К вопросу об использовании полимерных материалов в строительстве подземных сооружений

Разработка конструкции комбинированной крепи, обеспечивающей длительную эксплуатацию горных выработок при наличии агрессивных, высоконапорных подземных вод. Анализ проблемы защиты от подземных вод. Основные недостатки сталебетонных крепей, их анализ.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 27.07.2017
Размер файла 555,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1 Шахтинский институт (филиал) Донского государственного технического университета, Шахты

2 Ростовский государственный строительный университет, Ростов-на-Дону

К вопросу об использовании полимерных материалов в строительстве подземных сооружений*

С.Г. Страданченко1, С.А. Масленников1, А.Ю. Прокопов2,

К.В. Маштакова1, Я.Ю. Махонько1, К.С. Яковлева1

Аннотация

Цель исследований - разработка конструкции комбинированной крепи, обеспечивающей длительную эксплуатацию горных выработок при наличии агрессивных, высоконапорных подземных вод. Проблема защиты от подземных вод особо актуальна для горных предприятий, занимающихся добычей калийных солей. Наиболее широко распространенная крепь из чугунных тюбингов не обеспечивает ни требуемой водонепроницаемости, ни долговечности. Недостатки сталебетонных крепей выявлены на основе анализа опыта их применения в России и за рубежом. В статье описана предложенная авторами конструкция комбинированной крепи с водонепроницаемым экраном из стеклопластика. Высокая прочность, стойкость в агрессивных средах, возможность обеспечения полной водонепроницаемости при относительно не высокой стоимости определяют преимущества предложенной крепи. Выполненные расчеты показали, что в определенных условиях предложенная конструкция крепи может эффективно заменять дорогостоящие чугунно-бетонные и сталебетонные крепи.

Ключевые слова: горные выработки, комбинированная крепь, стеклопластик, бетон, чугунные тюбинги, долговечность.

крепь агрессивный подземный сталебетонный

В горном деле существуют области, в которых водоприток в основные вскрывающие выработки является важнейшим параметром оценки безопасности работы предприятия в целом. Так при подземной разработке калийных месторождений в целях обеспечения безопасной эксплуатации рудников необходима надежная изоляция горных выработок от проникновения в них подземных (надсолевых) вод или рассолов. В связи с легкой растворимостью солей движение проникающих вод по трещинам, контактам соленосных отложений и вмещающих пород, по скважинам и горным выработкам способствует образованию новых и расширению уже имеющихся трещин (пустот, карстовых полостей, воронок), что в конечном итоге может явиться причиной значительных осложнений при разработке соляных залежей подземным способом. Для РФ эта проблема особо актуальна, так, как мы являемся одним из мировых лидеров в производстве калийных удобрений. 95% добычи ведется компаниями Уралкалий и Сильвинит. Добыча на обоих предприятиях происходит исключительно подземным способом.

За последние 100 лет в мире (Германия, Канада, Россия и др.) за-топлено более 80 калийных рудников, в том числе в России - рудники БКРУ-3 (1986 г.) и БКРУ-1 (2006 г.) Верхнекамского месторождения [1,2]. На многих предприятиях с прорывами рассолов в горные выработки безуспешно боролись в течение десятков лет.

Рис. 1. - Провалы на поверхности, возникшие вследствие затопления рудника БКРУ-1

На шахтные стволы, пересекающие водоносные горизонты, приходится около 70 % случаев аварийных водопроявлений [1,3]. Одними из основных причин являются: разгерметизация кейлькранцев; ненадежность методов закрепного тампонажа; прорывы вод в шахтный ствол через тюбинговую колонну; проницаемость бетонной рубашки за тюбинговой крепью; нарушение вмещающих пород системой водопроводящих трещин, образованных при буровзрывных работах [4,5].

В [1] автор делает вывод об исчерпании возможности совершенствования тюбинговой крепи для калийных рудников, что обусловливает необходимость перехода на сплошные (бесшовные) крепи. По его мнению, наиболее перспективными являются сталебетонные крепи, состоящие из двух сварных стальных цилиндров с «промежуточным» бетоном. Подобные крепи не имеют стыков и, как следствие, водонепроницаемы. Их высокая стоимость должна компенсироваться снижением затрат на обслуживание и ремонт в период эксплуатации [6].

Широкий опыт применения сталебетонной крепи за рубежом выявил ряд ее недостатков:

- сталь корродирует под воздействием шахтной воды со скоростью 0,02-0,2 мм в год. В агрессивной среде этот процесс происходит еще интенсивнее;

- долговечность крепи со слоем стали напрямую зависит от условий эксплуатации. В кислой среде срок службы железобетонных элементов может снижаться до 4-5 лет, в насыщенной солями - до 7 лет. Ствол же является основной вскрывающей выработкой и эксплуатируется в течение всего срока службы шахты или рудника;

- монтаж в стесненных условиях ствола крупноразмерных элементов из стали затруднен ввиду их большого веса, также увеличение веса крепи приводит к росту нагрузки на нижележащие участки крепи и вмещающий породный массив;

- сталь является самым дорогим компонентом крепи и в отдельных случаях ее стоимость может составлять более половины всех затрат на строительство.

Авторами разработано альтернативное решение. Крепь предложенной конструкции включает внешний слой набрызгбетона, водонепроницаемую оболочку из стеклопластика, основную грузонесущую конструкцию из монолитного бетона или железобетона, слой затампонированных пород.

Внешний слой набрызгбетона наносится на породные стенки ствола для выравнивания их поверхности, передачи давления от породного массива на внутренние слои крепи, а также для выравнивания гидростатического давления на водонепроницаемую оболочку [7,8].

Водонепроницаемая оболочка из стеклопластика предназначена для восприятия давления подземных вод и передачи его на основную грузонесущую конструкцию, а также для защиты последней от вредного влияния внешней среды. Гарантируемый производителем срок эксплуатации стеклопластика в кислой, щелочной и других агрессивных средах - не менее 80 лет [9]. Отсутствие коррозии и одинаково высокая прочность, как при сжатии, так и при растяжении (в четыре раза выше, чем у стали) позволяют повысить гибкость водонепроницаемой оболочки, существенно снизить ее толщину и стоимость крепи в целом.

Основная грузонесущая конструкция из монолитного бетона или железобетона эксплуатируется в благоприятных условиях, без доступа агрессивной внешней среды. Отсутствие связей между водонепроницаемой оболочкой и основной грузонесущей конструкцией позволяет слоям незначительно перемещаться друг относительно друга при деформациях изгиба ствола, снимая напряжения и препятствуя разрушению крепи. В случае необходимости внутренняя поверхность стеклопластика может быть дополнительно обработана составами уменьшающими трение и адгезию.

Увеличение несущей способности крепи предложенной конструкции может осуществляться использованием при изготовлении основного грузонесущего слоя высокопрочных бетонов или железобетона.

Для оценки применимости предложенной конструкции было проведено ее сравнение с чугунно-бетонной крепью. Расчет выполнялся для следующих условий: глубина участка 500 м, породы - слабые аргиллиты, величина давления подземных вод 1,7 МПа, отступ крепи от забоя - 1 м. Параметры сравниваемых крепей приняты следующими:

- Базовый вариант. Чугунные тюбинги из серого чугуна марки Сч 21-40, с толщиной стенки 20 мм, бетон В20, толщина слоя 500 мм.

- Предлагаемая крепь. Бетон - высокопрочный, класса В60, толщина слоя - 400 мм. Стеклопластик - прочность 700 МПа, модуль упругости 50 ГПа, толщина 10 мм. Набрызгбетон - В20, толщина 90 мм.

Анализ выполнен аналитическим методом по методике разработанной проф. Булычевым Н.С. [10]. Предполагалось, что гидростатическое давление полностью восстанавливается на гидроизолирующем слое. В соответствии с принятой методикой, в качестве разрушающих рассматривались нормальные тангенциальные напряжения уиin(i), возникающие на внутренней поверхности слоя. Результаты расчета приведены в табл. (см. табл. 1). Как видно из табл. 1, предложенная конструкция в рассматриваемых условиях может служить заменой чугунно-бетонной крепи.

В столбцах 3 и 5 приведены данные о нормальных тангенциальных напряжениях при давлении только со стороны породного массива, в столбцах 4 и 6 данные о напряжениях в основных грузонесущих слоях при гидростатическом давлении 1,7 МПа, приложенном к гидроизолирующему слою.

Уровень напряжений в наиболее напряженном слое тюбинговой крепи - внутренних ребрах тюбингов составил 93% от их прочности, для предлагаемой конструкции - в грузонесущем слое бетона - 98%. Таким образом, предлагаемая крепь может служить для крепления неглубоких стволов на всю глубину, либо для крепления отдельных участков ствола при пересечении им водоносных горизонтов, с величиной гидростатического давления до 2 МПа.

Таблица № 1. Величина напряжений в слоях предлагаемой и чугунно-бетонной крепи

Наименование слоя

Нормальные тангенциальные напряжения

Предлагаемая крепь

Базовый вариант

Слой затампони-рованных пород / затюбинговый бетон

уиin(4), МПа

7,0

-

11,0

-

уиex(4), МПа

5,6

-

10,0

-

Набрызгбетон / затюбинговый бетон

уиin(3), МПа

7,5

-

66,9

-

уиex(3), МПа

7,4

-

66,2

-

Слой стеклопластика / стенки тюбингов

уиin(2), МПа

19,5

42,6

43,3

164,6

уиex(2), МПа

19,4

42,5

43,0

163,8

Высокопрочный бетон / внутренние ребра тюбингов

уиin(1), МПа

16,1

35,1

45,2

171,8

уиex(1), МПа

14,7

32,0

43,7

166,3

* представленные результаты получены в рамках выполнения гранта МК-6986.2015.8 по теме «Разработка инновационных конструктивных и технологических решений при креплении вертикальных стволов шахт и рудников» и Госзадания Минобрнауки России №1.10.14 по теме «Ресурсосберегающие и экологически безопасные технологии освоения подземного пространства на основе комплексного мониторинга всех стадий жизненного цикла инженерных объектов и систем».

Литература

1. Швецов Г.И. Проблемы защиты калийных рудников от затопления // Горный журнал. 2007. №8. С. 71 - 74.

2. Молев М.Д., Занина И.А., Стуженко Н.И. Синтез прогнозной информации в практике оценки эколого-экономического развития региона // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1993.

3. Страданченко С.Г., Плешко М.С., Армейсков В.Н. О необходимости проведения комплексного мониторинга подземных объектов на различных стадиях жизненного цикла // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.

4. Reuther E.U. Lehrbuch der Bergbaukunde. Essen: Verlag Glьckauf GmbH, 1989. 812 S.

5. Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. Study of technical solutions to strengthen the lining of the barrel in the zone of influence of construction near-wellbore production // ARPN Journal of Engineering and Applied Sciences. 2015. №1. pp. 14-19 0.

6. Плешко М.С. Крепь глубоких вертикальных стволов. Преспективы совершенствования // Горный информационно-аналитический бюллетень. 2010. №4. C. 159 - 165.

7. Страданченко С.Г., Плешко М.С., Армейсков В.Н. Разработка эффективных составов фибробетона для подземного строительства // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1995.

8. Плешко, М.С., Крошнев, Д.В. Влияние свойств твердеющего бетона на взаимодействие системы «крепь - массив» в призабойной зоне ствола // Горный информационно-аналитический бюллетень. 2008. №9. C. 320-325.

9. Дмитриенко В.А., Бауэр М.А. Выбор эффективных параметров крепления с использованием высокопрочных композиционных материалов для строительства подземных сооружений в сложных горно-геологических условиях // Горный информационно-аналитический бюллетень. 2008. №11. C. 279-286.

10. Булычёв Н. С. Механика подземных сооружений. М: Недра, 1994. 382 с.

References

1. Shvecov G.I. Gornyj zhurnal. 2007. №8. pp. 71 - 74.

2. Molev M.D., Zanina I.A., Stuzhenko N.I. Inћenernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1993.

3. Stradanchenko S.G., Pleshko M.S., Armejskov V.N. Inћenernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1994.

4. Reuther E.U. Lehrbuch der Bergbaukunde. Essen: Verlag Glьckauf GmbH, 1989. 812 p.

5. Pleshko M.S., Stradanchenko S.G., Maslennikov S.A., Pashkova O.V. ARPN Journal of Engineering and Applied Sciences. 2015. №1. pp. 14-19 0.

6. Pleshko M.S. Gornyj informacionno-analiticheskij bjulleten. 2010. №4. pp. 159 - 165.

7. Stradanchenko S.G., Pleshko M.S., Armejskov V.N. Inћenernyj vestnik Dona (Rus), 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1995.

8. Pleshko M.S., Kroshnev D.V. Gornyj informacionno-analiticheskij bjulleten. 2008. №9. pp. 320-325.

9. Dmitrienko V.A., Baujer M.A. Gornyj informacionno-analiticheskij bjulleten. 2008. №11. pp. 279-286.

10. Bulychjov N. S. Mehanika podzemnyh sooruzhenij [Mechanics of underground structures]. M: Nedra, 1994. 382 p.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности и технология возведения подземных сооружений методами опускного колодца и кессона. Достоинства, недостатки и возможные сложности применяемых методов. Элементы кессона и оборудование для его опускания. Формы сечений опускных колодцев.

    реферат [965,9 K], добавлен 03.05.2013

  • Трасса и профиль теплопроводов. Конструкция теплопроводов, подземных теплопроводов, теплопроводов в непроходных каналах, бесканальных теплопроводов. Литые конструкции бесканальных теплопроводов. Павильоны и камеры подземных теплопроводов.

    реферат [27,8 K], добавлен 22.01.2006

  • Подземные сооружения транспортного назначения, проектирование транспортных развязок в разных уровнях. Градостроительные, архитектурные и технические преимущества подземных комплексов. Проекты подземных и надземных многофункциональных переходов.

    презентация [12,1 M], добавлен 11.09.2013

  • Характеристика способов возведения подземных сооружений в зависимости от гидрологических условий и глубины заложения: открытого, отпускного и "стена в грунте". Рассмотрение задачи эффективного теплосбережения при строительстве и реконструкции зданий.

    реферат [903,0 K], добавлен 27.04.2010

  • Изучение технических особенностей конструкций зданий для застройки склонов и описание конструктивных решений террасных сооружений. Исследование способов сохранения поверхности земли и рельефа при подземных, надземных стройках и строительстве на шельфе.

    презентация [2,8 M], добавлен 08.08.2013

  • Оценка инженерно-геологических и гидрологических условий площадки строительства. Расчет фундамента на естественном основании. Определение степени агрессивного воздействия подземных вод. Рекомендации по антикоррозийной защите подземных конструкций.

    курсовая работа [173,6 K], добавлен 05.06.2012

  • Расчёт стен протяженных сооружений: консольной, гравитационной подпорной и с анкерным (распорным) креплением. Проектирование сооружений круглой формы в плане; имеющих горизонтальную изгибную прочность, днища; технологических параметров опускных колодцев.

    курсовая работа [335,5 K], добавлен 11.02.2014

  • Гидрогеологическое обоснование и проект водозабора подземных вод для водоснабжения поселка и промышленного предприятия. Конструкция водозаборных скважин. Качественный состав подземных вод, мероприятия по их улучшению. Расчет параметров водонапорной башни.

    курсовая работа [1,7 M], добавлен 19.05.2014

  • Методика расчета объемов строительных конструкций и материалов опускного колодца, особенности выбора необходимого для него комплекта машин и механизмов. Анализ технико-экономических показателей и оценка оптимального варианта механизации монтажных работ.

    курсовая работа [320,1 K], добавлен 21.04.2010

  • Строительство подземных сооружений открытым способом. Методы расчета стены в грунте. Определение типа пылевато-глинистого грунта. Расчет оснований и фундаментов по расчетным нагрузкам. Подсчет глубины котлована. Анализ давления под подошвой фундамента.

    курсовая работа [2,0 M], добавлен 13.01.2022

  • Применение способа "стена в грунте" при возведении заглубленных сооружений подземных частей промышленных, энергетических и гражданских зданий; классификация, типовые конструкции. Техника и технология устройства стены в грунте вокруг Чернобыльской АЭС.

    реферат [3,5 M], добавлен 17.01.2012

  • Ландшафтный анализ и оценка эстетического состояния территории участка. Обеспечение пешеходных и транспортных подходов. Размещение элементов зеленых насаждений, водоемов в зависимости от расположения надземных сооружений и подземных коммуникаций.

    курсовая работа [212,7 K], добавлен 17.01.2014

  • Причины и механизмы разрушения различных материалов при эксплуатации их в агрессивных средах. Химическая стойкость бетона, металла, полимерных материалов. Способы защиты от коррозии. Меры повышения долговечности строительных конструкций и изделий.

    курс лекций [70,8 K], добавлен 08.12.2012

  • Основные параметры здания. Построение эпюры расчётных сопротивлений. Фундамент на естественном основании. Расчёт фундамента по прочности, по деформациям, стоимости строительно-монтажных работ. Свайный фундамент. Определение глубины заложения ростверка.

    курсовая работа [1,6 M], добавлен 16.01.2016

  • Типы и виды, область применения водозаборов систем водоснабжения Требования, предъявляемые к ним. Принципы искусственного пополнения запасов подземных вод. Особенности водопотребления в Республике Беларусь. Совершенствование технологий водопользования.

    презентация [492,1 K], добавлен 17.10.2014

  • Классификация газопроводов по давлению. Правила проектирования газораспределительных сетей: строительные материалы, защита от коррозии, расположение. Правила прокладки подземных и надземных газопроводов, размещения газоиспользующего оборудования.

    реферат [124,7 K], добавлен 14.12.2010

  • Изучение рельефа местности по топографическому плану. Оценка крутизны склонов, форма рельефа. Анализ почвы, подземных источников, уровня грунтовых вод. Инсоляционный анализ территории. Подбор ассортимента древесно-кустарниковой и цветочной растительности.

    контрольная работа [14,9 K], добавлен 10.11.2012

  • Классификация опускных колодцев. Циклы производства работ по их устройству. Кессоны для строительства глубоких фундаментов и заглубленных зданий. Состав работ нулевого цикла. Сущность технологии "стена в грунте" при возведении монолитных конструкций.

    реферат [870,0 K], добавлен 19.10.2014

  • Системы и схемы водоснабжения при использовании поверхностных и подземных источников воды. Нормы и режим водопотребления. Определение расчетных расходов воды. Схемы водопроводных сетей и правила их трассирования. Устройство водонапорных башен и насосов.

    реферат [4,4 M], добавлен 26.08.2013

  • Анализ природно-климатических условий строительства. Основные характеристики труб для прокладки подземных инженерных сетей. Проект организации строительства и производства работ, технологическая схема. Охрана труда и техника безопасности на участке.

    курсовая работа [2,1 M], добавлен 04.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.