Безобжиговый стеновой кирпич компрессионного формования на основе трепела
Повышение эффективности безобжигового стенового кирпича компрессионного формования. Получение изделий с более низким классом средней плотности и более высокой группой по теплотехническим характеристикам в области безобжигового стенового кирпича.
Рубрика | Строительство и архитектура |
Вид | статья |
Язык | русский |
Дата добавления | 29.07.2017 |
Размер файла | 31,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Донской государственный технический университет
Безобжиговый стеновой кирпич компрессионного формования на основе трепела
С.Н. Курилова
Ростов-на-Дону
Повышение эффективности безобжигового стенового кирпича компрессионного формования достигается использованием в качестве заполнителя - трепела. Применение трепела позволяет повысить группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному. Обеспечиваются высокие марки кирпича по прочности. Большая величина водопоглощения по массе и низкий коэффициент размягчения свидетельствуют о низкой водостойкости кирпича. Безобжиговый стеновой кирпич компрессионного формования на основе трепела можно рассматривать только как рядовой, защищенный лицевым кирпичом или другим более водостойким материалом.
Ключевые слова: кирпич, цемент, трепел, вода, прессование, давление, твердение, плотность, прочность, водопоглощение.
Безобжиговый стеновой кирпич - цементно-минеральный композит полусухого прессования, широко применяемый в жилищном строительстве. Он получается на основе цемента, минерального заполнителя и воды в результате твердения в нормальных условиях или в условиях тепловлажностной обработки. Для изготовления кирпича рекомендуется портландцемент марки не ниже М400 и минеральный заполнитель с размером зерен меньше 2,5 мм. Соблюдение рекомендаций к зерновому составу заполнителя позволяет обеспечивать качество кирпича полусухого прессования [1, 2]. В качестве минерального заполнителя используют отсевы от дробления горных пород, например известняк плотный, известняк-ракушечник, травертин, песчаник [3, 4]. Цемент и минеральный заполнитель перемешиваются в течение одной минуты до получения однородной сухой смеси. Затем смесь орошается водой и перемешивается еще пять минут, в результате чего получается полусухая формовочная смесь. Смесь засыпают в матрицу пресс-формы и уплотняют снизу и сверху под давлением 15-40МПа. Такой способ уплотнения называется компрессионным формованием [5, 6]. Отформованные изделия имеют достаточную распалубочную прочность не менее 1 МПа, поэтому сразу извлекаются из формы и направляются на твердение. Твердение может происходить в нормальных условиях при температуре (17-23) 0С и относительной влажности воздуха не менее 90% в течение 28 суток или в условиях тепловлажностной обработки при температуре 85 0С и относительной влажности воздуха не менее 90% в течение 10-12 часов. Безобжиговый стеновой кирпич бывает рядовой, лицевой и цокольный. безобжиговый стеновой кирпич компрессионный
Одним из нормируемых свойств, стенового кирпича является его средняя плотность. Чем ниже класс средней плотности кирпича, тем выше его группа по теплотехническим характеристикам (ГОСТ 530-2012). Это значит, что кирпич является менее теплопроводным и более эффективным. Средняя плотность безобжигового стенового кирпича, изготавливаемого на традиционных заполнителях (например, известняке плотном, известняке-ракушечнике, травертине, песчанике) находится в интервале 1600-1900 кг/м3, что соответствует классу средней плотности 2,0. Кирпич такого класса средней плотности соответствует группе по теплотехническим характеристикам - малоэффективный (обыкновенный) (ГОСТ 530-2012).
Актуальной задачей в области безобжигового стенового кирпича является получение изделий с более низким классом средней плотности и более высокой группой по теплотехническим характеристикам.
Решение поставленной задачи возможно в результате использования в качестве минерального заполнителя безобжигового стенового кирпича горных пород с повышенной пористостью. Одной из таких пород является органогенная (биохимическая) порода осадочного происхождения - трепел. Трепелы - легкие тонкопористые породы, состоящие в основном из мельчайших, глобулярных зерен кремнезема, размером менее 0,005 мм. Окраска трепелов может быть светло-серая почти белая, желто-серая, буровато-серая. Их средняя плотность находится в интервале от 700 до 1200 кг/м3, а пористость зерен - от 50 до 70%. Месторождения трепелов на территории России являются очень крупным. Запасы этого сырья составляют более 50 млн. м3 [8-10].
Для оценки трепелов как сырья для безобжигового стенового кирпича был поставлен эксперимент, в котором использовался трепел Успенского месторождения. Вначале эксперимента были определены свойства трепела как мелкого заполнителя прессованных композитов, а также цемента завода «Пролетарий» (г. Новороссийск). Зерновой состав трепела представлен в таблице № 1.
Таблица № 1
Зерновой состав трепела Успенского месторождения
Остатки на ситах |
Размер отверстий контрольных сит, мм |
Прошло через сито 0, 16 мм |
||||
1,25 |
0,63 |
0,315 |
0,16 |
|||
Частные, г |
110 |
162 |
120 |
400 |
208 |
|
Частные, % |
11,0 |
16,2 |
12,0 |
40,0 |
20,8 |
|
Полные, % |
11,0 |
27,2 |
39,2 |
79,2 |
100 |
Физические свойства трепела представлены в таблице № 2.
Таблица № 2
Физические свойства трепела Успенского месторождения
Вид заполните-ля |
Физические свойства трепела |
|||||
Истинная плотность, г/см3 |
Средняя плотность, кг/м3 |
Насыпная плотность, кг/м3 |
Пористость, % |
Гигроско-пическая влажность, % |
||
Трепел |
2,6 |
1170 |
1000 |
55 |
2,6 |
Физико-механические свойства цемента завода «Пролетарий» (г.Новороссийск) представлены в таблице № 3.
Таблица № 3
Физико-механические свойства цемента завода «Пролетарий»
Вид цемента |
Физико-механические свойства цемента |
|||||
Тонкость помола, % |
Истинная плотность, г/см3 |
Насыпная плотность, кг/м3 |
Нормальная густота цементного теста, % |
Активность цемента, МПа |
||
Портланд-цемент |
6,2 |
3,1 |
1157 |
26 |
45 |
В эксперименте оценивалось влияние расхода цемента на физико-механические свойства прессованных цементно-минеральных композитов на основе трепела Успенского месторождения и устанавливалось рациональное количество цемента для обеспечения необходимых эксплуатационных свойств безобжигового стенового кирпича.
Расход цемента в композитах был принят 10, 20 и 30% от массы сухих компонентов - цемента и трепела. Было принято во внимание, что расход цемента более 30 % является экономически нецелесообразным. Расход трепела в композитах составил при этом, соответственно, 90, 80 и 70%. Расход воды был уточнен на предварительных экспериментах и составил 27% сверх массы сухих компонентов. Свойства композитов оценивались на образцах цилиндрах диаметром и высотой 5 см, изготовленных методом компрессионного формования при давлении прессования 20 МПа. Образцы твердели в нормальных условиях и в условиях тепловлажностной обработки.
В качестве исследуемых свойств были выбраны коэффициент уплотнения композитов, их средняя плотность, предел прочности при сжатии, водопоглощение по массе и коэффициент размягчения.
Для свежеотформованных композитов, извлекаемых из матрицы пресса сразу после прессования, оценивалось влияние расхода цемента на коэффициент уплотнения, среднюю плотность и распалубочную прочность. Физико-механические свойства этих композитов представлены в таблице №4.
Таблица № 4
Физико-механические свойства свежеотформованных композитов
№ п/п |
Расход цемента, % |
Физико-механические свойства |
|||
Коэффициент уплотнения |
Средняя плотность, кг/м3 |
Предел прочности при сжатии, МПа |
|||
1 |
10 |
2,47 |
1810 |
1,5 |
|
2 |
20 |
2,65 |
1830 |
1,8 |
|
3 |
30 |
2,67 |
1850 |
2,0 |
Коэффициент уплотнения с увеличением расхода цемента от 10 до 30% в композитах увеличивается от 2,47 до 2,67. Это объясняется уменьшением расхода трепела. Трепел имеет пористые зерна. Чем меньше содержание пористых зерен и больше тонких плотных частиц цемента при одном и том же расходе воды, тем уплотняемость прессованного композита будет больше. Величина коэффициента уплотнения свидетельствует о том, что композиты на основе трепела хорошо прессуются. Средняя плотность с увеличением расхода цемента от 10 до 30% в композитах увеличивается от 1810 до1850 кг/м3, что объясняется более высоким содержанием плотных частиц цемента в композитах. Распалубочная прочность при всех расходах цемента не менее 1 МПа, что соответствует требованиям к прессованным композитам и говорит о достаточной прочности зерен трепела. С увеличением расхода цемента от 10 до 30% в композитах предел прочности при сжатии увеличивается от 1,5 до 2,0 МПа закономерно с увеличением средней плотности материала.
Для затвердевших композитов оценивались средняя плотность, предел прочности при сжатии, водопоглощение по массе и коэффициент размягчения.
Средняя плотность и предел прочности при сжатии определялись для образцов, твердевших в нормальных условиях, в условиях тепловлажностной обработки и образцов, высушенных до постоянной массы. Сушка до постоянной массы проводилась с целью снижения влажности образцов на пористом заполнителе.
Средняя плотность затвердевших прессованных композитов, представленная в таблице № 5, закономерно растет с увеличением расхода цемента от 10 до 30%.
Таблица № 5
Средняя плотность затвердевших прессованных композитов
№ п/п |
Расход цемента, % |
Средняя плотность, кг/м3 |
|||
Образцов после тепловлажностной обработки |
Образцов после нормального твердения |
Образцов высушенных до постоянной массы |
|||
1 |
10 |
1780 |
1750 |
1440 |
|
2 |
20 |
1840 |
1820 |
1470 |
|
3 |
30 |
1850 |
1830 |
1510 |
Рост средней плотности в композитах объясняется увеличением более плотных частиц цемента и уменьшением количества легких пористых зерен трепела. Средняя плотность композитов, высушенных до постоянной массы, в среднем на 19% меньше средней плотности композитов после нормального твердения и на 20% меньше средней плотности композитов после тепловлажностной обработки. Это объясняется присутствием в композитах значительного количества пористых зерен трепела. При тепловлажностной обработке за счет тепло-массообмена пористые зерна трепела поглощают большее количество воды, а после нормального твердения, при котором тепло-массообмен отсутствует, зерна поглощают меньшее количество воды [11]. Средняя плотность композитов высушенных до постоянной массы представляет практический интерес как эксплуатационное свойство безобжигового стенового кирпича. В образцах эта плотность соответствует малоэффективному кирпичу (ГОСТ 530-2012). Однако, если рассматривать стандартный кирпич с пустотностью 12 %, то средняя плотность кирпича на трепеле при расходе цемента 10% составит 1271 кг/м3, при расходе цемента 20% - 1294 кг/м3, а при расходе цемента 30% - 1329 кг/м3. Кирпич со средней плотностью 1210-1400 кг/м3 имеет класс средней плотности 1,4 и соответствует группе изделий по теплотехническим характеристикам - условно-эффективные (ГОСТ 530-2012). Тем самым применение трепела позволяет повысить группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному.
Прочность при сжатии затвердевших прессованных композитов, представленная в таблице № 6, также растет с увеличением расхода цемента от 10 до 30 %, соответственно увеличению средней плотности.
Таблица № 6
Предел прочности при сжатии затвердевших прессованных композитов
№ п/п |
Расход цемента, % |
Предел прочности при сжатии, МПа |
|||
Образцов после тепловлажностной обработки |
Образцов после нормального твердения |
Образцов высушенных до постоянной массы |
|||
1 |
10 |
7,9 |
10,4 |
28,6 |
|
2 |
20 |
10,5 |
21,4 |
32,7 |
|
3 |
30 |
15,5 |
26,5 |
40,2 |
Практическое значение имеет прочность композитов высушенных до постоянной массы. Она выше прочности на сжатие после нормального твердения в 1,5 - 2,75 раза, а прочности на сжатие после тепловлажностной обработки в 2,6 - 3,6 раза. Это объясняется ролью пористых зерен трепела. После тепловлажностной обработки в результате тепло-массообмена пористые зерна трепела впитывают большее количество воды [11], поэтому образцы имеют более высокую среднюю плотность (таблица № 5), но прочность при сжатии более влажных образцов оказывается более низкой (таблица № 6). После нормального твердения, при котором отсутствует тепло-массообмен между композитом и средой, пористые зерна трепела впитывают меньшее количество воды [11], поэтому средняя плотность образцов по сравнению с тепловлажностной обработкой оказывается меньше (таблица № 5), а прочность при сжатии менее влажных образцов оказывается больше (таблица № 6). Прочность композитов высушенных до постоянной массы при расходе цемента 10% составляет 28,6 МПа, при расходе 20% - 32,7 МПа, а при расходе 30% - 40,2 МПа. Таким образом, даже при небольшом расходе цемента 10-20% можно получать кирпич на основе трепела высоких марок 250 и 300 (ГОСТ 530-2012). Тем самым применение трепела как заполнителя безобжигового стенового кирпича в сухом состоянии позволяет повысить группу кирпича по теплотехническим характеристикам и в то же время обеспечивает его высокую марочную прочность.
Водопоглощение по массе с увеличением расхода цемента в композитах уменьшается. Композиты с расходом цемента 10% не выдержали испытание и разрушились. Это говорит о большой открытой пористости композитов и их не водостойкости. Композиты с расходом цемента 20 и 30% сохранили свою целостность и выдержали испытание. В композитах с расходом цемента 20% водопогощение по массе составило 31%, а композитах с расходом цемента 30% водопоглощение по массе оказалось 29%. Величина водопоглощения по массе в композитах с трепелом в целом высокая, поэтому композиты должны работать в условиях, защищенных от влаги.
Коэффициент размягчения удалось определить только в композитах с расходом цемента 20 и 30%. С увеличением расхода цемента в композитах от 20 до 30% коэффициент размягчения увеличивается. В композитах с расходом цемента 20% коэффициент размягчения составил 0,3, а в композитах с расходом цемента 30% - 0,4. Низкая величина коэффициента размягчения не рекомендует использовать материал во влажных условиях.
По показателям водопоглощения по массе и коэффициента размягчения прессованные цементно-минеральные композиты на основе трепела рекомендуются для рядового стенового кирпича. Расход цемента 10% является нецелесообразным с точки зрения водостойкости кирпича. По показателям водопоглощения по массе и коэффициента размягчения для рядового стенового кирпича на основе трепела рекомендуется расход цемента 20-30%.
Применение трепела в качестве заполнителя безобжигового стенового кирпича является актуальным и целесообразным. При расходах цемента 10-30% кирпич имеет среднюю плотность в сухом состоянии 1271-1329 кг/м3. Кирпич с такой средней плотностью имеет класс средней плотности 1,4 и соответствует группе изделий по теплотехническим характеристикам условно-эффективные (ГОСТ 530-2012). Тем самым применение трепела в качестве заполнителя безобжигового стенового кирпича повышает группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному. Этой величине средней плотности соответствуют высокие марки кирпича по прочности 250 и 300. Однако эти эксплуатационные характеристики кирпича обеспечиваются только в сухих условиях. Большая величина водопоглощения по массе 31-29% и низкий коэффициент размягчения 0,3-0,4 свидетельствуют о низкой водостойкости кирпича на основе трепела. Рекомендуемый расход цемента с точки зрения водостойкости для кирпича составляет 20-30%. Безобжиговый стеновой кирпич компрессионного формования на основе трепела можно рассматривать только как рядовой кирпич, защищенный лицевым кирпичом или другим более водостойким материалом.
Литература
1. Наумов А.А. Повышение качества кирпича полусухого прессования, изготовленного на основе глинистого сырья месторождения «Кагальник-3» // Инженерный вестник Дона, 2016, № 4. URL: ivdon.ru/ru/magazine/archive/n4y2016/3823/.
2. Мальцева И.В. Влияние глинистого вещества на реологию пеномасс с различной концентрацией твердой фазы // Инженерный вестник Дона, 2017, №1. URL: ivdon.ru/ru/magazine/archive/n1y2017/3977/.
3. M. Safiuddin, M.Z. Jumaat, M.A. Salam, M.S. Islam, R. Hashim. Utilization of solid wastes in construction materials. International Journal of the Physical Sciences. 2010. №10. pp. 1952-1963.
4. Berge B. The Ecology of Building Materials. [Architectural press]. Oxford, 2005. 474 p.
5. Попильский Р.Я., Кондрашев Ф.В. Прессование керамических порошков. Изд-во «Металлургия», 1968. 272 с.
6. Курилова С.Н. Влияние рецептурно-технологических факторов на свойства безобжиговых стеновых изделий компрессионного формования на основе опоки Авило-Федоровского месторождения. // Научное обозрение. 2015. № 22. С.153-156.
7. Дистанов У.Г. Минеральное сырье. Опал-кристобалитовые породы. М.: ЗАО «Геоинформмарк», 1998. 27 с.
8. Талпа Б.В. Новые виды минерального сырья на юге России / Б.В. Талпа, Н.И. Бойко, В.Д. Котляр // Известия Вузов, Сев.-Кав. регион, Естеств. науки. 1995. № 2. С. 32-34.
9. Курилова С.Н., Шаталов А.А. Прессованные эффективные изделия на основе кремнистых пород-опок. // Научное обозрение. 2012. № 6. С. 135-137.
10. Кудинов А.А. Тепломассообмен. М.:Инфра-М, 2012. 375 с.
Размещено на Allbest.ru
...Подобные документы
Рост спроса на кирпич со стороны малоэтажного сегмента. Самые крупные производители керамического кирпича в Новосибирской области. Классификация и эксплуатационные свойства стеновых изделий. Пределы прочности стеновых материалов при сжатии и изгибе.
реферат [1,1 M], добавлен 01.05.2017Определение сопротивления теплопередаче теплоэффективного трехслойного блока. Расчет коэффициента теплопроводности кирпича керамического (полнотелого и пустотелого) и кирпича керамического одинарного. Особенности использования пирометра Testo 830-T1.
дипломная работа [800,8 K], добавлен 09.11.2016Технологический процесс производства керамического кирпича. Механизация процессов вскрыши карьера и добычи глины. Формовка сырца, процесс сушки, обжиг кирпича. Применение туннельной печи для обжига кирпича. Внедрение автоматизированной системы управления.
презентация [5,5 M], добавлен 29.03.2016Описание и область использования продукции, сырьевые материалы. Керамика — изделия из неорганических, неметаллических материалов и их смесей с минеральными добавками. Производство керамического кирпича пластического формования с щелевидными пустотами.
реферат [31,9 K], добавлен 16.11.2011Керамическими изделия и материалы, получаемые из глиняных масс или из смесей с минеральными добавками путем формования и обжига. Виды керамического кирпича, классификация. Добавки природного происхождения: кварциты, магнезиты, хромистые железняки.
презентация [29,8 M], добавлен 06.04.2014Описание продукции и области её применения. Классификация лицевых керамических кирпичей. Сырьевые материалы для производства керамических кирпичей, предъявляемые требования. Технологическая схема производственного процесса, контроль качества и испытания.
курсовая работа [183,4 K], добавлен 28.01.2011Описание свойств керамического кирпича. Характеристика сырья для производства керамического кирпича на базе месторождений пластичной глины с нанесением ангоба. Материальный баланс технологического комплекса по производству керамического кирпича.
курсовая работа [803,9 K], добавлен 12.02.2011Технические характеристики керамического кирпича, области его применения, конкурентные преимущества и анализ рынка. Потенциальные риски и пути их минимизации. Организационный, производственный и маркетинговый планы, финансово-экономическое обоснование.
дипломная работа [350,1 K], добавлен 18.03.2010Характеристика основных видов сырья. Ассортимент и требования к выпускаемой продукции. Выбор способа производства кирпича. Технологическая линия производства лицевого керамического кирпича полусухого прессования. Тепловой баланс зон подогрева и обжига.
курсовая работа [116,9 K], добавлен 20.11.2009Технологическая схема производства силикатного кирпича. Расчет удельного расхода сырьевых материалов. Процентное содержание пустот в кирпиче. Расчет потребности воды на изготовление силикатной смеси. Формование и автоклавирование силикатного камня.
курсовая работа [619,6 K], добавлен 09.01.2013Описание номенклатуры стенового камня на основе железобетона для монолитных каркасных зданий. Характеристика материалов, используемых при его производстве. Расчет состава бетона и общего количества камней внешней стены конструкции. Фасадная штукатурка.
контрольная работа [24,5 K], добавлен 20.12.2012Характеристика полистиролбетона - композиционного строительного материала на основе портландцемента. Проектирование технологической схемы производства полистиролбетонных теплоизоляционных плит для стенового материала, эксплуатируемого в районах Севера.
курсовая работа [752,1 K], добавлен 22.04.2015Классификация и основные свойства керамических материалов. Требования к керамическим стеновым матералам и их характеристика. Технические требования к глиняному обыкновенному и пустотелому кирпичу. Кладка наружных и внутренних стен, водопоглощение кирпича.
реферат [1003,6 K], добавлен 26.07.2010Состав силикатного кирпича, способы его производства. Классификация силикатного кирпича, его основные технические характеристики, особенности применения, транспортировка и хранение. Гипсовые и гипсобетонные изделия. Древесно-цементные материалы.
презентация [2,5 M], добавлен 23.01.2017Технологическая линия производства силикатного кирпича методом полусухого прессования. Назначение и сущность процесса сортировки материалов. Принцип работы грохота. Расчет параметров колебаний короба грохота. Эксплуатация и ремонт оборудования.
курсовая работа [902,5 K], добавлен 08.06.2015Характеристика района строительства. Объемно-планировочное и конструктивное решение проекта двухэтажного жилого дома. Применение силикатного кирпича при возведении наружных стен и перегородок. Наружная и внутренняя отделка, инженерное оборудование дома.
курсовая работа [165,7 K], добавлен 24.11.2014Номенклатура и технологическая схема изготовления силикатного кирпича. Требования к оборудованию. Характеристика сырья, полуфабрикатов, вспомогательных материалов. Типовая карта контроля техпроцесса. Влияние отходов производства на окружающую среду.
курсовая работа [51,9 K], добавлен 22.02.2015Разработка генерального плана участка. Изучение объемно-планировочного и конструктивного решения. Обеспечение пространственной жесткости каркаса. Анализ наружного стенового ограждения. Санитарно-технические устройства и системы микроклимата помещений.
курсовая работа [918,1 K], добавлен 20.12.2021Оценка спроса на жилье. Повышение технического уровня проектов зданий. Описание трехслойного стенового блока. Пожелания потребителей и производителей. Построение "домиков качества" в соответствии с методологией по развертыванию функции качества.
курсовая работа [1021,3 K], добавлен 20.05.2009Морозостойкость и определяющие ее факторы. Цели добавок в глину при изготовлении керамического кирпича (красного). Магнезиальные вяжущие вещества и их отличие от других. Виды портландцементов. Состав, свойства и применение кислотоупорного цемента.
контрольная работа [48,5 K], добавлен 30.04.2008