Кинетика твердения геополимерного вяжущего на основе горных пород
Исследовано влияние различных факторов на кинетику твердения геополимерного вяжущего на основе измельченных отходов добычи и переработки магматических горных пород. Аналитические зависимости, описывающие влияние исследованных факторов на прочность.
Рубрика | Строительство и архитектура |
Вид | статья |
Язык | русский |
Дата добавления | 30.07.2017 |
Размер файла | 37,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Кинетика твердения геополимерного вяжущего на основе горных пород
Н.А. Ерошкина,
М.О. Коровкин
Аннотация
Исследовано влияние различных факторов на кинетику твердения геополимерного вяжущего на основе измельченных отходов добычи и переработки магматических горных пород. В качестве факторов, определяющих темпы набора прочности, исследованы вид и дозировка минеральных добавок к вяжущему - доменный гранулированный шлак, а также состав активатора твердения, дисперсность компонентов и температура твердения. Получены аналитические зависимости, описывающие влияние исследованных факторов на прочность геополимерных вяжущих. геополимерный вяжущий прочность кинетика
Ключевые слова: геополимер, кинетика твердения, отходы добычи и переработки магматических горных пород, доменный шлак.
Предложенный французским исследователем термин "геополимер" [1] означает неорганический полимерный материал, который получают в результате активации щелочными или кислотными компонентами алюмосиликатных или других сырьевых материалов. В качестве сырья для получения геополимеров используются шлаки, золы, метакаолин, полевошпатные породы [1, 2].
Одной из причин сдерживающих широкое применение этих вяжущих является недостаточно полное представление о процессах, протекающих в геополимерах при их твердении и эксплуатации [1, 3].
Важным аспектом структурообразования вяжущих считается кинетика их твердения. Исследование влияния различных факторов на кинетику твердения - один способов изучения процессов структурообразования [4]. Кроме того, темпы набора прочности являются основным технологическим свойством вяжущих и материалов на их основе.
Цель работы - исследование влияния различных факторов на прочность и кинетику твердения геополимерных вяжущих на основе измельченных отходов дробления гранита с добавкой гранулированного шлака.
Для исследований было использовано геополимерное вяжущее на основе измельченного отсева гранита с добавкой гранулированного шлака ОАО "Новолипецкий металлургический комбинат", которая измельчалась до различной удельной поверхности. В качестве активатора твердения применялось натриевое жидкое стекло с Мс=2,7, в которое вводилось различное количество NaOH для снижения силикатного модуля.
Для изготовления бетона использовались отсев дробления гранитного щебня фракций 2,5-0,63 мм и кварцевый песок фракции 0,16-0,63 мм.
Анализ прочности при сжатии R геополимерного вяжущего на основе измельченного гранита с 25 % добавкой шлака при различной удельной поверхности этих компонентов вяжущего (см. таблицу) показал, что кинетика твердения может быть описана уравнением вида R = (exp (a + b*ln ф))2, где а и b - эмпирические коэффициенты; ф - продолжительность твердения, сут. Значения коэффициентов уравнений для вяжущих с различной удельной поверхностью приведены в таблице.
Таблица
Прочность растворов, приготовленных на вяжущих с различной удельной поверхностью компонентов
№ состава |
Удельная поверхность компонентов, м 2/ кг |
Прочность при сжатии, МПа, при испытании в различные сроки |
Коэффициенты уравнения |
|||||
гранит |
шлак |
3 сут |
7 сут |
28 сут |
a |
b |
||
1 |
200 |
200 |
6,4 |
11,8 |
29,8 |
0,350 |
0,546 |
|
2 |
200 |
300 |
7,8 |
13,6 |
33,4 |
0,321 |
0,676 |
|
3 |
200 |
400 |
9,5 |
16,1 |
35,9 |
0,301 |
0,793 |
|
4 |
300 |
200 |
7,3 |
12,9 |
31,4 |
0,327 |
0,640 |
|
5 |
300 |
300 |
9,8 |
16,1 |
33,8 |
0,290 |
0,806 |
|
6 |
300 |
400 |
12,4 |
18,4 |
38,6 |
0,260 |
0,963 |
|
7 |
400 |
200 |
7,6 |
13,4 |
31,3 |
0,322 |
0,665 |
|
8 |
400 |
300 |
10,1 |
16,0 |
36,2 |
0,286 |
0,834 |
|
9 |
400 |
400 |
12,5 |
20,1 |
41,0 |
0,255 |
0,997 |
Статистическая обработка совокупности значений удельных поверхностей гранита и шлака , а также коэффициентов a и b позволила установить следующие зависимости:
;
Полученные уравнения позволяют оптимизировать тонкость помола отсева дробления гранита и шлака с учетом заданной кинетики твердения геополимерного вяжущего с добавкой 25 % шлака. Для оптимизации дисперсности компонентов вяжущего с другой дозировкой шлака необходимо получение соответствующих экспериментальных данных.
Исследование влияния на прочность мелкозернистого геополимерного бетона варьирования доли шлака в вяжущем в интервале от 15 до 20 %, активатора твердения от 10 до 15 % в пересчете на сухое вещество и дополнительно количества щелочи в активаторе твердения в интервале от 3 до 5 % в пересчете на вяжущее позволило получить математические модели зависимости прочности при различных условиях твердения от перечисленных факторов:
R60 = 17, 2+1, 4X1+2, 3X2 - 0, 6Х 3;
R80 =29,088+4, 5375X1+2, 2375X2,
где R60, R80 - прочность мелкозернистого бетона, твердевшего в течение 16 часов при температуре 60 и 80 °С, соответственно;
Х 1, Х 2, Х 3, - соответственно доля шлака в вяжущем, дозировка активатора и количество щелочи в относительных единицах.
Кинетика твердения геополимерных материалов определяется скоростью деструкции сырьевых материалов в гиперщелочной среде и синтезом новой структуры полимерного типа [1]. Общепризнано, что на эти процессы определяющее влияние оказывают рецептурный и температурный факторы. Однако структурообразование геополимерных и других видов вяжущих в значительной степени зависит от деструктивных процессов, которые протекают одновременно с геополимеризацией. Одна из возможных причин образования дефектов структуры - аутогенная усадка, которая в геополимерном вяжущем намного выше, чем в портландцементе [5, 6].
Дискуссия о сбросах прочности твердеющих вяжущих началась еще в 30-е годы прошлого столетия [7]. Однако, несмотря на значительный объем результатов системных исследований [8, 9], большинство исследователей не признают немонотонный характер твердения вяжущих, а колебания прочности объясняют неоднородной природой материала.
Исследования кинетики твердения геополимерного мелкозернистого бетона были проведены на мелкозернистом бетоне, образцы из которого испытывались в течение 28 суток каждые сутки. В каждый срок испытывалось по 2 образца. Результаты определения прочности и график изменения средних значений приведены на рисунке.
Рис. - Прочность мелкозернистого геополимерного бетона и график изменения средних значений
На рисунке видно, что немонотонный характер роста прочности геополимерного бетона нельзя объяснить только статистической погрешностью. Для объяснения немонотонного роста прочности возможно использование гипотезы циклического накопления макродефектов в геополимерной матрице в результате развития аутогенной усадки в стесненных условиях и роста внутренних напряжений с последующим "залечиванием" образовавшихся трещин за счет диффузионного переноса [10] в них цементирующего вещества.
Полученные аналитические зависимости, описывающие влияние исследованных факторов на прочность геополимерных вяжущих, позволяют формализовать требования к технологическим режимам производства геополимерных строительных изделий и конструкций.
Литература
1. Davidovits J. Geopolymer Chemistry and Applications, 4th edition. Saint Quentin, France: Geopolymer Institute, 2015. 644 p.
2. Muttashar M., Lokuge W., Karunasena W. Geopolymer concrete: the green alternative with suitable structural properties // 23rd Australasian Conference on the Mechanics of Structures and Materials. Byron Bay, Australia. 2014. pp. 101-106.
3. Шляхова Е.А., Акопян А.Ф., Акопян В.Ф. Применение метода рентгенофазового анализа для изучения свойств модифицированного шлакощелочного вяжущего // Инженерный Вестник Дона, 2012, №4, Ч.2 URL: ivdon.ru/magazine/archive/n4p2y2012/1395/.
4. Eroshkina N., Korovkin M. The Effect of the Mixture Composition and Curing Conditions on the Properties of the Geopolymer Binder Based on Dust Crushing of the Granite // Procedia Engineering. 2016. Vol. 150. pp. 1605-1609.
5. Ерошкина Н.А., Коровкин М.О. Усадка геополимерного вяжущего на различных этапах его структурообразования // Инженерный вестник Дона, 2016, №1 URL: ivdon.ru/ru/magazine/archive/n2y2016/3620.
6. Ерошкина Н.А., Коровкин М.О. Влияние параметров состава минерально-щелочного вяжущего на прочность и усадку бетона // Вестник ВолгГАСУ. Серия: Строительство и архитектура. 2012. № 27. С. 78-83.
7. Кинд А.В., Журавлев В.Ф. Электропроводность твердеющего цемента // Цемент. 1932. № 9-10. C. 21-26.
8. Малинина Л.А., Залипаев И.В. Исследование кинетики роста прочности бетона в процессе пропаривания // Вопросы общей технологии и ускорение твердения бетона. М. : Стройиздат, 1969. С. 102-115.
9. Рост прочности бетона при пропаривании и последующем твердении / Под ред. С.А. Миронова. М.: Стройиздат, 1973. 95 с.
10. Калашников В.И, Ананьев С.В., Калашников С.В. Структурно-топологический анализ композиционных вяжущих // Новые энерго- и ресурсосберегающие наукоемкие технологии в производстве строительных материалов: материалы Междунар. науч.-техн. конф. - Пенза: Изд-во ПДЗ, 2006. С. 78-84.
References
1. Davidovits J. Geopolymer Chemistry and Applications, 4th edition. Saint Quentin, France: Geopolymer Institute, 2015. 644 p.
2. Muttashar M., Lokuge W., Karunasena W. 23rd Australasian Conference on the Mechanics of Structures and Materials. Byron Bay, Australia. 2014. pp. 101-106.
3. Shlyakhova E.A., Akopyan A.F., Akopyan V.F. Inћenernyj vestnik Dona (Rus), 2012, №4, Ch.2 URL: ivdon.ru/magazine/archive/n4p2y2012/1395/.
4. Eroshkina N., Korovkin M. Procedia Engineering. 2016. Vol. 150. pp. 1605-1609.
5. Eroshkina N.A., Korovkin M.O. Inћenernyj vestnik Dona (Rus), 2016, №1 URL: ivdon.ru/ru/magazine/archive/n2y2016/3620.
6. Eroshkina N.A., Korovkin M.O. Vestnik VolgGASU. Seriya: Stroitel'stvo i arkhitektura. 2012. № 27. pp. 78-83.
7. Kind A.V., Zhuravlev V.F. Tsement. 1932. № 9-10. pp. 21-26.
8. Malinina L.A., Zalipaev I.V. Voprosy obshchey tekhnologii i uskorenie tverdeniya betona [Questions of general technology and the acceleration concrete hardening]. M.: Stroyizdat, 1969. pp. 102-115.
9. Rost prochnosti betona pri proparivanii i posleduyushchem tverdenii [The growth of concrete strength by steaming and later hardening]. Pod red. S.A. Mironova. M.: Stroyizdat, 1973. 95 p.
Размещено на Allbest.ru
...Подобные документы
Бетон - искусственный каменный материал, полученный в результате твердения рационально подобранной смеси вяжущего, заполнителя и воды. Описание напряжённых лёгких бетонов и определение их основных характеристик. Возможности эффективного применения смесей.
курсовая работа [29,5 K], добавлен 18.12.2010Характеристика свойств строительных материалов. Минеральный состав магматических горных пород. Гипсовые вяжущие вещества, их свойства. Гниение и антисептирование древесины. Рулонные кровельные материалы. Технология получения цемента по "мокрому" способу.
контрольная работа [87,0 K], добавлен 25.07.2010Виды и классификация бетонов. Основание из "тощего" бетона в конструкции дорожной одежды. Возможности использования механической активации для улучшения свойств портландцемента. Влияние времени твердения на прочность при сжатии исходных образцов.
курсовая работа [370,9 K], добавлен 26.06.2014Виды и марки цементов, применяемых при изготовлении сборных железобетонных конструкций и изделий из бетонов. Отличительная особенность гидратации и твердения цементов. Тонкость помола и сроки схватывания и твердения. Качество минеральных добавок.
курсовая работа [32,5 K], добавлен 25.01.2011Характеристика отделочных материалов на основе минерального вяжущего, критерии оценки их качества и выбора для конкретного вида работ. Микроструктура и состав гипсовых вяжущих, влияние на свойства материалов. Пути повышения качества стеновых материалов.
контрольная работа [39,9 K], добавлен 17.05.2009Изучение происхождения и добычи горных пород, служащих сырьем для получения природных каменных материалов. Особенности полуфабрикатов и требований к ним: обогащение, фракционирование песка и гравия. Контроль технологических процессов и качества продукции.
курсовая работа [63,8 K], добавлен 05.06.2010Осыпи как отложения мелкообломочных продуктов распада сильно подверженных выветриванию горных пород на крутых склонах. Особенности проектирования горных дорог с обвалами, осыпями. Защита дорог от данных негативных проявлений. Охрана окружающей среды.
контрольная работа [605,0 K], добавлен 24.04.2012Неорганические теплоизоляционные материалы и изделия. Минеральная и стеклянная вата и изделия из них. Пеностекло. Теплоизоляционные материалы из вспученных горных пород и изделия на их основе. Асбестосодержащие теплоизоляционные материалы и изделия.
реферат [19,7 K], добавлен 31.03.2008Характеристика бетонов на основе естественных компонентов и техногенных отходов. Технологии изготовления строительных материалов на основе золошлаковых отходов и пластифицирующих добавок. Разработка рецептуры тяжелых бетонов с использованием отходов.
дипломная работа [831,1 K], добавлен 08.04.2013Анализ газопенной технологии получения теплоизоляционного ячеистого бетона на основе известково-кремнеземистого вяжущего. Использование термодатчиков для контроля среды в системах автоматизации технологических процессов аэрирования и газообразования.
курсовая работа [2,2 M], добавлен 10.07.2014Разработка строительных композиционных материалов и изделий на основе глинистого сырья с улучшенным комплексом эксплуатационных свойств для условий Крайнего Севера. Методы определения физико-механических характеристик образцов на основе отходов.
презентация [576,4 K], добавлен 14.01.2014Номенклатура изделий, получаемых из горных пород. Способы, с помощью которых осуществляют подготовку керамической массы. Факторы, определяющие гидравлическую активность доменного шлака. Этапы полного цикла автоклавной обработки, строительная сталь.
контрольная работа [76,0 K], добавлен 26.01.2011Технологии, используемые на бетонных заводах. Основные параметры и размеры песка, щебня и гравия из горных пород, применяемых для строительных работ. Классификация цемента, требования к нему. Контроль качества бетона, его условные обозначения и свойства.
отчет по практике [339,9 K], добавлен 10.11.2014Минеральная вата — волокнистый теплоизоляционный материал: история, виды, теплотехнические характеристики; область применения, преимущества и недостатки. Производство минераловатных изделий, сырье: силикатные расплавы горных пород, доменные шлаки.
реферат [27,8 K], добавлен 16.10.2011Строительные камни - обширная группа нерудных полезных ископаемых, их применение в строительном производстве. Основные виды строительных камней. Долговечность горных пород. Генетические типы промышленных месторождений. Природные облицовочные камни.
реферат [26,1 K], добавлен 13.07.2014Физические свойства строительных материалов. Понятие горная порода и минерал. Основные породообразующие минералы. Классификация горных пород по происхождению. Твердение и свойства гипсовых вяжущих. Магнезиальные вяжущие материалы и жидкое стекло.
шпаргалка [3,7 M], добавлен 06.02.2011Расчет номинального и производственного состава бетона методом абсолютных объемов. Коэффициент выхода бетона; расход материалов на один замес. Модуль крупности песка. Прочность бетона при использовании пропаривания, как способа ускорения твердения.
контрольная работа [643,5 K], добавлен 17.12.2013Изучение состава и свойств сырьевых материалов для производства газобетонных блоков из ячеистого бетона, способы их добычи. Описание технологии производства газобетонных блоков из ячеистого бетона автоклавного твердения, назначение и область применения.
курсовая работа [1,6 M], добавлен 31.05.2014Получение изделий из природного камня. Размеры камней стеновых из горных пород. Классификация облицовочного камня по долговечности. Виды и характеристика абразивных фактур облицовочных плит и архитектурно-строительных изделий. Коррозия природного камня.
реферат [38,4 K], добавлен 31.05.2012Декоративные и отделочные материалы из горных пород, керамики, стекла, минеральных вяжущих веществ, древесины и полимеров, применяемые в отделке фасадов зданий. Декоративные бетоны и растворы. Материалы для внутренней и внешней облицовки.
курсовая работа [62,3 K], добавлен 17.11.2011