Децентрализованное теплоснабжение – альтернатива или шаг назад

Изучение системы централизованной выработки тепла, базирующейся на системах централизованной поставки энергоносителя (газопроводная сеть, электрическая сеть, топливо). Оценка способов распределения теплоносителя нужных параметров в требуемых количествах.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 23,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Децентрализованное теплоснабжение - альтернатива или шаг назад

Хаванов П. А.

Историческое и социальное развитие общества неизбежно приводит к созданию социумов, укрупнению и концентрации людских сообществ. Формирование и рост городов наиболее очевиден в последние столетия. И в этой связи, неизбежно происходит концентрация ресурсо- и энергопотребления, централизация и рост производственных мощностей, эмиссия все большего количества промышленных и бытовых отходов, оказывающих серьезное воздействие на окружающую среду.

Концентрация нагрузок потребления исходных продуктов и энергоресурсов как для производственных целей, так и для жизнедеятельности человека обуславливает концентрацию и рост количества отходов с соответствующим ростом показателей плотности нагрузок (отнесенных к площади) потребления и генерации отходов. Указанные тенденции объективно определяют социальную и техническую необходимость укрупнения всех систем с их функциональной централизацией. Так, вполне очевидной, технически рациональной и социально обоснованной представляются системы централизованного электроснабжения, водоснабжения и канализации, мусороудаления, базирующиеся на централизованных источниках ресурсов ( ГРЭС, ГЭС, ТЭЦ, водозаборы и др.) или утилизаторах отходов (станции переработки сточных вод, мусоросжигательные установки и др.)

Рассматривая принцип централизации не по количественному признаку (единичная мощность), а по признаку группового объединения потребителей на базе центрального источника (или нейтрализатора, утилизатора отходов) в рамках отдельного потребителя (возможно группового), выделенного в отдельную единицу, например, квартира, коттедж, многоэтажное здание, можно утверждать, что ни электроснабжение и газоснабжение, ни водоснабжение и канализация в относительно больших городах не могут развиваться как децентрализованные системы. Это не исключает такую возможность в малых населенных пунктах (для малоэтажных зданий), безусловно, включая альтернативные источники энергообеспечения.

Особое место определено для систем теплоснабжения, создание которых в любом случае, как централизованной по принципу выработки теплоты, так и децентрализованной, базируется на системах централизованной поставки энергоносителя (будь то газопроводная сеть, электрическая сеть или централизованная поставка жидкого или твердого топлива). Суть проблемы здесь состоит в месте выработки и способе распределения теплоносителя нужных параметров в требуемых количествах. Особая роль и место системы теплоснабжения в общей инфраструктуре инженерного обеспечения жилого здания формируется в северных регионах с длительным отопительным периодом и большими энергозатратами на цели отопления зданий. Концентрация нагрузок теплоснабжения на базе мощных источников теплоты с последующим распределением нагрузки по сети потребителей обеспечивает значительные преимущества социального и технико-экономического порядка.

Централизация выработки тепловой энергии позволяет достичь:

· максимальной эффективности выработки тепловой энергии мощными источниками теплоты, эксплуатируемыми специализированным профессиональным персоналом;

· наиболее рационального использования централизации на базе крупных энергетических установок, работающих по наиболее эффективным термодинамическим циклам при совместной выработке электрической и тепловой энергии (ТЭЦ с приоритетом в нагрузке электропотребления, высокоэффективных ТЭЦ с паро-газовым циклом);

· максимального социального эффекта с полным освобождением населения от трудозатрат на обслуживание системы теплоснабжения (отопление, ГВС, вентиляция);

· высокоэффективного, экологически удовлетворительного сжигания низкосортных топлив, отходов бытового и производственного происхождения, вторичных энергетических ресурсов промышленных предприятий;

· наиболее эффективной системы очистки и рассеивания продуктов сгорания, подавления эмиссии или нейтрализации вредных выбросов и стоков, сооружение которых технически возможно и экономически целесообразно только на мощных централизованных источниках.

Именно эти факторы стимулировали мощный прорыв отечественной энергетики в пятидесятые-шестидесятые годы на передовые позиции в мире в области централизованного теплоснабжения, как по разработке эффективного теплогенерирующего оборудования, так и по объемам строительства и внедрения в масштабе страны. Отечественный опыт создания мощных теплофикационных комплексов и систем централизованного теплоснабжения оказал определенное влияние на развитие систем централизованного теплоснабжения во многих зарубежных странах (особенно в последние десятилетия в Германии, Финляндии, Швеции, Дании и др). В Москве централизованно обеспечивается 96 % нагрузки отопления и горячего водоснабжения от 14 ТЭЦ, 67 РТС и 107 мелких котельных, и, только 4 % потребляемой мощности обеспечивается децентрализованными источниками теплоты. Однако развитие отрасли ставило все новые задачи и поднимало уровень требований к эффективности систем, их техническому уровню и эксплуатационным показателям. Этот этап развития и реконструкции в отечественной коммунальной энергетике не нашел надлежащего воплощения в силу множества причин, порожденных непростыми годами последних десятилетий преобразования общества, что привело к тому, что техническое оснащение эксплуатируемых систем централизованного теплоснабжения и принципиальные научно-технические разработки, заложенные в эти системы, датируются 60-70 гг. прошлого столетия. тепло централизованный энергоноситель

Применение наиболее простых схем центрального качественного регулирования отпуска тепловой энергии, обусловленного утилитарной простотой систем управления и оборудования, приводит к несоответствию режимов потребления и отпуска теплоты у потребителей. Значительную величину составляют потери теплоты у потребителей из-за несовершенства местных систем распределения и управления, наличия технологически обусловленных режимов ?перетопа?. Большая протяженность тепловых сетей, значительный износ оборудования и низкий уровень эксплуатации в совокупности с ранее отмеченными факторами приводят к снижению надежности функционирования как центральных источников теплоты, так и распределительных сетей, что обуславливает высокий уровень аварийности в централизованных системах и чрезвычайно низкие эксплутационные показатели.

В настоящее время теплоснабжение около 80 % городского фонда России осуществляется от централизованных источников, и общая протяженность магистральных участков тепловых сетей диаметром 600ч1400 мм составляет 13000 км, а протяженность распределительных и внутриквартальных участков теплопроводов диаметром 50ч500 мм достигает 125000 км (в пересчете на двухтрубную систему).

Эксплуатация тепловых сетей сопровождается неизбежными тепловыми потерями от внешнего охлаждения в размере 12-20 % тепловой мощности (нормируемое значение 5 %), и с утечками теплоносителя от 5 до 20 % расхода в сети (при нормируемом значении потерь с утечками до 0,5 % от объёма теплоносителя в системе теплоснабжения с учётом объёма местных систем или 2 % от расхода сетевой воды). Эксплуатационные затраты электроэнергии на перекачку теплоносителя составляют 6-10 %, а затраты на химводоподготовку 15-25 % в стоимости отпускаемой тепловой энергии. Значительное превышение нормативных потерь связано с высокой степенью износа оборудования централизованных систем теплоснабжения и, особенно, тепловых сетей, до 70 % и более. Поэтому, именно тепловые сети являются самым ненадежным элементом системы централизованного теплоснабжения, на который приходится более 85 % отказов по системе в целом.

Теплопроводы тепловых сетей прокладываются в подземных проходных и непроходных каналах - 84 %, бесканальная подземная прокладка - 6 % и надземная (на эстакадах ) - 10 %. В среднем по стране свыше 12 % тепловых сетей периодически или постоянно затапливаются грунтовыми или поверхностными водами , в отдельных городах эта цифра может достигать 70 % длины теплотрасс. Неудовлетворительное состояние тепловой и гидравлической изоляции труб, износ и низкое качество монтажа и эксплуатации оборудования тепловых сетей отражается статистическими данными по аварийности. Так, 90 % аварийных отказов приходится на подающие и 10 % - на обратные теплопроводы, из них 65 % аварий происходит из-за наружной коррозии и 15 % - из-за дефектов монтажа (преимущественно разрывов сварных швов ).

На этом фоне всё увереннее позиции децентрализованного теплоснабжения, к которому следует отнести как поквартирные системы отопления и горячего водоснабжения, так и домовые, включая многоэтажные здания с крышной или пристроенной автономной котельной. Использование децентрализации позволяет лучше адаптировать систему теплоснабжения к условиям потребления теплоты конкретного, обслуживаемого ей объекта, а отсутствие внешних распределительных сетей практически исключает непроизводственные потери теплоты при транспорте теплоносителя. Повышенный интерес к автономным системам источникам теплоты в последние годы в значительной степени обусловлен финансовым состоянием и инвестиционно-кредитной политикой в стране, так как строительство централизованной системы теплоснабжения требует от инвестора значительных единовременных капитальных вложений в источник, тепловые сети и внутренние системы здания, причем с неопределенными сроком окупаемости или практически на безвозвратной основе. При децентрализации возможно достичь не только снижения капитальных вложений за счет отсутствия тепловых сетей, но и переложить расходы на стоимость жилья (т. е. на потребителя). Именно этот фактор в последнее время и определил повышенный интерес к децентрализованным системам теплоснабжения для объектов нового строительства жилья. Организация автономного теплоснабжения позволяет осуществить реконструкцию объектов в городских районах старой и плотной застройки при отсутствии свободных мощностей в централизованных системах. Децентрализация на современном уровне, базирующаяся на высокоэффективных теплогенераторах последних поколений (включая конденсационные котлы), с использованием энергосберегающих систем автоматического управления позволяет в полной мере удовлетворить запросы самого требовательного потребителя.

Перечисленные факторы в пользу децентрализации теплоснабжения привели к тому, что часто оно уже стало рассматриваться как безальтернативное техническое решение, лишенное недостатков. Поэтому, считаю необходимым подробно рассмотреть те проблемы, которые проявляются при более внимательном подходе, проанализировать отдельные случаи применения децентрализованных систем, что позволит выбрать рациональное решение в комплексе.

1. Важным преимуществом децентрализованных систем является возможность местного регулирования в системах квартирного отопления и горячего водоснабжения. Однако эксплуатация источника теплоты и всего комплекса вспомогательного оборудования квартирной системы теплоснабжения непрофессиональным персоналом (жителями) не всегда дает возможность в полной мере использовать это преимущество. Также необходимо учитывать, что в любом случае требуется создание или привлечение ремонтно-эксплуатационной организации для обслуживания источников теплоснабжения.

2. Рациональной можно признать децентрализацию только на основе газообразного (природный газ) или легкого дистиллятного жидкого топлива (дизтопливо, топливо печное бытовое). Другие энергоносители:

· твердое топливо в многоэтажной застройке. По ряду очевидных причин нереализуемая задача. В малоэтажной застройке, как показывают многие исследования, на низкосортном рядовом твердом топливе (а сейчас другого в стране практически нет) экономически целесообразно строить групповую котельную;

· сжиженный газ (пропан-бутановые смеси) для северных районов с большим потреблением теплоты на цели отопления, даже в комплексе с энергосберегающими мероприятиями, потребует строительства газохранилищ большой ёмкости (с обязательной установкой не менее двух подземных ёмкостей), что в комплексе вопросов с централизованной поставкой сжиженного газа существенно усложняет проблему;

· электроэнергия не может и не должна использоваться на цели отопления (независимо от себестоимости и тарифов) в силу эффективности её выработки по первичной энергии для конечного потребителя (з~30 %). Исключением являются системы временного, аварийного, локального отопления (местного) и в районах её избытков (вблизи ГЭС), в ряде случаев использования альтернативных источников энергии (тепловые насосы). В этой же связи необходимо отмежеваться от безответственных заявлений в печати ряда разработчиков и производителей, так называемых, вихревых теплогенераторов, декларирующих тепловую эффективность устройств, работающих на вязкостной диссипации механической энергии (от электродвигателя) в 1,25 раза превосходящую установленную мощность электрооборудования.

3. Система поквартирного теплоснабжения не должна применяться в здании, разработанном для централизованного теплоснабжения (типовом). Основной и самой главной причиной является необходимость устройства системы дымоудаления, так как для многоэтажного здания, в соответствии с требованиями нормативной документации, на одном этаже (уровне) к стволу дымохода может подключаться только один газоход от одного теплогенератора. Поэтому, например, в секционных зданиях на каждую секцию здания нужно установить четыре дымовые трубы (или пакет из четырех труб), а это требует конкретных инженерных решений при проектировании здания (как для лифтовых шахт, мусоропроводов, систем вентиляции и др.), с отчуждением части строительных площадей. При сооружении крышных котельных вопросы дымоудаления в большинстве случаев решаются значительно проще.

4. Проблема дымоудаления в поквартирных системах системах теплоснабжения для застройки в северных регионах стоит наиболее остро, так как устройство наружных газоходов (приставных ) практически возможно только в случае их изготовления из коррозионностойкого металла с теплоизоляцией, имеющей сопротивление теплопередаче более 1,4 м20С/Вт, исключающее конденсацию при периодической работе теплогенераторов в холодный период отопительного сезона.

5. Практически во всех случаях эксплуатации поквартирного теплогенератора в многоэтажном здании его работа будет периодической. Это обусловлено тем, что расчетная нагрузка отопления для квартиры средней площади (2х-комнатная в многоэтажном здании) составляет менее 5 кВт, в то время как нагрузка горячего водоснабжения (для обеспечения самой теплоёмкой процедуры - наполнения ванны) должна быть около 24 кВт (в том числе и для квартир меньшей площади). Таким образом, специфика работы в поквартирной системе отопления (в большинстве случаев это двухконтурные термоблоки с закрытой топкой) требует подбор его мощности по пиковой нагрузке. Глубина регулирования мощности теплогенераторов большинства производителей составляет от 40 до 100 %, что обуславливает работу термоблока в режиме “включено-выключено” даже на минимальной мощности (около 10 кВт). Поэтому избежать образования конденсата в газоходах, не имеющих эффективной теплоизоляции, при низкой температуре наружного воздуха в начале газохода (на нижних этажах) практически невозможно. Дымоход во всех случаях должен быть газоплотным, его необходимо теплоизолировать и оснащать устройствами сбора и отвода конденсата и системой его нейтрализации перед сливом.

6. Установочная мощность источников теплоты при поквартирном теплоснабжении в многоэтажном здании (как отмечалось в п. 5) рассчитывается по максимуму (пику) теплопотребления, т. е. по нагрузке горячего водоснабжения. Нетрудно видеть, что в этом случае для двухсотквартирного жилого здания установленная мощность теплогенераторов составит 4,8 МВт, что более чем в два раза превышает необходимую суммарную мощность теплоснабжения при подключении к центральным тепловым сетям или к автономной, например, крышной котельной. Установка емкостных водонагревателей в системе горячего водоснабжения квартиры (емкость 100-150 л) позволяет снизить установленную мощность поквартирных теплогенераторов, однако, существенно усложняет квартирную систему теплоснабжения, значительно увеличивает её стоимость и практически не применяется в многоэтажных зданиях.

7. Автономные источники теплоснабжения (в том числе и поквартирные) имеют рассредоточенный в жилом районе выброс продуктов сгорания при относительно низкой высоте дымовых труб, что оказывает существенное влияние на экологическую обстановку, загрязняя воздух непосредственно в селитебной зоне.

8. При поквартирном теплоснабжении в многоэтажном здании необходимо организационно-техническое решение вопроса отопления лестничных клеток и других мест общественного пользования.

Уже имеющийся опыт создания современных комфортных условий проживания в коттеджах и малоэтажных зданиях на базе масштабного внедрения децентрализованных систем теплоснабжения, использующих высокотехнологичное оборудование, позволяет с уверенностью говорить об устойчивой тенденции отхода от печного отопления. Вместе с тем опытное строительство многоэтажных зданий в ряде городов (Смоленск, Белгород и др.) с поквартирными системами теплоснабжения на базе разрешаемых к применению в зданиях выше 5-и этажей двухконтурных проточных газовых котлов с герметичными камерами сгорания с ”закрытой” топкой, ( т. е. принудительным дымоудалением) является по сути дела весьма примитивной попыткой решить все проблемы, о которых говорилось ранее, в типовом здании, которое для создания такой системы теплоснабжения не разрабатывалось и не предназначается. Недостаточная нормативная база, отсутствие федерального нормативного документа, регламентирующего основные технические условия применения поквартирного теплоснабжения в многоэтажных зданиях на базе современного инженерного оборудования, снижает темпы и объёмы внедрения новейших разработок в этой области.

Существенно меньше проблем возникает при разработке децентрализованных систем теплоснабжения от автономных (крышных), встроенных и пристроенных котельных отдельных объектов жилого, коммунально-бытового и промышленного назначения, в том числе и типовых сооружений. Достаточно чёткая нормативная документация позволяет технически обосновать эффективное решение вопросов размещения оборудования, топливоснабжения, дымоудаления, электроснабжения и автоматизации автономного источника теплоты. Не встречает особых трудностей и разработка инженерных систем здания, включая типовые, по своей конструкции практически идентичные централизованным системам.

В ряде случаев к децентрализованным источникам могут быть отнесены мини ТЭЦ (когенераторные установки). В меньшей степени это применимо к установкам на базе паровых и газовых турбин, как правило, относительно более мощных, чем дизельные газопоршневые установки, опыт использования которых восходит к применению дизель-электрических генераторов, как передвижных, так и стационарных, в системах автономного электроснабжения объектов и малых населенных пунктов. В современных когенераторных газопоршневых установках теплота охлаждения блока цилиндров, теплота уходящих газов и охлаждения смазочного масла ДВС утилизируется для целей теплоснабжения, которые в общем балансе теплоты по первичному топливу могут составлять до 45ч50 % установленной мощности при эффективности выработки электроэнергии 35-42 %.

Преимущества газопоршневой мини ТЭЦ заключается в возможности автономного электро- и теплоснабжения группы зданий или отдельного объекта при зависимости потребителя только от систем топливоснабжения и водоснабжения (при нагрузке ГВС). Основными особенностями использования когенераторной установки является приоритетность нагрузки электроснабжения, а при работе в системе теплоснабжения - связанность по величине электрических и тепловых нагрузок, максимумы и минимумы которых могут не совпадать как в сезонном, так и в суточном графиках потребления. Недоиспользование мощности мини ТЭЦ в режимах несовпадения максимумов нагрузок значительно снижает эффективность установки в целом, поэтому необходимы технические решения, позволяющие нивелировать существенные нарушения в балансе электро- и теплопотребления, например, путем установки теплогенераторов (газовых котлов) для работы в ”пиковых ” режимах теплопотребления. Газопоршневые установки существенно усложняют источник энергии для системы теплоснабжения, приводят к росту стоимости основного и вспомогательного оборудования, увеличению амортизационных отчислений, эксплуатационных расходов и затрат на оплату труда высококвалифицированного обслуживающего персонала. Поэтому, несмотря на то, что использование когенераторных установок позволяет добиться наибольшей автономности электро- и теплоснабжения, необходимо учитывать присущие им недостатки:

· высокая стоимость оборудования, строительства и эксплуатации установок;

· невысокий КПД по первичному энергоносителю (особенно в летнее время);

· связанность электрической и тепловой мощности, что для северных районов страны обуславливает недостаток тепловой мощности (51-58 % в балансе отпускаемой установкой мощности), или при подборе установки по тепловой мощности относительный избыток электрической (42-49 % отпускаемой мощности) для сброса которой приходится использовать электронагреватели;

· необходимость, в подавляющем большинстве случаев, монтировать трансформаторную подстанцию;

· относительно высокий шум установки;

· меньший эксплуатационный ресурс и межремонтный период по сравнению с котельным оборудованием.

Перечисленные недостатки когенераторных установок существенно сужают область их применения и, по-видимому, она соответствует области применения упоминавшихся ранее дизельгенераторов.

Объёмы капитальных затрат только на основное оборудование при разработке системы теплоснабжения на базе различных источников теплоты, полученные по укрупнённым показателям и на основании проектных материалов, с использованием в качестве энергоносителя природного газа, позволяют сформулировать некоторое представление о стоимости инженерной системы с использованием современного оборудования.

Децентрализация, как и любое техническое решение, имеет свои положительные стороны, но простая "аппликация" их на принципиально иную основу - типовое проектирование, являющееся базой для централизованного теплоснабжения, без учета специфики децентрализации, лишает застройщика рационального инженерного содержания и практических преимуществ, а стихийное внедрение автономных источников может нанести значительный ущерб сложившейся инфраструктуре городов. В этой связи, нельзя согласиться с весьма неопределенным высказыванием ряда специалистов о том, что в городах доля автономных источников теплоснабжения должна составлять 10-15 % от потенциального рынка тепловой энергии, которое практически все города нивелирует к единому градостроительному уровню.

Таким образом, автономное теплоснабжение не должно рассматриваться как безусловная альтернатива централизованному теплоснабжению или как отступление от завоёванных позиций. Технический уровень современного энергосберегающего оборудования по выработке, технологии транспорта и распределения теплоты позволяют создавать эффективные и рациональные инженерные системы, уровень централизации которых должен иметь соответствующее обоснование.

Размещено на Allbest.ru

...

Подобные документы

  • Разновидности централизованного теплоснабжения зданий. Тепловые нагрузки района города. Построение графиков расхода теплоты. Регулирование отпуска теплоты, определение расчетных расходов теплоносителя. Выбор трассы. Механический расчет теплопроводов.

    курсовая работа [1,4 M], добавлен 17.05.2016

  • Определение тепловых нагрузок района. Регулирование отпуска теплоты в закрытых системах теплоснабжения. Гидравлический расчет водяной тепловой сети. Построение продольного профиля участка теплосети. Разработка системы оперативного дистанционного контроля.

    курсовая работа [412,7 K], добавлен 07.05.2014

  • Расчет температур первичного теплоносителя и построение графиков в координатах -Q0, годового графика расхода тепла и воды. Продольный профиль главной линии тепловой сети. Расчетное количество подпиточной воды. Конструктивные элементы тепловых сетей.

    курсовая работа [433,9 K], добавлен 24.11.2012

  • Расчет принципиальной тепловой схемы и выбор оборудования. Автоматизация оборудования индивидуальных тепловых пунктов в объеме требований СП 41-101-95. Регулирование параметров теплоносителя в системах отопления и вентиляции. Экономический расчет проекта.

    дипломная работа [406,1 K], добавлен 19.09.2014

  • Расчет обеспечения подачи тепловой нагрузки к потребителям микрорайона в городе Ижевск. Определение системы теплоснабжения. Выбор типа прокладки тепловой сети, строительных конструкций и оборудования. Разработка плана тепловой сети и выбор схемы трассы.

    курсовая работа [613,5 K], добавлен 17.06.2013

  • Общие вопросы теплоснабжения жилых районов городов и других населенных пунктов. Определение теплопотребления промышленного предприятия, построение графиков температур. Расход сетевой воды на каждом участке. Тепловой расчёт магистрали тепловой сети.

    дипломная работа [2,0 M], добавлен 28.03.2012

  • Определение тепловых потоков отопления, вентиляции и горячего водоснабжения микрорайона. Графики теплового потребления. Расход теплоносителя для кварталов района. Разработка расчётной схемы квартальных тепловых сетей для отопительного и летнего периодов.

    курсовая работа [295,0 K], добавлен 16.09.2017

  • Проведение водохозяйственных расчетов и расчетов элементов системы водоснабжения. Характеристики населенного пункта Береза, расположенного в Республике Беларусь. Выбор системы водоснабжения. Определение расходов воды. Режим работы насосной станции.

    курсовая работа [258,2 K], добавлен 17.03.2015

  • Характеристики теплового расчета при строении здания. Изучение параметров наружного и внутреннего воздуха, потери и поступления тепла. Рассмотрение способов регулирования температуры через ограждающие конструкции. Вычисление коэффициента теплопередачи.

    практическая работа [74,0 K], добавлен 22.01.2014

  • Проект системы водоснабжения жилой застройки города и промышленного предприятия. Определение расходов воды и свободных напоров. Расчет режимов работы насосной станции. Гидравлические показатели водопроводной сети, построение пьезометрической линии.

    курсовая работа [1,8 M], добавлен 16.12.2012

  • История развития водного хозяйства Новосибирска, задачи острогов XVIII века на территории Приобья. Характеристика централизованной системы водоснабжения города: водоводы, разводящие сети, насосно-фильтровальные станции; контроль качества питьевой воды.

    презентация [16,3 M], добавлен 27.02.2014

  • Расчет системы теплоснабжения района города Волгограда: определение теплопотребления, выбор схемы теплоснабжения и вид теплоносителя. Гидравлический, механический и тепловой расчеты тепловой схемы. Составление графика продолжительности тепловых нагрузок.

    курсовая работа [1,6 M], добавлен 07.01.2015

  • Основные требования к проектированию систем подачи и распределения воды (СПРВ) населенного пункта или промышленного предприятия. Исходные данные для технико-экономических расчетов вариантов проектов СПРВ, оценка экономической эффективности их реализации.

    реферат [337,7 K], добавлен 24.07.2013

  • Расчет потребности поселка в горячей воде. Оценка свойств водопроводной воды как теплоносителя. Выбор технологической схемы ТПС. Расчет тепловых потоков горячего водоразбора и водоснабжения. Интегральные графики потребления и выработки теплоты.

    контрольная работа [419,9 K], добавлен 07.06.2019

  • Тепловой и гидравлический расчет пластинчатых водонагревателей. Основные направления по экономии энергоресурсов в системе теплоснабжения. Определение и уточнение тепловых нагрузок. Перевод системы теплоснабжения на централизованное теплоснабжение.

    дипломная работа [3,1 M], добавлен 13.08.2009

  • Принципы трассировки кольцевых водопроводных сетей. Определение расчётных расходов воды населённого пункта. Линии равных свободных напоров. Расчёт водопроводной сети на случай максимального транзита в бак водонапорной башни методом Лобачёва–Кросса.

    курсовая работа [165,2 K], добавлен 04.04.2011

  • Характеристика объекта строительства. Схема и система водоотведения. Расчетные расходы жилой застройки и промышленного предприятия. Глубина заложения сети водоотведения, ее гидравлический расчет. Насосная станция перекачки сточных вод, подбор насосов.

    реферат [360,1 K], добавлен 03.06.2015

  • Определение расходов тепла на отопление, вентиляцию и горячее водоснабжение, выбор способа регулирования тепловой нагрузки, расчет диаметров магистральных трубопроводов котельной для разработки системы централизованного теплоснабжения жилых районов.

    курсовая работа [402,0 K], добавлен 07.01.2011

  • Разработка водяной системы централизованного теплоснабжения жилищно-коммунальной застройки города с 2-х трубной прокладкой тепловых сетей. Определение тепловых нагрузок районов города. Расчет расхода тепла на отопление, вентиляцию и горячее водоснабжение.

    контрольная работа [175,4 K], добавлен 07.01.2015

  • Проект внутреннего водопровода и коммуникаций двухсекционного пятиэтажного жилого дома. Расчетные расходы воды по участкам водопроводной сети здания. Внутренняя и дворовая канализационная сеть. Спецификация потребности материалов и оборудования.

    курсовая работа [28,9 K], добавлен 19.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.