О несущей способности усиленных коротких стоек при больших эксцентриситетах

Несущая способность коротких стоек, усиленных углепластиковой арматурой, при действии нагрузки с осевым эксцентриситетом. Эффективность различных усилений при приложении нагрузки за пределами ядрового сечения. Разрушение стоек вне зоны их усиления.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 29.06.2017
Размер файла 26,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

О несущей способности усиленных коротких стоек при больших эксцентриситетах

П.П. Польской, Д.Р. Маилян,

С.В. Георгиев

Ростовский государственный

строительный университет

Аннотация

Приведены данные о несущей способности коротких стоек с гибкостью лh=10, усиленных углепластиковой арматурой, при действии нагрузки с осевым эксцентриситетом е0=4см. Установлена эффективность различных вариантов усиления при приложении нагрузки за пределами ядрового сечения.

Ключевые слова: Бетон, железобетон, сталь, арматура, композит, углепластик, прочность, несущая способность.

В соответствии с перспективной программой исследования [1-4], на кафедре железобетонных и каменных конструкций РГСУ начался второй этап исследования железобетонных конструкций, усиленных композитными материалами на основе углепластика. Он посвящен сжатым железобетонным элементам с гибкостью лh=10 и 20. Согласно разработанной для второго этапа исследования программы [5], испытание опытных образцов на сжатие проводится при различных значениях эксцентриситета приложения нагрузки. Настоящая статья посвящена результатам эксперимента усиленных коротких стоке при лh=10 для случая больших эксцентриситетов, т.е. когда сила приложена за пределами ядрового сечения, а величина самого эксцентриситета превышает е0?0,3h. В нашем случае он составляет е0=4см (Серия В). Коротко остановимся на характеристике опытных образцов и вариантах их усиления.

Все короткие стойки, с проектным классом бетона В35, независимо от эксцентриситета приложения нагрузки и их гибкости, имели одинаковое поперечное сечение 250x125(h). Длина коротких стоек составляла 1200мм. Продольная арматура представлена 4Ш12А500. Поперечные хомуты были выполнены диаметром 6мм класса В500 и установлены с шагом 180мм. Дополнительно, для увеличения прочности торцевых участков [6], приопорные участки были усилены сетками с размером ячеек 50x40мм из арматуры Ш3В500, установленными с шагом 50мм.

Усиление опытных образцов с учетом рекомендаций [6], было выполнено в виде замкнутых хомутов различной ширины и шага, наклеенных на обработанную бетонную поверхность. Отдельные образцы были усилены продольной углепластиковой арматурой в виде полос шириной 50 и толщиной 1,4мм. Все поперечные хомуты были выполнены из трех слоев углеткани.

Конструкция, характеристика этих образцов, варианты их усиления и результаты испытания приведены в табл. 1.

Загружение всех стоек серии В осуществлялось двумя разнонаправленными силами через специально сконструированный металлический оголовок. Он имеет прорези для фиксации точки приложения нагрузки. Усилие создавалось гидравлическим домкратом марки ДГ200П150, который устанавливался под нижним концом опытного образца на специальном стенде.

Нагружение выполнялось ступенчато-возрастающей нагрузкой до разрушения в выдержкой на каждом этапе по 10-15минут согласно [7]. Это время использовалось для снятия показаний с приборов с целью определения деформаций бетона и композитного материала в наиболее характерных сечениях. В наших опытах использовались прогибомеры, индикаторы часового типа и тензорезисторы сопротивления. Выдержка под нагрузкой способствовала, одновременно, и перераспределению напряжений между бетоном и внутренней-стальной и внешней композитной арматурой.

Интенсивность нагрузки до уровня, равного примерно 0,8 от разрушающей составляла 50кН, а выше указанного уровня - 25кН. Влияние различных вариантов усиления оценивалось по методу прямого сопоставления результатов испытания обычных-эталонных железобетонных образцов и однотипных по конструкции, но усиленных углепластиком.

Для оценки каждого варианта усиления стоек, рассмотрим более подробно характер их поведения под нагрузкой и разрушения.

Таблица 1

Результаты испытания коротких стоек, усиленных углепластиком при осевом эксцентриситете e0=4см.

Характеристики опытных образцов

Шифр стоек

Прочность бетона ,

Характер усиления углепластиком

Предельные деформации

Опытные значения

Коэффициент усиления

Сжатие

Растяжение

Прочность

Прогибы

Сечения-250x125 (h) мм l0=1200мм, лh=10; е0=4. Продольное армирование 4Ш12А500 (µs=1.45) хомуты - Ш6В500, s=180

ВК

40,6

Эталон

5,53

4,47

422,2

9,15

-

ВКУ-Х1

40,6

Хомут шириной 50мм, шаг 190мм.

6,5

5,68

482,5

482,5

9,32

1,4

ВКУ- Х1Lp

40,6

Хомут шириной 50мм, шаг 190мм+2 полосы углеламината b=50; t=1,4мм

6,16

3,14

530,0

530,0

7,17

1,25

ВКУ- Х4 Lp

50,6

Хомут в центре 240мм, на остальной длине 50мм с шагом 190мм +2 полосы углеламината b=50; t=1,4мм

4,65

2,95

608,0

487,8

8,875

1,44

1,16

Примечания: 1) Средние деформации бетона на сжатие и растяжение на базе 300мм, а также прогибы стоек зафиксированные на этапе предшествующем разрушению. 2) Прочность бетона и арматуры определялась по результатам испытания образцов согласно [6,7]. Перевод кубиковой прочности бетона на цилиндрическую выполнен с учетом требований [6,7,8]. 3) В знаменателе столбцов 7 и 9 табл. 1 показаны значения с учетом коэффициента перехода к прочности бетона эталонных образцов.

На этапе, предшествующем разрушению, новые трещины не появились, а их ширина для всех стала почти одинаковой. В сжатой зоне появились лещадки. Разрушилась стойка плавно от дробления бетона сжатой зоны на очередном этапе загружения.

Усиленные стойки:

Физико-механические характеристики композитных материалов [8] и методика усиления конструкций приведена в работах [9,10]

ВКУ - Х1 - усиление выполнено только внешними хомутами шириной 50мм с шагом 190мм. Первая и единственная трещина в растянутой зоне появилась и хорошо раскрылась только при нагрузке 300кН, что указывает на стеснённые условия работы бетона под хомутом, которые распространяются и на прилежащие к хомутам участки бетона. Первые лещадки в сжатой зоне появились при N=425кН. На этапе предшествующем разрушению, прогибы стойки, а также средние деформации бетона со стороны сжатой и растянутой зоны были на 10-18% выше по сравнению с эталонными образцами. Разрушение произошло от дробления бетона между хомутами на глубину до 4см. В процессе разрушения на противоположенной стороне от зоны дробления бетона, появилась магистральная трещина высотой до 8-8,6см с раскрытием до 3-3,7мм. углепластиковый арматура ядровой сечение

ВКУ-Х1Lp - поперечное усиление, одинаковое с предыдущей стойкой, дополнено продольной композитной арматурой из двух полос, наклеенных в растянутой зоне. Первая трещина в этой зоне появилась при N=400кН. Следует отметить и то, что верхний оголовок при N=400кН получил своеобразный наклон, чего не было раньше. Выше была и нагрузка при появлении первых лещадок N=425кН. Это весьма показательно, т.к. все три стойки являлись близнецами при изготовлении. Поэтому налицо влияние продольного усиления. Деформации сжатия были несколько ниже, по сравнению с предыдущей стойкой, а вот деформации растяжения в силу наличия продольной углепластиковой арматуры уменьшилась почти в два раза. Стойка разрушилась еще более плавно, чем предыдущая. Разрушение произошло внизу между опорным хомутом шириной 100мм и рядовым Х1 от дробления бетона сжатой зоны. Видимая высота дробления бетона составила 5,5-5,8см, а раскрытие магистральной трещины - всего 0,2мм при высоте 5,7см.

ВКУ-Х3Lp - отличительной чертой данной стойки является наличие широкого хомута в центре в сочетании с продольными полосами на растянутой грани. Поведение стойки под нагрузкой было аналогично предыдущей. Но в еще большей степени изогнулся верхний оголовок. Наличие жёсткой обоймы в середине при одновременном усилении растянутой зоны между оголовками, создало условия для изменения расчётной схемы. Разрушение произошло по самому слабому месту - под оголовком, над торцевым хомутом. Бетон сжатой зоны раздробился, а трещина раскрылась до 5-7мм. Деформации бетона и сжатой, и растянутой зоны оказались меньше всего по сравнению со всеми образцами, отметим при этом, что в процессе разрушения почти по всей длине откололись углы стоек, расположенные в сжатой зоне.

Результаты испытания коротких усиленных стоек, работающих с большим эксцентриситетами, позволяют отметить следующее:

- Образцы по серии В показали наименьшую несущую способность, по сравнению с образцами, испытанными при экспериментах е0=0 и е0=2,0см.

- Случай больших эксцентриситетов при е0=4 см, снижает величину коэффициентов усиления для отдельных вариантов, которые были более эффективны при центральном и внецентренном загружении при е0=2 см.

- Резкое увеличение жесткости поперечных хомутов в сочетании с продольным усилением приводит к изменению статической схемы работы коротких стоек и снижает эффективность композитного усиления.

Разрушение стоек вне зоны их усиления свидетельствует о необходимости разработки новых конструктивных мер по усилению приопорных участков стоек.

Литература

1. Польской П.П., Маилян Д.Р. Композитные материалы - как основа эффективности в строительстве и реконструкции зданий и сооружений // Инженерный вестник Дона, 2012, №4 (часть 2) URL: ivdon.ru/magazine/archive/n4p2y2012/1307

2. Польской П.П., Маилян Д.Р. Влияние стального и композитного армирования на ширину раскрытия нормальных трещин // Инженерный вестник Дона, 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1675

3. Польской П.П., Маилян Д.Р., Мерват Хишмах, Кургин К.В. О прочности балок из тяжелого бетона при использовании стальной, углепластиковой и комбинированной арматуры, расположенной в два ряда // Инженерный вестник Дона, 2013, №4 URL:ivdon.ru/ru/magazine/archive/n4y2013/2096

4. Польской П.П., Маилян Д.Р., Мерват Хишмах, Кургин К.В. О деформативности изгибаемых элементов из тяжелого бетона при двухрядном расположении углепластиковой и комбинированной арматуры // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/2094

5. Польской П.П., Георгиев С.В. Вопросы исследования сжатых железобетонных элементов, усиленных различными видами композитных материалов // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/2134

6. Руководство по усилению железобетонных конструкций композитными материалами. Под руководством д.т.н., проф. В.А. Клевцова. М.: НИИЖБ, 2006-48с.

7. Eurocode 2: Design of concrete structures - Part 1-1 // General rules and rules for buildings, 2004.

8. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. // ACI 440.2R-08. American Concrete Institute, 2008.

9. Маилян Д.Р., Польской П.П., Георгиев С.В. Методики усиления углепластиком и испытания коротких и гибких стоек // Научное обозрение, 2014, №10, ч.2. С.415-418

10. Польской П.П., Георгиев С.В. Характеристики материалов, используемых при исследовании коротких и гибких стоек, усиленных углепластиком // Научное обозрение, 2014г, №10, ч.2. С.411-414.

References

1. Pol'skoj P.P., Mailjan D.R. Inћenernyj vestnik Dona (Rus), 2012, №4/2 URL: ivdon.ru/magazine/archive/n4p2y2012/1307

2. Pol'skoj P.P., Mailjan D.R. Inћenernyj vestnik Dona (Rus), 2013, №2 URL: ivdon.ru/ru/magazine/archive/n2y2013/1675

3. Pol'skoj P.P., Mailjan D.R., Mervat Hishmah, Kurgin K.V. Inћenernyj vestnik Dona (Rus), 2013, №4 URL:ivdon.ru/ru/magazine/archive/n4y2013/2096

4. Pol'skoj P.P., Mailjan D.R., Mervat Hishmah, Kurgin K.V. Inћenernyj vestnik Dona (Rus), 2013, №4 URL:ivdon.ru/ru/magazine/archive/n4y2013/2094

5. Pol'skoj P.P., Georgiev S.V. Inћenernyj vestnik Dona (Rus), 2013, №4

6. URL: ivdon.ru/ru/magazine/archive/n4y2013/2134

7. Rukovodstvo po usileniju zhelezobetonnyh konstrukcij kompozitnymi materialami [Guide to strengthening reinforced concrete structures by composite materials], pod rukovodstvom d.t.n., prof. V.A. Klevcova. M.: NIIZhB, 2006, p.48

8. Eurocode 2: Design of concrete structures - Part 1-1 // General rules and rules for buildings, 2004.

9. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. // ACI 440.2R-08. American Concrete Institute, 2008.

10. Mailjan D.R., Pol'skoj P.P., Georgiev S.V. Nauchnoe obozrenie, 2014, №10/2, рр.415-418

11. Pol'skoj P.P., Georgiev S.V. Nauchnoe obozrenie, 2014, №10/2, pp.411-414.

Размещено на Allbest.ru

...

Подобные документы

  • Статический расчет поперечной рамы, постоянные и временные нагрузки. Определение усилий в раме. Расчетные сочетания усилий в сечениях стоек. Расчет и проектирование колонны, надкрановой и подкрановой части, промежуточной распорки. Параметры фундаментов.

    курсовая работа [1,5 M], добавлен 15.09.2014

  • Изготовление стойки железобетонной центрифугированной кольцевого сечения для производственных зданий, сооружений. Характеристика армирования. Технология бетона. Внутризаводское транспортирование, складирование, хранение. Ведомость оборудования и оснастки.

    курсовая работа [319,4 K], добавлен 11.01.2014

  • Постоянные и временные нагрузки от подвижного состава и пешеходов. Горизонтальные поперечные удары. Ледовая и ветровая нагрузки, гидростатическое выталкивание. Определение нагрузки на голову сваи и несущей способности сваи. Нагрузка от толпы на тротуаре.

    курсовая работа [54,9 K], добавлен 22.06.2012

  • Геометрический расчет конструктивной схемы каркаса. Вычисление нагрузок. Определение параметров клеефанерной плиты и несущей конструкции покрытия, стоек поперечной рамы. Защита деревянных конструкций от загнивания, при транспортировке, складировании.

    курсовая работа [651,1 K], добавлен 10.06.2014

  • Расчет холодного покрытия с кровлей из стали, дощатого настила и прогона. Конструирование основной несущей конструкции. Подбор сечений и определение нагрузок на элементы фермы. Расчет узловых соединений, стойки каркаса, закрепления стоек в фундаментах.

    курсовая работа [203,3 K], добавлен 28.05.2015

  • Элементы таврового и двутаврового сечений с одиночной арматурой. Расчет таврового сечения с одиночной арматурой, находящейся выше или ниже ребра. Порядок подбора сечений бетона и арматуры. Расчетная проверка несущей способности тавровых сечений.

    контрольная работа [383,3 K], добавлен 01.10.2014

  • Расчет элементов холодного кровельного настила под рулонную кровлю. Проектирование панели сборного покрытия. Расчет клеефанерной балки коробчатого сечения постоянной высоты с плоскими фанерными стенками. Конструктивный расчет стоек и поперечной рамы.

    курсовая работа [569,3 K], добавлен 09.12.2013

  • Характеристика компоновки конструктивной схемы производственного здания. Определение вертикальных размеров стоек рамы. Расчеты стропильной фермы, подкрановой балки, поперечной рамы каркаса, колонны. Вычисление геометрических характеристик сечения.

    курсовая работа [2,4 M], добавлен 29.12.2010

  • Длина балки, толщина защитного слоя. Определение характеристик материалов, площади сечения арматуры. Предельное значение относительной высоты сжатой зоны бетона. Определение относительной высоты сжатой зоны и несущей способности усиленного элемента.

    контрольная работа [1,1 M], добавлен 09.01.2014

  • Определение нагрузок на поперечную раму. Подбор сечения нижней части колонны и элементов фермы. Методика подбора сечений для сжатых стержней. Расчет фермы, раздельной базы сквозной колонны и сварных швов прикрепления раскосов и стоек к поясам фермы.

    курсовая работа [217,4 K], добавлен 25.03.2013

  • Назначение несущих строительных конструкций. Сбор нагрузок на железобетонную балку прямоугольного сечения. Расчетная схема изгибаемого железобетонного элемента с двойной арматурой. Конструирование железобетонной балки. Несущая способность конструкции.

    курсовая работа [1,1 M], добавлен 15.01.2011

  • Определение размеров сечения столба по оси Б, столба по оси А. Определитение размеров, марки кирпича и раствора. Запроектировать столб по оси А и по оси Б. Проверить несущую способность стены по оси В на местное смятие. Несущая способность столба.

    задача [113,6 K], добавлен 11.11.2008

  • Способы обеспечения геометрической неизменяемости зданий. Защемление стоек каркаса. Обеспечение пространственной геометрической неизменяемости покрытий. Колонны сплошного сечения. Узлы защемления клеедощатых колонн в фундаменте. Расчет решетчатых колонн.

    лекция [5,8 M], добавлен 24.11.2013

  • Проектирование усиления пролета неразрезного многопролетного ригеля рамы. Расчет требуемого сечения уголков распорки, несущей способности ригеля в пролете и на опорах, сечения затяжки, соединительных планок. Проверка прочности ригеля наклонным сечениям.

    курсовая работа [830,1 K], добавлен 14.03.2009

  • Определение несущей способности железобетонной плиты методами предельного состояния и статической линеаризации. Определение характеристик безопасности и несущей способности железобетонного сечения. Сбор нагрузок на ферму. Метод предельных состояний.

    курсовая работа [1,3 M], добавлен 13.12.2013

  • Расчёт стального настила и балочных клеток; нагрузки на главную балку и подбор её сечения с проверкой его по несущей способности и жёсткости, прочности монтажного болтового стыка. Определение нагрузок на сквозную колонну. Расчёт базы колонны с траверсами.

    курсовая работа [415,7 K], добавлен 12.10.2015

  • Расчет и конструирование железобетонной колонны, промежуточной распорки, сечений элементов фермы, растянутого раскоса, стоек, фундамента под среднюю колонну. Проектирование стропильной сегментной фермы, определение нагрузок и усилий в элементах фермы.

    курсовая работа [841,9 K], добавлен 05.06.2012

  • Расчет элементов теплой рулонной кровли построечного изготовления. Проектирование утепленной клеефанерной панели покрытия под рулонную кровлю. Определение усилий от расчетных нагрузок на поперечную раму. Конструктивный расчет стоек, опорных узлов.

    курсовая работа [258,5 K], добавлен 25.12.2015

  • Расчет прочности и сейсмоустойчивости конструкции каркасного одноэтажного здания с навесными деревянными стенами. Жесткое закрепление стоек к фундаменту, раскрепление ригелей и подкосов. Определение работы плиты покрытия в горизонтальной плоскости.

    курсовая работа [1,3 M], добавлен 21.10.2014

  • Расчет плиты перекрытия. Определение проектной и фактической несущей способности плиты. Увеличение второстепенной ветки монолитного перекрытия. Несущая способность второстепенной балки на 1 погонный метр перекрытия. Укрепление колонны первого этажа.

    курсовая работа [142,5 K], добавлен 28.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.