Исследование влияния параметров триангуляции в среде ПК САПФИР на результаты расчёта
Результаты расчета различных вариантов сетки конечных элементов, генерируемой средствами ПК САПФИР и их использование для проектирования строительных конструкций. Анализ площади нижней продольной арматуры в середине пролета. Подбор пролетной арматуры.
Рубрика | Строительство и архитектура |
Вид | статья |
Язык | русский |
Дата добавления | 29.07.2017 |
Размер файла | 149,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Исследование влияния параметров триангуляции в среде ПК САПФИР на результаты расчёта
В области проектирования наблюдается тенденция широкого использования технологий информационного моделирования зданий (далее BIM). Используя набор соответствующих трёхмерных объектов, архитектор формирует 3D-модель здания, что обеспечивает наибольший комфорт и скорость при визуальной оценке полученного результата [1]. Программные комплексы, поддерживающие BIM технологии, позволяют в автоматическом режиме осуществить переход от 3D-модели здания к модели аналитической, и затем к расчетной конечно элементной модели здания, расчет которой ведется с использованием метода конечных элементов (далее МКЭ) [2 - 4]. Точность расчета с помощью МКЭ в значительной мере зависит от правильного выбора типов и размеров конечных элементов [5, 7-9]. Создание конечно элементной модели непосредственно в Лире является весьма кропотливым и трудоемким процессом, поэтому возможность импорта готовой схемы из ПК САПФИР представляется весьма заманчивой перспективой упрощения процесса расчета здания. Однако, к полученной таким образом схеме следует относиться с известной осторожностью. Ниже рассмотрены результаты расчета различных вариантов сетки КЭ, генерируемой средствами ПК САПФИР. В качестве модели для вычислительного эксперимента (рис.1) принят фрагмент монолитного многоэтажного безбалочного каркаса, поскольку в практике строительства такие здания, в том числе и с использованием высокопрочных бетонов [6], а также композитных материалов [10], встречаются весьма часто.
Основные параметры модели: шаг колонн 6 м; колонны 0,4х0,4 м; толщина плиты 0,2 м; бетон класса В25; арматура А400; колонны жестко защемлены. На каркас действует собственный вес и распределенная по площади нагрузка 10 кН/м2. Схема имеет две оси симметрии - ось «В» и середина пролета между осями 2 и 3 (рис.1, в).
Рис.1. Использованная в расчетах компьютерная модель.
конструкция строительный арматура
Узел опирания плиты на колонну моделировался как с использованием абсолютно жесткого тела (далее АЖТ), так и без него. Разбиение плиты на КЭ осуществлялось средствами ПК САПФИР, при этом для варианта с АЖТ для всех внутренних колонн параметр «форма АЖТ» принят «точно по форме сечения». Всего рассчитано три серии схем, отличающихся способом триангуляции: 1 - прямоугольная (рис.1, а); 2 - адаптивная четырехугольная; 3 - треугольная (рис.1, б). Шаг триангуляции во всех сериях одинаков, и получен путем деления пролета на нечетное число КЭ, а именно - на 5, 7, 9, 11, 13, 15, 25 и 35 частей. Благодаря чему центр тяжести центральных КЭ совпадает с серединой пролета (отмечено красным на рис. 1.в).
Предметом анализа выбрана площадь нижней продольной арматуры вдоль оси «Х» в середине пролета, расположенного между осями 2 и 3 по оси «В». Результаты вычислительного эксперимента приведены в таблице №1.
Таблица №1 Площадь арматуры AS1, см.кв/м в середине пролета
Шаг триангуляции, м |
Вид триангуляции |
|||
прямоугольная |
треугольная |
адаптивная |
||
Плита с использованием АЖТ |
||||
0,17 |
6,60 |
6,64 |
6,60 |
|
0,24 |
6,59 |
6,65 |
6,58 |
|
0,40 |
6,50 |
6,40 |
6,54 |
|
0,46 |
6,57 |
6,57 |
6,53 |
|
0,55 |
6,54 |
6,55 |
6,47 |
|
0,67 |
6,40 |
6,60 |
6,41 |
|
0,86 |
6,26 |
6,41 |
6,40 |
|
1,20 |
5,79 |
6,30 |
6,19 |
|
Плита без АЖТ |
||||
0,17 |
7,06 |
7,12 |
6,99 |
|
0,24 |
7,04 |
7,13 |
6,99 |
|
0,40 |
7,05 |
7,23 |
7,05 |
|
0,46 |
7,08 |
7,12 |
7,07 |
|
0,55 |
7,07 |
7,17 |
7,01 |
|
0,67 |
6,97 |
7,21 |
6,94 |
|
0,86 |
6,93 |
7,30 |
6,83 |
|
1,20 |
6,62 |
7,50 |
6,62 |
Рассмотрим диапазон шагов триангуляции (иными словами диапазон размеров конечных элементов) от 0,24 м до 0,86 м, или в относительных единицах от 1/7 до 1/25 пролета, что несколько шире общепринятого в практике, и диапазона, равного 1/10 - 1/20 пролета. Сопоставление результатов свидетельствует, что в этом диапазоне во всех схемах без АЖТ арматуры требуется больше чем в схемах, имеющих АЖТ. А именно: на 5,9 - 6,3 %; при адаптивной триангуляции, на 6,4 - 9,6 % при прямоугольной, и на 6,8 - 12,2 % при треугольной. С определенной осторожностью можно утверждать, что использование в узлах сопряжения плит с колоннами абсолютно жестких тел ведет к снижению требуемой по расчету пролетной арматуры примерно на 6 % не зависимо от типа и шага триангуляции.
Установлено, что влияние вида и шага триангуляции на площадь арматуры в пролете не значительно (рис.2 и рис.3).
Рис. 2. Схемы без АЖТ с триангуляцией: ряд 1 - прямоугольной; ряд 2 - треугольной; ряд 3 - адаптивной
Так, в схемах без АЖТ (рис.2) размах значений AS1 при изменении шага триангуляции от 0,24 м до 0,86 м составил 2,2 %, 2,3 % и 3,5 % при прямоугольной, треугольной и адаптивной триангуляции соответственно. Расчет схем с абсолютно жесткими телами в узлах показывает схожие результаты, а именно 5,2 %, 3,1 % и 2,8%.
На графиках (рис.2 и рис.3) прослеживается тенденция уменьшения требуемой по расчету площади арматуры по мере увеличения шага триангуляции, или иными словами - по мере увеличения размера КЭ. Обращает на себя внимание тот факт, что в отмеченную закономерность не вписываются схемы без АЖТ с треугольной триангуляцией (ряд 2 на рис.2).
Рис. 3. Схемы использованием АЖТ с триангуляцией:
ряд 1 - прямоугольной; ряд 2 - треугольной; ряд 3 - адаптивной
Рис. 4. Изгибающие моменты Мх в схемах без АЖТ при триангуляции:
ряд 1 - прямоугольной; ряд 2 - треугольной; ряд 3 - адаптивной.
Сопоставление значений изгибающих моментов Мх для этих схем (рис.4) обнаруживает такую же особенность треугольных КЭ и для моментов. Таким образом, при создании схемы в ПК САПФИР предпочтительнее использование прямоугольной или адаптивной триангуляции. Вместе с тем, учитывая незначительную разницу результатов подбора арматуры (от 2,2% до 5,2%), можно утверждать, что тип и шаг триангуляции, использованные в ПК САПФИР существенного влияния на результат подбора пролетной арматуры, не оказывают. Однако следует учесть, что этот результат получен для схем, в которых обязательно есть конечные элементы, центры тяжести которых располагаются в середине пролета, к чему и нужно стремиться в процессе в процессе создания компьютерной модели здания.
Литература
1. Барабаш М.С., Палиенко О.И., Медведенко Д.В. Программный комплекс САПФИР - основа BIM-технологий. М.: АСВ, 2012. -356с.
2. Перельмутер А.В., Сливкер В.И. Расчетные модели сооружений и возможности их анализа. - М, 2007. - 595 с.
3. А.С. Городецкий, Л.Г. Батрак, Д.А. Городецкий, М.В. Лазнюк, С.В. Юсипенко. Расчет и проектирование конструкций высотных зданий из монолитного железобетона. - Киев, 2005. -106 с.
4. А.С. Городецкий, И.Д., Евзеров И.Д. Компьютерные модели конструкций. - Киев, 2004. - 344 с.
5. Русаков А. И. Учет размера конечного элемента оболочки при расчете арматуры монолитных плит перекрытий // Промышленное и гражданское строительство. - 2011. - N 8. - С. 57-60.
Размещено на Allbest.ru
...Подобные документы
Основные допущения аналитической модели, геометрические размеры оболочки. Сравнение аналитического и компьютерного расчёта строительных конструкций методом конечных элементов. Результаты SCAD при малых разбиениях. Определение чувствительности по нагрузке.
контрольная работа [968,3 K], добавлен 19.04.2016Варианты разбивки балочной клетки. Сбор нагрузок на перекрытие. Назначение основных размеров плиты. Подбор сечения продольной арматуры. Размещение рабочей арматуры. Расчет прочности плиты по сечению наклонному к продольной оси по поперечной силе.
курсовая работа [1,2 M], добавлен 14.03.2009Подбор плиты перекрытия. Сбор основных нагрузок и подбор сечения. Огибающие эпюры изгибающих моментов и поперечных сил. Подбор продольной арматуры и расчет несущей способности ригеля. Расчет по раскрытию трещин, нормальных к продольной оси ригеля.
курсовая работа [1,2 M], добавлен 25.10.2013Предварительное назначение размеров железобетонных элементов подземного здания. Расчётные и нормативные характеристики арматуры и бетона. Расчет и подбор прочности рабочей арматуры полки ребристой плиты перекрытия, колонны, столбчатого фундамента.
курсовая работа [123,8 K], добавлен 01.02.2011Характеристика предварительно напряжённой ребристой плиты. Вычисление изгибающих моментов в расчётных сечениях ригеля. Проверка нижней ступени на восприятие поперечной силы без поперечной арматуры. Определение требуемой площади сечения арматуры.
курсовая работа [3,9 M], добавлен 14.12.2017Компоновка плана перекрытия. Определение нагрузок, действующих на междуэтажное перекрытие, сбор нагрузок на панель. Характеристики арматуры и бетона. Подбор продольной рабочей арматуры из условий прочности сечения, нормального к продольной оси панели.
курсовая работа [1,3 M], добавлен 09.11.2011Подбор геометрических размеров пустотной плиты покрытия для спортзала. Определение нагрузок, расчет сопротивления бетона осевому сжатию и растяжению. Определение пролета плиты, расчет на прочность; обеспечение несущей способности плиты, подбор арматуры.
контрольная работа [2,6 M], добавлен 13.03.2012Проектирование основных несущих конструкций 6-этажного промышленного здания без подвала. Компоновка перекрытия, подбор плиты. Расчет ригеля, его несущей способности. Подбор продольной и поперечной арматуры. Расчет колонны, проектирование фундамента.
курсовая работа [1,4 M], добавлен 23.12.2012Способы натяжения арматуры: механический, электротермический, электротермомеханический. Характеристика видов напрягаемой арматуры. Особенности процесса механического натяжения арматуры. Классификация стальной арматуры по профилю и химическому составу.
курсовая работа [785,0 K], добавлен 09.04.2012Определение значений поперечных сил и изгибающих моментов. Порядок составления уравнения равновесия сил и моментов. Подбор продольной и поперечной арматуры исходя из условий сварки, его главные критерии и обоснование. Спецификация подобранной арматуры.
контрольная работа [142,9 K], добавлен 31.01.2011Виды и классификация арматуры - горячекатаной круглой стали, которая предназначенная для армирования железобетонных конструкций. Создание базы данных строительной арматуры: таблиц, запросов, форм, отчетов и кнопочной формы-заставки для базы данных.
дипломная работа [3,7 M], добавлен 09.12.2014Описание условий проектирования моста. Расчет главной балки пролетного строения. Геометрические параметры расчетных сечений балки. Подбор арматуры и расчет по прочности сечения, нормального к продольной оси балки. Конструирование элементов моста.
курсовая работа [4,1 M], добавлен 28.05.2012Общая характеристика металлических конструкций. Состав и свойства строительных сталей. Основные этапы проектирования строительных конструкций. Нагрузки и воздействия. Основы расчёта металлических конструкций по предельным состояниям. Сварные соединения.
презентация [5,1 M], добавлен 23.01.2017Спецификация элементов перемычек, элементов заполнения проёмов, сборных и железобетонных конструкций. Расчет площади сечения рабочей арматуры поперечного ребра. Расчет прочности продольных рёбер по наклонным сечениям на действия поперечной силы.
дипломная работа [1,1 M], добавлен 23.06.2015Характеристики прочности бетона В45 и арматуры А 1000. Расчетный пролет и нагрузки. Расчет прочности плиты по сечению, наклонному к продольной оси. Определение усилий в ригеле поперечной рамы, усилий в средней колонне. Конструирование арматуры колонны.
курсовая работа [216,6 K], добавлен 19.01.2011Расчёт элементов сборного балочного перекрытия. Проектирование ригеля: расчётная схема, нагрузки. Определение усилий в колонне подвала у обреза фундамента. Расчет продольной арматуры. Монолитное ребристое перекрытие. Расчет прочности нормальных сечений.
курсовая работа [355,5 K], добавлен 18.10.2012Общая характеристика конструктивной схемы несущих конструкций здания. Сбор нагрузок и анализ воздействий. Расчетная схема и расчетные предпосылки. Расчет нижней и верхней арматуры в направлении У. Методика и этапы определения длины анкеровки стержней.
курсовая работа [1,8 M], добавлен 13.07.2012Разработка проекта балочной плиты и обоснование компоновки монолитного балочного перекрытия промышленного здания. Расчет площади сечения арматуры в плите. Определение площади сечения арматуры в главной и второстепенной балке. Расчет армирования колонны.
курсовая работа [1,1 M], добавлен 05.06.2014Анализ проектирования бетонных и железобетонных конструкций из тяжелых и легких бетонов без напряжения арматуры. Определение жесткостей элементов поперечной рамы, постоянной нагрузки на покрытие. Расчет усилий в колонне, плиты покрытия и узлов фермы.
курсовая работа [986,4 K], добавлен 14.02.2012Элементы перекрытия и их компоновка. Расчет балочных плит. Расчетные пролеты и сбор нагрузок. Подбор сечения арматуры и конструирование плиты. Метод предельного равновесия. Статический расчет и подбор сечения рабочей арматуры. Полезная высота сечения.
курсовая работа [88,3 K], добавлен 05.12.2017