, водонепроницаемостью и теплостойкостью.

Гидроизоляционные материалы подвергаются часто значительному напору воды, в том числе содержащей примеси. Кроме свойств, присущих кровельным материалам, они должны иметь повышенную прочность и водонепроницаемость, химическую стойкость, а также достаточную эластичность, чтобы не могли возникнуть трещины и разрывы вследствие возможных усадочных, температурных и других деформаций изолируемых конструкций.

Указанным требованиям в значительной степени удовлетворяют кровельные и гидроизоляционные материалы, получаемые на основе битумов и дегтей.

Битумные и дегтевые рулонные кровельные материалы, несмотря на некоторые существенные недостатки по сравнению с асбестоцементными и черепицей (меньшая долговечность и огнестойкость, необходимость устройства для их укладки сплошной обрешетки), широко применяют в строительстве, особенно в промышленном. Они позволяют устраивать кровли с малым уклоном, плоские кровли и крыши сложной конфигурации; при их применении сокращаются расходы на эксплуатацию кровли в условиях агрессивной среды и т. п.

В общем объеме всех видов кровельных материалов около 50 % приходится на долю мягкой кровли.

Кровельные и гидроизоляционные материалы на основе битумов и дегтей делят на рулонные, листовые и штучные изделия, обмазочные материалы -- мастики эмульсии и пасты, а по виду вяжущих -- на битумные, дегтевые, гудрокамовые, резинобитумные, битумо- и дегтеполимерные.

Рулонные кровельные и гидроизоляционные материалы могут быть двух типов -- основные и безоснбвные. Основные материалы изготовляют путем обработки органическим вяжущим основы -- кровельного картона, стеклоткани, стекловойлока, металлической фольги, асбестового картона и т. п. Безоснбвные материалы получают в виде полотнищ заданной толщины прокаткой на каландрах термомеханически обработанных смесей из органического вяжущего, порошкового или волокнистого наполнителя и специальных добавок. Наибольшее распространение в строительстве имеют материалы первого типа, некоторые представители их впервые были изготовлены в 1877 г. в России инж. А. А. Летним.

В зависимости от класса сооружений, климатических и эксплуатационных условий, уклона кровли рулонные материалы укладывают в один, а чаще в несколько слоев, которые образуют монолитное покрытие, называемое кровельным ковром.

В соответствии с назначением рулонные материалы, имеющие основу, делят на два вида: покровные и беспокровные. Покровные материалы, применяемые главным образом для верхней части кровельного ковра, получают пропиткой основы органическими вяжущими и нанесением на нее с двух сторон покровного слоя из более тугоплавких органических вяжущих, часто с добавкой в них наполнителей, антисептиков и других компонентов. Покровный слой воспринимает атмосферные воздействия. Беспокровные материалы, предназначенные для нижней и средней частей кровельного ковра, покровного слоя не имеют.

8. Основы производства полимерных теплоизоляционных материалов

Полимерные теплоизоляционные материалы (ПТМ) применяют в виде газонаполненных пластмасс, которые по физической структуре подразделяют на три подгруппы:

1. ячеистые или пенистые пластмассы (пенопласты);

2. пористые пластмассы (поропласты);

3. сотовые пластмассы (сотопласты).

Пенопластами называют материалы с системой изолированных несообщающихся между собой ячеек, содержащих газ или смесь газов и разделенных тонкими стенками. К поропластам относят материалы с системой сообщающихся ячеек или полостей, заполненных газом. Указанное разграничение газонаполненных материалов условно, так как в некоторых случаях ячеистая и пористая структуры образуются одновременно.

Сотопласты имеют регулярно повторяющиеся полости правильной геометрической формы. Такие полости образуются при формовании или литье исходного пластического материала без его вспенивания. Структура сотопластов близка к структуре ячеистых пластиков, отличаясь от нее большими размерами и правильной геометрической формой ячеек.

Производство ПТМ освоено сравнительно недавно. В крупном масштабе эти материалы выпускаются в течение последних 15--20 лет. Сейчас производство их развивается быстрыми темпами и имеет значительную сырьевую базу.

Полимерные теплоизоляционные материалы получают на основе как термопластичных, так и термореактивных полимеров химическим и физическим способами.

Глава 2. Свойства полимерных теплоизоляционных материалов и методы их определения

Полимерные теплоизоляционные материалы -- новый вид чрезвычайно эффективных тепло- и звукоизоляционных материалов, обладающих рядом очень ценных для строительства свойств: малым объемным весом, достаточной прочностью, малым водопоглощением и гигроскопичностью, низким коэффициентом теплопроводности и т. д.

По теплоизоляционным свойствам ПТМ превосходят большинство известных материалов. Для получения одинакового термического сопротивления толщина изоляционного слоя составляет (в см): гранит, базальт, мрамор -- 250; песчаник, известняк-- 150; железобетон -- 130; плотный бетон--100; пустотелый кирпич -- 50; пемзобетон--40; древесина -- 20; пенополистирол--1,5.

Жесткие и эластичные пенопласты малопроницаемы для звуковых колебаний. При использовании их для звукоизоляции следует иметь в виду, что благодаря тонкой сплошной пленке полимера на их поверхности они способны не поглощать, а отражать звуковые волны. Если эту пленку удалить, звукопоглощающие свойства пенопластов повышаются.

Наибольшей способностью к звукопоглощению обладают пористые материалы: их открытая система пор благоприятствует созданию «звукового лабиринта». Материалы с закрытыми порами, как правило, обладают невысокой звукопоглощающей способностью, но практически звуконепроницаемы.

Глава 3. Пенопласты на основе полистирола

Технологическая схема производства пенопласта ПС-4 аналогична рассмотренной выше. Параметры производственных режимов прессования приведены в табл. 11.

Отпрессованные заготовки вспенивают при 100--105°С в среде насыщенного водяного пара.

Пенопласт ПС-4 выпускают в виде прямоугольных плит размером до 1500X1500 мм, толщиной не менее 50 мм. Плиты пенопласта легко поддаются обработке и склеиваются друг с другом, с металлами и другими материалами. В зависимости от количества газообразователя можно получать пенопласт ПС-4 объемным весом от 30 до 80 кг/м3.

Пенопласт ПС-4 изготовляют в соответствии с СТУ 9-92-61 «Пенопласт плиточный марки ПС-4» и ТУ М-678-56 «Пенопласт термоизоляционный марки ПС-4».

Пенопласт ПС-2 изготовляют по следующей рецептуре (в вес. ч.): эмульсионный полистирол 100, порофор ДАБ 5-7. Температура прессования исходной смеси 155--165°С; удельное давление 150 кгс/см2. Отпрессованные заготовки (вспенивают в среде насыщенного водяного пара или воздуха .при 110--130°С.

В зависимости от содержания газообразователя можно получить пенопласты с объемным весом от 100 кг/м3 и выше (рис. 29). Пенопласт можно выпускать в виде плит, легко поддающихся обработке и склеиванию друг с другом, с металлами и другими материалами, или другой формы. Пенопласт ПС-2 окрашен в оранжевый цвет вследствие наличия окрашенных остатков продуктов разложения газообразователя.

Пенопласт ПС-18 можно изготовить на основе эмульсионного полистирола (100 вес. ч.) и порофора 18 (5 вес. ч.). Температура прессования -- 160--170°С при удельном давлении 150 кгс/см2. Заготовки вспенивают в среде насыщенного водяного пара при 100--105°С.

Пенопласт ПС-18 можно выпускать в виде плит и формованных изделий. В зависимости от количества газообразователя объемный вес ПС-18 составляет 30 кг/м3 и выше. Структура материала мелкоячеистая и равномерная. ПС-18 обладает специфическим запахом, обусловленным продуктами разложения норофора.

Глава 4. Пенопласты на основе поливинилхлорида

Поливинилхлорид представляет собой термопластичный полимер, который может содержать до 56,8% связанного хлора, что обеспечивает его пониженную горючесть по сравнению с полистиролом. Это свойство сохраняется и у вспененного поливинилхлорида. Кроме того, в отличие от полистирола, поливинилхлорид способен пластифицироваться при помощи различных пластификаторов, что позволяет получить на его основе пенопласта различной упругости -- от жестких до эластичных.

Пенопласты на основе поливинилхлорида и его сополимеров можно получать как прессовым, так и беспрессовым методами.

Беспрессовым методом изготовляют жесткие пенопласты марок ПВ-1 и «винипор жесткий» и эластичный -- «эластичный винипор». В сочетании поливинилхлорида с толуилендиизоцианатом, малеиновым ангидридом и другими компонентами -- непонзовинил.

Поливинилхлорид, благодаря полярности молекул, большим силам межмолекулярного сцепления и высокой температуре размягчения, весьма близкой к температуре разложения, имеет худшую по сравнению с полистиролом эластическую деформацию при повышенных температурах. Поэтому в состав композиций, особенно при получении жестких пенопластов прессовым методом, необходимо вводить мономеры, повышающие текучесть поливинилхлорида в первой стадии прессования. Обычно для этого используют метилметакрилат.

Производство пенополиуретанов впервые было организовано в 1941 г. [24]; с тех пор оно неуклонно развивается и совершенствуется. В настоящее время пенополиуретаны заняли ведущее место среди полимерных теплоизоляционных материалов. Это объясняется простотой их изготовления, возможностью изготовления на месте производства работ, хорошими физико-механическими и теплоизоляционными свойствами. Кроме того, можно варьировать свойства конечного продукта из пенополиуретана путем изменения количественного и качественного состава сырьевой композиции при его производстве. Используя различное сырье и регулируя степень сшивания, можно получить пенопласты от жестких до эластичных, с открытыми и закрытыми порами в широком диапазоне объемных весов и прочностных показателей. Используя соответствующее сырье или вводя различные добавки, можно также регулировать горючесть материала, т. е. получать трудновоспламеняемые или даже трудносгораемые пенопласты.

Пенополиуретаны получают беспрессовым методом в результате взаимодействия диизоцианатов с полиэфирами в присутствии соответствующих катализаторов, воды, эмульгаторов и других добавок.

Диизоцианаты. Выбор диизоцианата для получения пенополиуретана обусловливается его реакционной способностью, температурой его плавления, доступностью и стоимостью, токсичностью [42].

9. Эпоксидная смола

-- олигомеры, содержащие эпоксидные группы и способные под действием отвердителей (полиаминов и др.) образовывать сшитые полимеры. Наиболее распространенные эпоксидные смолы -- продукты поликонденсации эпихлоргидрина с фенолами, чаще всего -- с бисфенолом А.

Свойства

Эпоксидные смолы стойки к действию галогенов, некоторых кислот (к сильным кислотам, особенно к кислотам-окислителям, имеют слабую устойчивость), щелочей, обладают высокой адгезией к металлам. Из эпоксидных смол готовят различные виды клея, пластмассы, электроизоляционные лаки, текстолит (стекло- и углепластики), заливочные компаунды и пластоцементы. Эпоксидная смола в зависимости от марки и производителя, выглядит как прозрачная жидкость желто-оранжевого цвета напоминающая мёд, или как коричневая твердая масса, напоминающая гудрон. Жидкая смола может иметь очень разный цвет -- от белого и прозрачного до винно-красного (у эпоксидированного анилина). Следующие свойства имеет чистая, не модифицированная смола без наполнителей.

· Модуль эластичности:

· Предел прочности:

· Плотность:

Хотя отверждённая по правильной технологии эпоксидная смола считается абсолютно безвредной при нормальных условиях, её применение сильно ограничено, так как при отверждении в промышленных условиях в ЭС остается некоторое количество золь-фракции -- растворимого остатка. Он может нанести серьёзный урон здоровью, если будет вымыт растворителями и попадет внутрь организма. В неотверждённом виде эпоксидные смолы являются достаточно ядовитыми веществами и могут также навредить здоровью. По этой причине при работе с ЭС требуется соблюдать определенные правила:

· Склеенная при помощи ЭС посуда не может быть использована в дальнейшем для приготовления и употребления пищи.

· При работе следует надевать резиновые перчатки.

· При работе с отвердителями и смолами в твердом виде требуется использовать противопылевой респиратор.

· При попадании брызг ЭС в глаз нужно срочно промыть глаз холодной водой и обратиться к врачу.

· Не рекомендуется отверждать смолу в бытовой духовке[1].

Модификация

Эпоксидные смолы поддаются модификации. Различают химическую и физическую модификацию.

Первая заключается в изменении строения сетки полимера путём добавления соединений, встраивающихся в состав оной. Как пример -- добавление лапроксидов (простых полиэфиров спиртов, содержащих глицидиловые группы, например ангидрида глицерина) в зависимости от функциональности и молекулярной массы придаёт отверждённой смоле эластичность, за счёт увеличения молекулярной массы межузлового фрагмента, но понижает её водостойкость. Добавление галоген- и фосфорорганических соединений придаёт смоле большую негорючесть. Добавление фенолформальдегидных смол позволяет отверждать эпоксидную смолу прямым нагревом без отвердителя, придаёт большую жёсткость, улучшает антифрикционные свойства, но понижает ударную вязкость[2].

Физическая модификация достигается добавлением в смолу веществ, не вступающих в химическую связь со связующим. Как пример -- добавление каучука позволяет увеличить ударную вязкость отверждённой смолы. Добавление коллоидного диоксида титана увеличивает её коэффициент преломления и придаёт свойство непрозрачности к ультрафиолетовому излучению[3].

Получение

Схема производства жидких эпоксидных смол периодическим методом. 1 -- реактор; 2, 6 -- холодильники; 3 -- приёмник; 4 -- фильтры; 5 -- аппарат для отгонки толуола; 7 -- сборник.[2]

Впервые эпоксидная смола была получена французским химиком Кастаном в 1936 году.

Эпоксидную смолу получают поликонденсацией эпихлоргидрина с различными органическими соединениями: от фенола до пищевых масел, скажем соевого[3]. Такой способ носит название «эпоксидирование».

Ценные сорта эпоксидных смол получают каталитическим окислением непредельных соединений. Например, таким образом получают циклоалифатические смолы, ценные тем, что они совершенно не содержат гидроксильных групп, и поэтому очень гидроустойчивы, трекинго- и дугостойки.

Для практического применения смолы нужен отвердитель. Отвердителем может быть полифункциональный амин или ангидрид, иногда кислоты. Также применяют катализаторы отверждения -- кислоты Льюиса и третичные амины, обычно блокированные комплексообразователем наподобие пиридина. После смешения с отвердителем эпоксидная смола может быть отверждена -- переведена в твердое неплавкое и нерастворимое состояние. Если это полиэтиленполиамин (ПЭПА), то смола отвердеет за сутки при комнатной температуре. Ангидридные отвердители требуют 10 часов времени и нагрева до 180 °C в термокамере (и это ещё без учёта каскадного нагрева со 150 °C).

Применение

Перевернутая верхняя частьлодки из стеклоткани с ЭС

Применение эпоксидной смолы, как изолятора для гибридной интегральной схемы

На основе эпоксидных смол производятся различные материалы, применяемые в различных областях промышленности. Углеволокно и ЭС образуют углепластик (используется как конструктивный материал в различных областях: от авиастроения (см. Боинг-777) до автостроения). Композит на основе ЭС используются в крепёжных болтах ракет класса земля-космос. ЭС с кевларовым волокном -- материал для создания бронежилетов.

Зачастую эпоксидные смолы используют в качестве эпоксидного клея или пропиточного материала -- вместе со стеклотканью для изготовления и ремонта различных корпусов или выполнения гидроизоляции помещений, а также как самый доступный способ в быту изготовить продукт из стекловолокнита, как сразу готовое после отливки в форму, так и с вероятностью дальнейшего разрезания и шлифовки.

Из стеклоткани с ЭС делают корпуса плавсредств, выдерживающие очень сильные удары, различные детали для автомобилей и других транспортных средств.

В качестве заливки (герметика) для различных плат, устройств и приборов.

Также эпоксидные смолы используются в строительстве (см. Сиднейский оперный театр).

Из эпоксидных смол изготовляются самые различные предметы и вещи (скажем, мундштуки).

Эпоксидные смолы используют в качестве бытового клея. Использовать эпоксидный клей довольно просто. Смешивание эпоксидной смолы с отвердителем как правило выполняется в крайне малых объемах (несколько граммов), поэтому перемешивание производится при комнатной температуре и не вызывает затруднений, точность пропорции смола/отвердитель при смешивании зависит от производителя эпоксидной смолы или отвердителя, необходимо использовать только те пропорции, которые рекомендованы производителем, так как от этого зависит время отвердевания и физические свойства получившегося продукта (отступлении от нужной пропорции как правило приводит к изменению времени отвердевания, в крайних случаях можно получить нетвердый продукт). В качестве отвердителей применяют: отвердители холодноготриэтилентетрамин (ТЭТА), полиэтиленполиамин (ПЭПА), полисебациновый ангидрид и горячего отверждения малеиновый ангидрид (ДЭТА).[4][5] Как правило стандартная пропорция составляет от 10:1 до 5:1, но в некоторых случаях может доходить до 1:1. Запрещается смешивать сразу большое количество смолы с отвердителем без использования специальных аппаратов для смешивания во избежание вскипания.[6]

[скрыть]Основные области применения эпоксидных смол:[7]

Отрасль применения

Основные виды эпоксидных материалов

Основное назначение

Преимущественные показатели

Экономический эффект применения, отнесенный к стоимости материала

Строительство

Полимербетоны, компаунды, клеи

Разметочные полосы дорог, плиты для полов, наливные бесшовные полы

Физико-механические показатели, износо-химстойкость, беспыльность, высокая адгезия

от 3 до 29

Покрытия (лакокрасочные, порошковые, водно-дисперсионные)

Декоративно-облицовачные и защитные функции

Малая усадка, химическая стойкость

Связующие для стекло- и углепластиков

Ремонт железобетонных конструкций, дорог, аэродромов. Склеивание конструкций мостов и др. Вытяжные трубы и ёмкости хим. производств. Трубопроводы

Атмосферостойкость, Химстойкость, Прочность, Теплостойкость

Электромашиностроение и радиотехника

Компаунды, связующие для армированных пластиков, покрытия, прессматериалы, пенопласты

Герметизация изделий, электроизоляционные материалы (стеклопластик и др.). Заливка трансформаторов и др. Эл. изоляционные и защитные покрытия.

Радиопрозрачность, высокие диэлектрические показатели, малая усадка при отверждении, отсутствие летучих продуктов отверждения

От 0,1 до 7,0; 300-800 (электроника)

Судостроение

Связующие для стеклопластиков

Судовые гребные винты, лопатки компрессоров

Прочность, кавитационнная стойкость

75

Покрытия из жидких ЛКМ и порошков

Сосуды для газов и топлива

Водо-, химстойкость, абразивная стойкость

Синтактические пенопласты

Обтекатели гребных винтов

Ударопрочность при низких температурах

Машиностроение, в т.ч. автомобилестроение

Компаунды, Лакокрасочные материалы, Клеи

Ремонт и заделка дефектов литьевых изделий, формы, штампы, оснастка, инструмент (модели, копиры и т.д.)

Прочность, твердость, износостойкость, размерная стабильность

От 3,1 до 15,0

Полимербетоны

Направляющие металлорежущих станков, станины прецезионных станков

Теплостойкость, высокая адгезия к подложкам и наполнителям, функциональные и антифрикционные свойства

320 (тяжелые станки)

Связующие для армированных пластиков

Емкости, трубы из стеклопластиков «мокрой» намотки

Хим.стойкость Ударопрочность

Прессматериалы и порошки

Подшипники и др. антифрикционные материалы, пружины, рессоры из эпоксидных пластиков, электропроводящие материалы

Авиа-и ракетостроение

Связующее для армированных стекло-и органопластиков

Силовые конструкции и обшивки крыльев, фюзелляжа, оперения, конуса сопел и статоры реактивных двигателей

Высокая удельная прочность и жесткость, радиопрозрачность, абляционные свойства (теплозащитные)

Покрытия защитные

Лопасти вертолета, топливные баки ракет, корпус реактивного двигателя, баллоны для сжатых газов

Стойкость к действию топлива

Фенолформальдегидные смолы (PF, от англ. Phenol formaldehyde resin) -- синтетические смолы со свойствами реактопластов или термореактопластов. Являются жидкими или твердыми олигомерными продуктами поликонденсации фенола с формальдегидом в щелочной или кислой среде (бакелиты, новолачныеи резольные смолы), что соответственно влияет на их свойства.

Фенопласты -- пластмассы, получаемые при отверждении при повышенных температурах фенолформальдегидных смол в комбинации с наполнителями. В зависимости от типа смолы фенопласты делятся на новолачные и резольные.[1]

Свойства

механическая устойчивость, прочность

· коррозионная устойчивость

· высокие электроизоляционные свойства

· отличная растворимость в алифатических и ароматических углеводородах, хлорсодержащих растворителях и кетонах. Растворимы в водных растворах щелочей и полярных растворителях, после отверждения превращаются в густосшитые полимеры аморфной микрогетерогенной структуры.

Применение

Детали, изготовленные с применением фенолформальдегидных полимеров

Применяются для получения пластических масс (отвержденные смолы называют резитами, отвержденные в присутствии нефтяных сульфокислот --карболитами, молочной кислоты -- неолейкоритами), синтетических клеев, лаков, выключателей, тормозных накладок, подшипников, так же широко используется в изготовлении шаров для бильярда. Из карболита изготавливались корпуса советских мультиметров различных моделей.

Используются для получения в качестве связующего компонента в производстве наполненных пресс-композиций с различными наполнителями (целлюлоза,стекловолокно, древесная мука), древесно-волокнистых и древесно-стружечных плит, клеев, пропиточных и заливочных композиций (для фанеры, тканых и наполненных волокном материалов).

Экологические аспекты

В производстве применяются токсичные материалы. И фенол, и формальдегид ядовиты и огнеопасны.[2] Формальдегид обладает канцерогенным действием.

Фенолформальдегидные смолы оказывают вредное воздействие на кожу, они вызывают дерматиты и экземы.[2] Неотверждённая фенолформальдегидная смола может содержать до 11 % свободного фенола.[3]

При отвержении фенолформальдегидных смол в пластмассы (фенопласты) происходит сшивка олигомерных фрагментов смолы с участием содержащегося в ней свободного фенола, при этом содержание фенола, инкорпорированного в фенопласте, снижается до следовых количеств; санитарными нормативами РФ регламентируются допустимые количества миграции фенола и формальдегида для изделий из фенопластов; в частности, для изделий, контактирующих с пищевыми продуктами для фенола -- 0,05 мг/л, для формальдегида -- 0,1 мг/л[4].

Размещено на Allbest.ru

...

Подобные документы

  • Изучение состава и свойств сырьевых материалов для производства газобетонных блоков из ячеистого бетона, способы их добычи. Описание технологии производства газобетонных блоков из ячеистого бетона автоклавного твердения, назначение и область применения.

    курсовая работа [1,6 M], добавлен 31.05.2014

  • Обзор сырьевых материалов и проектирование подбора состава тяжелого бетона. Расчет химической добавки тяжелого бетона, характеристика вещества. Разработка состава легкого бетона. Область применения в строительстве ячеистых теплоизоляционных бетонов.

    реферат [110,6 K], добавлен 18.02.2012

  • Основные свойства гранита, мрамора, известняка и вулканического туфа. Древесноволокнистые плиты, их свойства и области применения. Приготовление газобетона и пенобетона. Область применения армированного стекла. Классификация строительных растворов.

    контрольная работа [212,8 K], добавлен 06.11.2013

  • Технология производства тяжелого товарного бетона и его характеристики. Выбор метода производства бетона, расход цемента для получения нерасслаиваемой плотной смеси. Организация технологических процессов подготовки сырья, режимы производства продукции.

    дипломная работа [1,4 M], добавлен 01.09.2010

  • Подбор состава бетона. Расчетно-экспериментальный метод определения номинального состава тяжелого бетона. Физико-механические свойства асфальтобетона. Определение расхода материалов на один замес бетоносмесителя. Расчет оптимального содержания битума.

    курсовая работа [1,7 M], добавлен 05.01.2015

  • Определение и уточнение требований, предъявляемых к бетону и бетонной смеси. Оценка качества и выбор материалов для бетона. Расчет начального состава бетона. Определение и назначение рабочего состава бетона. Расчет суммарной стоимости материалов.

    курсовая работа [84,9 K], добавлен 13.04.2012

  • Расчет номинального и производственного состава бетона методом абсолютных объемов. Коэффициент выхода бетона; расход материалов на один замес. Модуль крупности песка. Прочность бетона при использовании пропаривания, как способа ускорения твердения.

    контрольная работа [643,5 K], добавлен 17.12.2013

  • Экология бетона. Характеристика ячеистого бетона (газобетона): теплоизоляция, огнестойкость, звукоизоляция, экология, обрабатываемость и экономичность. Проблема утилизации строительных отходов и переработка за рубежом. Вторичное использование бетона.

    реферат [1,7 M], добавлен 23.10.2008

  • Виды бетона, подбор его состава с рациональным соотношением составляющих материалов. Характеристика зернового состава крупного заполнителя. Свойства бетонной смеси. Расчет расхода составляющих бетонную смесь материалов методом абсолютных объемов.

    контрольная работа [47,7 K], добавлен 10.07.2013

  • Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.

    контрольная работа [100,3 K], добавлен 08.01.2015

  • Классификация бетона по маркам и прочности. Сырьевые материалы для приготовления бетонов. Суперпластификаторы на основе поликарбоксилатов. Проектирование, подбор и расчет состава бетона с химической добавкой. Значения характеристик заполнителей бетона.

    курсовая работа [52,7 K], добавлен 13.03.2013

  • Изучение порядка определения требуемой прочности и расчет состава тяжелого бетона. Построение графика зависимости коэффициента прочности бетона и расхода цемента. Исследование структуры бетонной смеси и её подвижности, температурных трансформаций бетона.

    курсовая работа [1,9 M], добавлен 28.07.2013

  • Выбор способа производства сборного и монолитного бетона. Конвейерный и стендовый способы производства железобетонных изделий. Расчет состава керамзитобетона, состава тяжелого бетона и усредненно-условного состава бетона. Проектирование арматурного цеха.

    курсовая работа [912,7 K], добавлен 18.07.2011

  • Этапы развития технологии бетона. Классификация этого материала. Легкие бетоны на пористых заполнителях. Специфика ячеистого аналога. Его структура и плотность, прочность. Порядок подбора состава и основные свойства газобетона. Схема кладки стен из него.

    контрольная работа [809,9 K], добавлен 31.10.2014

  • Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.

    реферат [20,3 K], добавлен 07.09.2011

  • Состав и свойства сырьевых материалов для производства кровельных керамических материалов. Изготовление кровельных керамических материалов пластическим способом. Виды готовой продукции и области применения. Контроль качества технологических процессов.

    курсовая работа [45,1 K], добавлен 01.11.2015

  • Схема поперечного сечения полимербитумного рулонного материала. Классификация кровельных материалов. Получение рубероида, пергамина и толя. Характеристика жидких, пастообразных пластично-вязких и твердых упруго-пластичных гидроизоляционных материалов.

    лекция [28,2 K], добавлен 16.04.2010

  • Механические свойства бетона и состав бетонной смеси. Расчет и подбор состава обычного бетона. Переход от лабораторного состава бетона к производственному. Разрушение бетонных конструкций. Рациональное соотношение составляющих бетон материалов.

    курсовая работа [113,6 K], добавлен 03.08.2014

  • Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.

    контрольная работа [31,0 K], добавлен 05.05.2014

  • Общие сведения о тяжелом, легком и ячеистом бетоне. Характеристика бетонных смесей по удобоукладываемости: марки по жесткости П-1 и П-3. Расчет состава легкого и тяжелого бетона. Определение расходов воды, цемента, щебня и песка на 1 метр кубичный.

    курсовая работа [160,2 K], добавлен 08.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.