Методологические основы оценки остаточной несущей способности опор контактной сети

Характеристика комплексного способа диагностики железобетонных конструкций кольцевого сечения на примере опор контактной сети. Анализ соотношений, позволяющих определить параметры разрушения. Оценка остаточной несущей способности железобетонных опор.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 27.07.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методологические основы оценки остаточной несущей способности опор контактной сети

Е.Ю. Романенко1, М.А. Трубицин2

1Ростовский государственный строительный университет,

2Ростовский государственный университет путей сообщения

Аннотация

Рассматривается комплексный способ диагностики железобетонных конструкций кольцевого сечения на примере опор контактной сети. Сложный физико-механический процесс работы арматуры и бетона требует учитывать состояние этих составных частей. Для оценки состояния арматуры и определения её расположения в теле опоры авторами предлагается современное приборное исполнение магнитного метода. Дефектоскопию бетонной оболочки предложено выполнить модифицированным приборным парком ультразвуковой диагностики. В зависимости от схемы загрузки опор определяются зоны контроля конструкции, повреждения в которых приводят к снижению несущей способности. В статье приводятся соотношения, позволяющие определить параметры разрушения (трещины). Представлен графический материал, полученный в результате ультразвукового контроля. Для оценки остаточной несущей способности опор с учетом повреждения бетона и арматуры представлены математические выражения.

Ключевые слова: опоры контактной сети, остаточная несущая способность, ультразвуковая дефектоскопия, годограф, трещины, коррозия арматуры, техническое состояние.

Оценка остаточной несущей способности железобетонных опор используемых в электросетях различного назначения является довольно сложной, т.к. часть дефектов носит скрытый характер, а сложное физико-химическое сочетание арматуры и бетона требует комплексного подхода к данной проблеме [1]. Так, практически не поддается точной оценке как степень снижения несущей способности опор из-за старения бетона, так и степень коррозии арматуры в теле опоры без применения методов разрушающего контроля [2]. Большая сложность возникает и при оценке качества бетона и арматуры в подземной части опоры. Диагностику состояния подземной части опор без откопки выполнить практически невозможно [1]. Для диагностики состояния опор контактной сети (КС), условия эксплуатации которых отличаются от условий эксплуатации электросетевых опор использовались различные методы (потенциальных диаграмм, вибрационный электрохимический). Результаты вышеуказанных методов очень сильно зависят как от грунта, в котором установлена опора, так и от состояния самой опоры.

Методы оценки технического состояния железобетонных электросетевых конструкций кольцевого сечения, предлагаемые в нормативных документах (приборами механических или поверхностных методов неразрушающего контроля), не обеспечивают выявления дефектов в бетоне на ранней стадии их появления и не позволяют получить количественные оценки развития этих дефектов во времени из-за большой погрешности получаемого результата. Среди перспективных способов диагностики следует отметить ультразвуковые способы диагностики состояния железобетонных конструкций, позволяющие оценить прочность железобетонных конструкций неразрушающими способами. При этом наличие арматуры в теле бетона, пустоты внутри конструкции (ж.б. трубы, опоры) не дают точного представления об истинном состоянии конструкций. Разрушения бетона на уровне земли (наиболее массовые), без откопки опоры на требуемую для диагностики глубину в настоящее время являются трудно диагностируемыми. Снижение прочности бетона является одним из основных факторов снижения несущей способности железобетонных опор [3]. Определение прочности бетона и характеристик трещин на поверхности, сегодня выполняется неразрушающим ультразвуковым методом при поверхностном прозвучивании.

Определение армирования центрифугированных опор (КС) осуществляется магнитным методом [4,5]. Для магнитного метода определения армирования центрифугированных конструкций (диаметр элементов армирования и положение арматурного каркаса в конструкции опор КС) наиболее эффективно использовать прибор «Система Ферроскан РS200». Измерения производятся в несколько этапов. На первом этапе определяют расположение арматуры, её диаметр и глубину залегания в теле опоры (выполняются в режиме Imagescan), позволяющем визуализировать положение элементов армирования конструкции и фиксировать в памяти сканера PS 200scanner, с последующей возможностью определения глубины залегания и диаметра арматурных стержней. Затем, полученные изображения элементов армирования с помощью инфракрасного передатчика и приемника (второй этап) передаются на монитор PS 200 M monitor. На третьем этапе (этап камеральной обработки) полученные изображения положения арматуры в теле конструкции обрабатываются с использованием соответствующего программного обеспечения прибора «Система Ferroscan PS200», позволяющего осуществлять передачу данных с монитора прибора на ПК для последующей обработки и анализа. Результаты измерений, полученные с использованием прибора «Система Ферроскан PS200» представляются в виде таблиц и графических рисунков (годографов).

Повреждения бетонной оболочки опоры проявляются в виде трещин и сколов. Глубину трещин определяют, как правило, с помощью игл, тонких проволочных щупов, а также ультразвуковым импульсным методом. При использовании ультразвукового контроля глубину трещины рассчитывают путем сравнения времени распространения ультразвукового импульса на участках неповрежденного трещиной бетона (t1) и в бетоне с трещиной (t2) методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношения:

(1)

где: - глубина трещины; - скорость распространения ультразвука, м/мкс, в бетоне на участке без наличия трещин; - время прохождения ультразвука на участке без трещины, мкс; - время прохождения ультразвука на участке с трещиной, мкс.

Размещено на http://www.allbest.ru/

Для ультразвукового контроля состояния бетонной оболочки могут быть использованы приборы: «Пульсар-1,2», «Пульсар-1,0», УКБ-1М, УК-1401, «Бетон 32», «УК14П» при помощи которых определяется: скорость и время распространения ультразвука в бетоне на участке без наличия трещин и время прохождения ультразвука на участке с трещиной при перпендикулярном расположении линии прозвучивания к плоскости трещинообразования. железобетонный конструкция опора несущий

Размещено на http://www.allbest.ru/

Определение глубины трещин в бетоне центрифугированных конструкций КС выполняется в соответствии с методикой обработки результатов измерений (формула 1), и представляется в виде таблиц (табл. № 1) и годографов (рис. 1 - 3) по каждому отдельно взятому профилю.

Размещено на http://www.allbest.ru/

Таблица № 1. Результаты определения глубины трещин в бетоне ЦО КС

№ участка контро-лируемой

конст-рукции

Время распрост-ранения ультра-звукового сигнала на участке, мкс

Среднее время распространения ультразвукового сиг- нала на участке, мкс

Скорость распрост-ранения ультразвука на участке без трещин, м/с

Средняя скорость распро-странения ультразвука (V), м/мкс

Глу-бина тре-щины,

м

без трещины

с трещи-ной

без трещины (t1)

с трещиной

(t2)

1

2

3

4

5

6

7

8

Анализ полученных данных позволит судить об однородности или неоднородности плотности и соответственно прочности материала опоры контактной сети. Методом сравнения времени распространения УЗК по участку без внутренних дефектов и повреждений с аналогичными результатами, полученными на участке, имеющем внутренние дефекты и повреждения можно уверенно говорить о наличии или отсутствии структурных нарушениях бетона (пустоты, разуплотнение и др.), либо о достаточно глубокой внутренней трещине или о нахождении внутри полости кольцевой конструкции невидимых на внешней поверхности скрытых трещин.

Железобетонные опорные конструкции обладают высокой механической прочностью и большой деформативностью, но под воздействием различных нагрузок могут значительно отклониться от вертикального положения [4,6]. В результате этого от нагрузок (вес проводов, тросов, гололеда и др.) возникают изгибающие моменты, вызывающие дополнительные деформации опоры.

Опоры линий электропередачи загружены, как правило, равномерно, в отличие от опор контактной сети. Неравномерность загрузки последних приводит к эксцентриситету приложения силы, и как следствие разных по размеру растянутых и сжатых зон [6]. Максимальные моменты, которые действуют на опору, сосредоточены на уровне условного обреза фундамента, поэтому данная область должна быть обследована более тщательно.

Результатами обследования опор выявлено, что наибольшее количество трещин, как продольных, так и поперечных возникает в растянутой зоне опоры. Согласно [1,3,68], бетон хорошо работает на сжатие, и в 4-5 раз хуже на растяжение, трещины, возникающие в растянутой зоне опоры, под воздействием нагрузки могут увеличивать свою длину по периметру тела опоры. От ширины раскрытия трещин зависит скорость коррозии арматуры, при этом снижается коэффициент сцепления арматуры с защитным слоем бетона растянутой зоны опоры [9]. Трещины, возникающие в сжатой зоне бетона, как правило, не снижают несущей способности опоры, т.к. бетон хорошо работает на сжатие, сжимающие допустимые нагрузки на бетонное кольцо, значительно превосходят допустимые сжимающие нагрузки на арматуру. Сжатие части бетонного элемента с трещиной приводят к ее закрытию [9]. Разрушение может произойти лишь в том случае, когда сжимающие нагрузки превышают допустимые для данной марки бетона.

Для определения величины деформации, при которых опора сохраняет свою устойчивость, необходимо проводить статические расчеты [10].

С учетом параметров трещин на поверхности центрифугированных опор КС и ориентировочной оценки коррозии арматуры остаточная несущая способность конструкции может быть определена с учетом схемы загрузки и расположению повреждений (рис.4) по следующим формулам [10]:

Рис.4 - Расчетная схема определения остаточной несущей способности опоры КС при наличии трещин и коррозии арматуры для опор с напряженной продольной арматурой:

, (2)

, (3)

где - площадь бетонного кольца опоры; - средний радиус бетонного кольца опоры; - площадь поперечного сечения всей продольной арматуры; - расчетное сопротивление на растяжение напрягаемой арматуры; - радиус расположения напрягаемой арматуры; - величина угла; - призменная прочность бетона; - площадь поврежденного кольца опоры; - половина центрального угла сектора сжатой зоны бетона поперечного сечения; - изгибающий момент; - величина прогиба.

При определении остаточного изгибающего момента, для опор имеющих поперечные трещины в растянутой зоне и работающих на внецентренное сжатие формула (4) будет иметь вид:

(4)

, (5)

где - момент от горизонтальных нагрузок; - количество стержней, расположенных в теле опоры; - площадь арматуры; - расчетное сопротивление на растяжение напрягаемой арматуры растянутой зоны; - радиус расположения продольной арматуры; - напряжение в арматуре сжатой зоны.

Остальные параметры те же, что и в формулах (2) и (3).

Для опор с напряженной продольной арматурой

, (6)

, (7)

Обозначения в формулах (6) и (7) те же, что и (2) - (5) [10].

Литература

1. Подольский В.И. Железобетонные опоры контактной сети конструкция, эксплуатация, диагностика. М.: Интекст, 2007. - 152 с.

2. Шестоперов СВ. Контроль качества бетона транспортных сооружений. М.: Транспорт, 1975. 248 с.

3. Берг О.Я. Физические основы теории прочности бетона и железобетона. М.: Госстройиздат, 1961. - 97 с.

4. Трубицин М.А. Автореферат диссертации на соискание ученой степени кандидата технических наук. Оценка несущей способности опор контактной сети по состоянию надземной части. На правах рукописи, 1997, РГУПС, Ростов-на-Дону. 25с

5. Муханов А.В., Муханов В.В. Лабораторные и производственные испытания устройства для методов неразрушающего контроля (НК) железобетонных конструкций (ЖБК)//Инженерный вестник Дона, 2013, №4 URL:ivdon.ru/ru/magazine/archive/n4y2013/

6. Маилян Д.Р., Мурадян В.А. К методике расчета железобетонных внецентренно сжатых колонн // Инженерный вестник Дона, 2012, №4 URL:ivdon.ru/ru/magazine/archive/n4y2012/.

7. Skalny J., Mindess S. Physico-chemical Phenomena at the Cement Paste. Aggregate Interface. //10th Int. Symp. React. Solids, Dijon, 27 Aug - 1 Sept., 1984. -Dijon. -1984. pp.223-224.

8. Xueqan Wu, Dongxu Li, Xiun Wu, Minchu Tang. Modification of the Interfacial Zone between Aggregate and Cement Paste. //Bond. Cementitious Compos.: Symp., Boston, Mass., Dec.2-4, 1987. -Pittsburgh (Pa), -1988. pp.35-40.

9. Романенко Е.Ю. Автореферат диссертации на соискание ученой степени кандидата технических наук. Высокопрочные бетоны с минеральными пористыми и волокнистыми добавками для изготовления длинномерных центрифугированных конструкций, 1990, РГСУ, Ростов-на-Дону.28с

10. Кудрявцев, А. А. Несущая способность опорных конструкций контактной сети: производственно-практическое издание. М.: Транспорт, 1988. - 159 с.

References

1 Podol'skij V.I. Zhelezobetonnye opory kontaktnoj seti konstrukcija, jekspluatacija, diagnostika[Concrete constructions of overhead contact system pylons: construction, exploitation, diagnostics] M.: Intekst, 2007. 152 p.

2 Shestoperov SV. Kontrol' kachestva betona transportnyh sooruzhenij.[ Concrete of traffic facilities quality control ]M.: Transport, 1975. 248 p.

3 Berg O.Ja. Fizicheskie osnovy teorii prochnosti betona i zhelezobetona. [Physical basis of concrete and ferroconcrete strength theory].M. Gosstrojizdat, 1961.97 p

4 Trubicin M.A. Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata tehnicheskih nauk. Ocenka nesushhej sposobnosti opor kontaktnoj seti po sostojaniju nadzemnoj chasti. [Rating of overhead contact system pylons bearing capacity from the statement of their superstructure.] Na pravah rukopisi, 1997, RGUPS, Rostov-na-Donu. 25p.

5 Muhanov A.V., Muhanov V.V., Inћenernyj vestnik Dona, (Rus), 2013, №4. URL:ivdon.ru/ru/magazine/archive/n4y2013/

6 Mailjan D.R.,Muradjan V.A., Inћenernyj vestnik Dona, (Rus), 2012, №4 URL:ivdon.ru/ru/magazine/archive/n4y2012/.

7. Skalny J., Mindess S. Physico-chemical Phenomena at the Cement Paste. Aggregate Interface. 10th Int. Symp. React. Solids, Dijon, 27 Aug - 1 Sept., 1984. -Dijon. 1984. pp.223-224.

8. Xueqan Wu, Dongxu Li, Xiun Wu, Minchu Tang. Modification of the Interfacial Zone between Aggregate and Cement Paste. Bond.Cementitious Compos.: Symp., Boston, Mass., Dec.2-4, 1987. Pittsburgh (Pa), 1988.pp.35-40.

9. Romanenko E.Ju. Avtoreferat dissertacii na soiskanie uchenoj stepeni kandidata tehnicheskih nauk. Vysokoprochnye betony s mineral'nymi poristymi i voloknistymi dobavkami dlja izgotovlenija dlinnomernyh centrifugirovannyh konstrukcij. [High-strength concretes with mineral porous and stringy addition agents for long-measuring centrifuged constructions making] 1990, RGSU, Rostov-na-Donu.28p.

10. Kudrjavcev, A. A. Nesushhaja sposobnost' opornyh konstrukcij kontaktnoj seti [Load-carrying capability of overhead contact system supporting structures]: proizvodstvenno-prakticheskoe izdanie. M.: Transport, 1988.159 p.

Размещено на Allbest.ru

...

Подобные документы

  • Железобетон, как композиционный строительный материал. Принципы проектирования железобетонных конструкций. Методы контроля прочности бетона сооружений. Специфика обследования состояния железобетонных конструкций в условиях агрессивного воздействия воды.

    курсовая работа [2,2 M], добавлен 22.01.2012

  • Проект цеха по изготовлению железобетонных опор ЛЭП: исходные данные, номенклатура и характеристика изделия; режим работы, сырье, полуфабрикаты, подбор состава бетона. Расчет конструктивных элементов в ЛЭП: технологические параметры, режим изготовления.

    курсовая работа [1021,0 K], добавлен 04.11.2011

  • Определение несущей способности железобетонной плиты методами предельного состояния и статической линеаризации. Определение характеристик безопасности и несущей способности железобетонного сечения. Сбор нагрузок на ферму. Метод предельных состояний.

    курсовая работа [1,3 M], добавлен 13.12.2013

  • Знакомство с основными особенностями усиления и симметричного уширения моста. Анализ способов свайных промежуточных опор. Рассмотрение метода сухого торкретирования с использованием цементно-песчаной смеси. Общая характеристика функций свайных опор.

    реферат [1,7 M], добавлен 21.05.2015

  • Климатологическая характеристика участка. Благоустройство и озеленение прилегающей территории. Определение нагрузок на здание, несущей способности свай. Расчет армирования железобетонных конструкций. Выбор оборудования для монтажа сборных элементов.

    курсовая работа [2,0 M], добавлен 22.03.2015

  • Подбор плиты перекрытия. Сбор основных нагрузок и подбор сечения. Огибающие эпюры изгибающих моментов и поперечных сил. Подбор продольной арматуры и расчет несущей способности ригеля. Расчет по раскрытию трещин, нормальных к продольной оси ригеля.

    курсовая работа [1,2 M], добавлен 25.10.2013

  • Оценка физического износа кровли и слоя утеплителя. Определение восстановительной, остаточной стоимости и морального износа здания. Расчет несущей способности железобетонной балки прямоугольного профиля с одиночным армированием по нормальному сечению.

    практическая работа [36,9 K], добавлен 27.08.2012

  • Проектирование основных несущих конструкций 6-этажного промышленного здания без подвала. Компоновка перекрытия, подбор плиты. Расчет ригеля, его несущей способности. Подбор продольной и поперечной арматуры. Расчет колонны, проектирование фундамента.

    курсовая работа [1,4 M], добавлен 23.12.2012

  • Особенности заводского производства сборных железобетонных элементов, которое ведется по нескольким технологическим схемам. Коррозия железобетона и меры защиты от нее. Характеристика методов разрушения железобетонных конструкций, применяемое оборудование.

    контрольная работа [21,7 K], добавлен 06.08.2013

  • Контролируемые параметры для железобетонных конструкций. Прочностные характеристики бетона и их задание. Количество, диаметр, прочность арматуры. Контролируемые параметры дефектов и повреждений железобетонных конструкций. Основные методы испытания бетона.

    презентация [1,4 M], добавлен 26.08.2013

  • Длина балки, толщина защитного слоя. Определение характеристик материалов, площади сечения арматуры. Предельное значение относительной высоты сжатой зоны бетона. Определение относительной высоты сжатой зоны и несущей способности усиленного элемента.

    контрольная работа [1,1 M], добавлен 09.01.2014

  • Проектирование основных железобетонных конструкций и стены подвала многоэтажного здания: расчет прочности ребристой плиты, построение эпюры продольного армирования, определение изгибающих моментов в колонны, проверка несущей способности объекта.

    дипломная работа [565,7 K], добавлен 17.09.2011

  • Дефекты каменных конструкций, причины их возникновения. Характеристика способов усиления фундаментов, стен, перекрытий. Увеличение несущей площади фундамента и несущей способности грунта. Методы усиления каменных конструкций угле- и стеклопластиками.

    реферат [1,0 M], добавлен 11.05.2019

  • Виды разрушения материалов и конструкций. Способы защиты бетонных и железобетонных конструкций от разрушения. Основные причины, механизмы и последствия коррозии бетонных и железобетонных сооружений. Факторы, способствующие коррозии бетона и железобетона.

    реферат [39,1 K], добавлен 19.01.2011

  • Контролируемые параметры каменных конструкций. Прочностные характеристики кладки (камней и раствора). Методы определения прочности кирпича и раствора. Задание расчетных характеристик кладки. Оценка несущей способности каменных и армокаменных конструкций.

    презентация [197,3 K], добавлен 26.08.2013

  • Генплан 114-квартирного кирпичного жилого дома. Благоустройство территории. Архитектурно-конструктивное решение. Расчет свай по сечениям и несущей способности, железобетонных ленточных ростверков свайных фундаментов. Характеристика условий строительства.

    дипломная работа [262,1 K], добавлен 09.12.2016

  • Особенности работы и разрушения каменных и армокаменных конструкций. Определение их прочности и технического состояния по внешним признакам. Влияние агрессивных сред на каменную кладку. Мероприятия по обеспечению долговечности промышленных зданий.

    курсовая работа [1,2 M], добавлен 27.12.2013

  • Расчет железобетонных колонн поперечника одноэтажной рамы промышленного здания по несущей способности. Проверка прочности колонны при съёме с опалубки, транспортировании и монтаже. Определение эксцентриситетов приложения продольных сил и сечения арматуры.

    курсовая работа [589,9 K], добавлен 27.10.2010

  • Оценка грунтов и инженерно-геологических условий участка строительства жилого дома. Расчет постоянных и временных нагрузок. Конструирование ленточного фундамента из сборных железобетонных блоков. Определение осадки фундамента и несущей способности свай.

    курсовая работа [2,1 M], добавлен 25.09.2012

  • Усиление опорного узла железобетонных плит подведением дополнительных металлических опор. Дефект, который привел к необходимости усиления. Контроль качества и процесс приемки выполняемых работ. Мероприятия по технике безопасности и охране труда.

    контрольная работа [812,5 K], добавлен 19.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.