Влияние опоки и суперпластификатора на свойства цемента

Анализ влияния дозировки измельченной опоки Пензенского месторождения и поликарбоксилатного суперпластификатора на свойства растворной составляющей бетона, приготовленного на основе смешанных цементов, включающих портландцемент, золу-унос, доменный шлак.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 30.07.2017
Размер файла 69,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Влияние опоки и суперпластификатора на свойства цемента

М.О. Коровкин,

Н.А Ерошкина

Использование органоминеральных добавок позволило достичь значительного прогресса в технологии бетона. Эти модификаторы, состоящие из высокоактивных минеральных добавок (микрокремнезема, золы-уноса и др.) и суперпластификаторов (СП), обеспечивают существенное повышение технологических и эксплуатационных характеристик бетонов [1-6]. Для дальнейшего развития этого направления технологии бетонов необходима разработка добавок на основе дешевого, широко распространенного сырья, к числу которого относятся кремнистые горные породы осадочного происхождения - опока, диатомит, цеолиты [7-9].

Целью исследования являлось определение эффективности опоки Пензенского месторождения, измельченной до удельной поверхности 2100 м2/кг, в качестве основы органоминеральной добавки. Было исследовано влияние степени замещения вяжущего опокой на консистенцию смесей и их прочность в различные сроки твердения.

Исследования проводились на растворной составляющей бетона при соотношении песка и цемента 1:1, 33. Такое отношение является одним из условий получения самоуплотняющегося бетона [10]. В качестве заполнителя применялся кварцевый песок Мк = 2, 1.

Для приготовления смесей использовался портландцемент ЦЕМ I 42, 5Н без добавки. Кроме того, на его основе готовились смешанные цементы с золой-уносом, доменным гранулированным шлаком, микрокремнеземом. Все перечисленные добавки, кроме микрокремнезема, измельчались до удельной поверхности 340-350 м2/кг.

Смеси готовились с добавкой СП Glenium SKY 591, которая вводилась в дозировках 1, 5 и 4, 5 % от массы вяжущего.

Для каждого состава находились экспериментальные зависимости диаметра расплыва конуса (ГОСТ 320.4-76) смеси (РК) и прочности в различные сроки от водоцементного отношения (В/Ц). По полученным зависимостям вычислялись В/Ц отношения для получения РК 150 и 300 мм, а затем рассчитывались прочности составов с равной консистенцией.

Результаты определения влияния водоцементного отношения на расплавы конуса смеси через 15 минут после затворения для составов, приготовленных на портландцементе и цементе с 10 % шлака, приведены на рис. 1 и 2. На графиках нанесены экспериментальные значения и аппроксимирующие их линейные зависимости.

а

б

Рис. 1. - Влияние водоцементного отношения на расплыв конуса смеси, приготовленной на портландцементе с различным количеством добавки опоки при дозировке СП 1, 5 % (а) и 4, 5 % (б). Обозначения доли замещения цемента опокой: 1 - контрольный состав; 2 - 5%; 3 - 10%; 4 - 15%; 5 - 20%

а

б

Рис. 2. - Влияние водоцементного отношения на расплыв конуса смеси, приготовленной на цементе, содержащем 10 % шлака с различным количеством добавки опоки при дозировке СП 1, 5 % (а) и 4, 5 % (б). Обозначения доли замещения цемента опокой по рис. 1

С использованием полученных линейных зависимостей, аппроксимирующих экспериментальные данные, были рассчитаны водоцементные отношения (В/Ц), обеспечивающие получение расплывов смеси 150 и 300 мм. Результаты расчета приведены в табл. 1. В связи с тем, что введение микрокремнезема в смесь приводило к значительному загущению смеси даже при дозировке 5 %, исследования влияния опоки на свойства цемента с этой добавкой были прекращены на начальном этапе.

Таблица 1. Расчетные значения В/Ц для получения заданных расплывов смеси

Вид смешанного вяжущего

СП, %

Расплыв смеси, мм

В/Ц смесей с различной долей (%) замещения цемента опокой

0

5

10

15

20

Бездобавочный портландцемент

1, 5

150

0, 433

0, 444

0, 473

0, 486

0, 503

300

0, 539

0, 559

0, 595

0, 603

0, 629

4, 5

150

0, 310

0, 313

0, 325

0, 338

0, 349

300

0, 390

0, 403

0, 410

0, 421

0, 433

Портландцемент с 10 % шлака

1, 5

150

0, 422

0, 428

0, 442

0, 477

0, 501

300

0, 487

0, 499

0, 523

0, 570

0, 601

4, 5

150

0, 308

0, 305

0, 310

0, 323

0, 336

300

0, 355

0, 350

0, 359

0, 382

0, 400

При увеличении доли замещения цемента опокой водопотребность смесей возрастает (см. табл. 1), что связано с высокой удельной поверхностью добавки и снижением плотности смеси. Кроме того, в смешанных цементах негативное действие опоки на водопотребность ниже, чем в портландцементе.

Для анализа влияния опоки на прочность цемента были найдены корреляционные зависимости между В/Ц и значениями прочностей в различные сроки. Полученные зависимости позволили рассчитать прочность составов с равной консистенцией, что более корректно при оценке влияния на свойства цемента минеральной добавки, чем сравнение составов с равными водоцементными отношениями. Результаты расчета прочности равноподвижных составов приведены в табл. 2.

Таблица 2. Расчетные значения прочности в различные сроки равноподвижных составов с минеральными добавками

Вид смешанного вяжущего

СП, %

Расп-лыв смеси, мм

Продолжи-тельность твердения, сут

Прочность смесей с различной долей замещения (%) цемента опокой, МПа

0

5

10

15

20

Бездобавочный портланд-цемент

1, 5

150

3

28, 5

28, 4

23, 4

23, 0

18, 3

28

57, 6

51, 4

48, 3

45, 4

41, 4

300

3

22, 0

21, 4

17, 3

17, 3

14, 5

28

47, 7

42, 5

36, 3

36, 4

26, 5

4, 5

150

3

49, 8

56, 3

44, 2

39, 2

36, 2

28

82, 7

83, 9

78, 7

75, 4

70, 0

300

3

39, 3

40, 3

33, 9

31, 1

27, 2

28

63, 3

62, 0

62, 6

59, 8

50, 7

Портланд-цемент с 10 % шлака

1, 5

150

3

37, 0

35, 9

35, 6

31, 4

22, 2

28

63, 1

59, 2

56, 5

50, 2

44, 7

300

3

21, 6

23, 5

19, 5

14, 9

5, 7

28

39, 7

43, 7

35, 2

29, 6

24, 2

4, 5

150

3

64, 7

71, 1

65, 5

60, 3

43, 9

28

90, 6

96, 6

98, 2

83, 3

75, 6

300

3

38, 5

44, 2

37, 1

26, 8

10, 6

28

52, 7

63, 7

58, 2

48, 7

46, 3

Данные в табл. 2 показывают, что при введении опоки в смесь с низким содержанием СП (1, 5 %) происходит снижение прочности во все сроки твердения. При повышении дозировки СП до 4, 5 % отмечается некоторое увеличение прочностных показателей при замещении 5-10 % цемента опокой. Повышение прочности в большей степени проявляется в составах с добавкой шлака, что свидетельствует о небольшом синергетическом эффекте совместного использования этих добавок с опокой.

Проведенные исследования показали, что при введении опоки в бездобавочный портландцемент и смешанные цементы на его основе в большинстве случаев происходит повышение водопотребности растворной смеси с добавкой СП. Однако при увеличении дозировки СП негативное воздействие опоки на подвижность смеси снижается.

Увеличение доли замещения цемента опокой до 5-10 % приводит к повышению прочности растворной составляющей бетона, приготовленного с использованием смешанного цемента, содержащего 10 % доменного гранулированного шлака или золы-уноса. При увеличении дозировки суперпластификатора эффективность опоки в качестве минеральной добавки повышается.

поликарбоксилатный суперпластификатор бетон опока

Литература

1. Каприелов С.С., Травуш В.И., Карпенко Н.И. [и др.]. Модифицированные высокопрочные бетоны классов В80 и В90 в монолитных конструкциях // Строительные материалы. 2008. № 3. С. 9-13.

2. Курочка П.Н., Гаврилов А.В. Бетоны на комплексном вяжущем и мелком песке // Инженерный вестник Дона, 2013, №1 URL:ivdon.ru/magazine/archive/n1y2013/1562.

3. Sobolev K. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges // The Scientific World Journal. 2003. Nо.3. pp. 308-318.

4. Иващенко Ю.Г., Козлов Н.А., Тимохин Д.К. Оценка влияния минеральных добавок природного и техногенного происхождения на кинетику формирования прочности мелкозернистого бетона // Вестник Саратовского государственного технического университета. 2010. Вып. № 3, Том 4. C.25-29.

5. Wang C., Yang C. H., Wan C. J., Tian Y.F. Comparison of Fluidity between Metakaolin and Silica Fume Concretes // Key Engineering Materials. 2011. Vol. 477. pp. 95-101.

6. Морозова Н.Н., Кайс Х.А. Получение высокопрочного мелкозернистого бетона с использованием природного цеолита // Известия Казанского государственного архитектурно-строительного университета. 2016. № 2 (36). С. 185-193.

7. Шляхова Е.А., Шляхов М.А. Влияние вида минеральной добавки микронаполнителя на свойства мелкозернистого бетона // Инженерный вестник Дона, 2015, № 4 URL: ivdon.ru/ru/magazine/archive/n4y2015/3394.

8. Саидов Д.Х., Умаров У.Х. Влияние минерально-химических добавок на коррозионностойкость цементных бетонов с применением промышленных отходов // Инженерный вестник Дона, 2013, №2 (25) URL: ivdon.ru/ru/magazine/archive/n2y2013/1634.

9. Морозова Н.Н., Кайс Х.А. О роли природного цеолита на прочность мелкозернистого бетона // Вестник Казанского технологического университета. 2016. Т. 19, № 10. С. 64-68.

10. Okamura H., Ouchi M. Self-Compacting Concrete // Journal of Advanced Concrete Technjlogy. 2003. V.l, №1. pp. 5-15.

Размещено на Allbest.ru

...

Подобные документы

  • Основные виды портландцемента. Химический состав портландцементного клинкера. Быстротвердеющий портландцемент, сверхбыстротвердеющий высокопрочный портландцемент, гидрофобный портландцемент, шлакопортландцемент. Свойства цементов и их применение.

    реферат [200,1 K], добавлен 16.03.2015

  • Виды цементов, применяемые в современном строительстве, их особенности. Цементы с поверхностно-активными добавками. Гидрофобный портландцемент. Активные минеральные добавки. Пуццолановый портландцемент. Шлакопортландцемент. Белый портландцемент.

    реферат [45,6 K], добавлен 26.05.2008

  • Сырье и технология изготовления портландцемента. Минеральный состав портландцементного клинкера. Коррозия цементного камня. Твердение и свойства портландцемента. Шлакопортландцемент и другие виды цементов. Основные операции при получении портландцемента.

    лекция [412,2 K], добавлен 16.04.2010

  • Определение водоцементного отношения, водопотребности бетонной смеси, расхода цемента и заполнителей. Построение математических моделей зависимостей свойств бетонной смеси и бетона от состава. Анализ влияния изменчивости состава бетона на его свойства.

    курсовая работа [2,0 M], добавлен 10.04.2015

  • Основные пути получения бетона при реконструкции гидротехнических сооружений: заказ с ближайшего бетонного узла; изготовление или модификация в построечных условиях. Технологии в пластификации бетонных смесей. Свойства модифицированного портландцемента.

    курсовая работа [1,8 M], добавлен 15.10.2012

  • Химический состав портландцемента. Сырьевые материалы и топливо, основные технологические процессы его изготовления разными способами. Портландцементы для бетона дорожных и аэродромных покрытий. Марки и классы прочности некоторых видов этого материала.

    реферат [39,1 K], добавлен 04.12.2012

  • Изучение свойств и определение назначения портландцементного клинкера как продукта совместного обжига известняка и глины. Особенности быстротвердеющего высокопрочного портландцемента. Общее строительное применение гидрофобного шлакового портландцемента.

    реферат [41,7 K], добавлен 14.08.2013

  • Добавление дисперсных минеральных добавок в бетонные смеси для обеспечения экономии цемента и повышения сульфатостойкости, жаростойкости, водостойкости и сопротивляемости щёлочной коррозии. Доменные шлаки, зола-унос, топливные гранулированные шлаки.

    курсовая работа [274,2 K], добавлен 18.12.2010

  • Назначение марки цемента в зависимости от класса бетона. Подбор номинального состава бетона, определение водоцементного отношения. Расход воды, цемента, крупного заполнителя. Экспериментальная проверка и корректировка номинального состава бетона.

    контрольная работа [46,7 K], добавлен 19.06.2012

  • Технологии, используемые на бетонных заводах. Основные параметры и размеры песка, щебня и гравия из горных пород, применяемых для строительных работ. Классификация цемента, требования к нему. Контроль качества бетона, его условные обозначения и свойства.

    отчет по практике [339,9 K], добавлен 10.11.2014

  • Механические свойства бетона и состав бетонной смеси. Расчет и подбор состава обычного бетона. Переход от лабораторного состава бетона к производственному. Разрушение бетонных конструкций. Рациональное соотношение составляющих бетон материалов.

    курсовая работа [113,6 K], добавлен 03.08.2014

  • Морозостойкость и определяющие ее факторы. Цели добавок в глину при изготовлении керамического кирпича (красного). Магнезиальные вяжущие вещества и их отличие от других. Виды портландцементов. Состав, свойства и применение кислотоупорного цемента.

    контрольная работа [48,5 K], добавлен 30.04.2008

  • Вяжущие на основе высококальциевой золы для силикатного кирпича. Химический, гранулометрический состав шлаков от сжигания каменных углей и антрацитов. Классификация зол как сырья для изготовления строительных материалов. Гашение пережога и карбонизация.

    реферат [538,3 K], добавлен 28.08.2013

  • Виды и марки цементов, применяемых при изготовлении сборных железобетонных конструкций и изделий из бетонов. Отличительная особенность гидратации и твердения цементов. Тонкость помола и сроки схватывания и твердения. Качество минеральных добавок.

    курсовая работа [32,5 K], добавлен 25.01.2011

  • Крупнопористый беспесчаный керамзитобетон в использовании для наружных стен энергоэффективных зданий. Номенклатура изделий на основе бетона. Воздухоизоляционные свойства строительных материалов и конструкций. Коэффициент теплопроводности камня.

    доклад [64,6 K], добавлен 21.11.2015

  • Изучение порядка определения требуемой прочности и расчет состава тяжелого бетона. Построение графика зависимости коэффициента прочности бетона и расхода цемента. Исследование структуры бетонной смеси и её подвижности, температурных трансформаций бетона.

    курсовая работа [1,9 M], добавлен 28.07.2013

  • Подбор состава легкого бетона на пористых заполнителях. Рекомендуемые марки пористого заполнителя. Определение расхода воды для обеспечения требуемой подвижности бетонных смесей. Расчет состава ячеистого бетона. Свойства керамзитобетона и шунгизитобетона.

    курсовая работа [35,2 K], добавлен 13.04.2014

  • Свойства и области применения ситаллов и шлакоситаллов. Анализ добавок, используемых при производстве пуццоланового портландцемента. Характеристика фибролитовых плит и их назначение. Стеклопластики и их особенности. Расчет состава бетонной смеси.

    контрольная работа [8,9 K], добавлен 19.11.2015

  • Основные технологические процессы производства портландцемента, его виды и показатели качества. Физико-технические свойства строительных материалов. Основные направления решения экологических проблем в стройиндустрии. Параметры пригодности материалов.

    контрольная работа [80,3 K], добавлен 10.05.2009

  • Развитие производства цемента в России. Портландцемент как гидравлическое вяжущее вещество. Выбор способа производства и описание технологического процесса. Способы контроля. Практический расчет экономической эффективности производства портландцемента.

    курсовая работа [103,7 K], добавлен 06.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.