Археологические исследования памятников архитектуры

Состав исследовательских работ при реставрации памятника. Методы производства архитектурно-археологических обмеров и ведения раскопок. Изучение памятников с помощью зондажей. Идентификация каменных материалов. Диагностика причин разрушений памятников.

Рубрика Строительство и архитектура
Вид книга
Язык русский
Дата добавления 26.09.2017
Размер файла 6,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Часто расположенными пересекающимися стержнями «косвенного» армирования укрепляются перегруженные аварийные конструкции небольшого сечения -- столбы, контрфорсы, аркбутаны. Для массивных стен большого протяжения, имеющих одну или две открытые боковые поверхности, возможно только поперечное армирование. Поярусное расположение стержней, концы которых могут быть объединены арматурными сетками, удобно для создания «опорных» армированных рядов или железобетонных поясов при восстановлении утраченной лицевой кладки.

Анкерное крепление и другие комбинированные способы требуют высокой культуры производства. Для армирования рекомендуется применять нержавеющий металл, количество черного металла должно быть минимальным даже при его антикоррозийном покрытии. Коррозия закладного металла в сырой кладке способна привести к ее разрывам и расслоениям, выдергиванию растянутого стержня или анкера, сдвигу и обрушению блоков кладки. Практика показывает, что в условиях некачественного производства работ анкерное крепление или армирование особо ответственных конструкций следует рассматривать только как часть укрепительного комплекса, но не как основной или единственный вид укрепления.

Инъецирование специально подобранными растворами -- современный и весьма рациональный способ укрепления кирпичной, каменной и смешанной кладки, расчлененной трещинами на крупные и средние блоки или на щебеночные фракции. Эффективность инъекционного укрепления зависит от структуры кладки, степени ее расслоения, влажности и химического состава материала, качества раствора, частоты скважин и других факторов. Наилучшие результаты обычно достигаются при инъецировании сравнительно сухой, расслоившейся кладки из кирпича, белого камня, песчаника и туфа при раскрытии трещин более 1 мм. Тесаная кладка из гранита, базальта и других тяжелых непористых материалов укрепляется инъекцией плохо, так как не происходит отбора воды, и раствор, заполняющий швы, остается рыхлым, слабо сцепляющим разорванные трещинами блоки и отдельные камни. Вообще затвердевший инъекционный раствор должен быть близок по своим физико-техническим свойствам к материалу кладки. Компонентами растворов могут быть известь-тесто, цемент, кварцевая пыль, белокаменная мука, цемянка. Для нагнетания растворов используются ручные или механические насосы, создающие давление до 6--8 атм.

Инъекция нежелательна для укрепления кладки стен и сводов, имеющих темперную или масляную живопись, так как отбор воды из раствора сопровождается движением солей, разрушающим грунт и живописный слой.

Укрепление гибких и наклонных стоек и стен. К внешне неустойчивым конструкциям, требующим введения от крытых, логически завершающих рабочую схему элементов усиления, относятся наклоненные крепостные и подпорные стены, а также ограждающие стены и столбы зданий с обрушенными или разобранными междуэтажными перекрытиями. Если восстановление этих перекрытий трудноосуществимо или не оправдано методически, то чрезмерная свободная длина стен и колонн может быть снижена с помощью стержневых связей-затяжек и распорок, объединяющих элементы в пространственные блоки.

Отдельно стоящие гибкие стены при отсутствии близких жесткостных модулей (лестничных клеток, угловых сопряжений стен и т.п.) могут быть укреплены открытыми подкосами трубчатого и иного сечения, решетчатыми диафрагмами, а также контрфорсами

Укрепление неустойчивых конструкций

1 -- современный сквозной контрфорс, компенсирующий распор сводов;

2, 3 -- скрытые обратные контрфорсы подпорных стен;

4 -- перевернутые арки-контрфорсы;

5 -- угловой фрагмент, укрепленный железобетонной накладкой;

6 -- фрагмент гибкой стены, укрепленный контрфорсом

Контрфорсы -- достаточно рапространенный способ укрепления в реставрации. В зависимости от архитектурных требований и характера нагрузки они выполняются либо из традиционных материалов -- кирпича и камня, либо из железобетона. Эффективная работа контрфорса возможна лишь при надлежащей устойчивости его основания. Практика показывает, что многие исторические контрфорсы, возведенные как до, так и после начала деформаций, своих функций не выполняют, существуя независимо от укрепляемого объекта. При укреплении подпорных стен возможно применение обратных контрфорсов, а также буроинъекционных свай в сочетании с распределительными подхватами, зачеканкой и инъецированием кладки.

Выпрямление стен, столбов, пилонов. Если наклон стен, пилонов, башен и т.п. достаточно заметен, а укрепление с помощью октрытых конструкций не представляется возможным, например из эстетических соображений, возникает необходимость в их подъеме (повороте).

Наиболее просто выпрямление отдельно стоящих сплошных сооружений или компактных жестких объемов -- обелисков, пьедесталов, пилонов, невысоких декоративных башенок, крепостных зубцов и консольных простенков, масса которых не превышает 10--15 т. В этом случае подъем может производиться легкими винтовыми и гидравлическими домкратами при минимальных трудозатратах. В основание выпрямляемой конструкции врезается временная обойма из металлических профилей (железобетона), служащая либо непосредственно наддом-кратной балкой, либо упором при рычажном приложении сил (выпрямление надгробия Ахмета Ясави в г. Туркестане). Нижним упором домкрата может быть фундаментная кладка или специально укрепленная плита. Для подъема наклоненных барабанов собора Нижегородского Благовещенского монастыря в качестве нижнего упора домкрата использованы железобетонные пояса стягивающего собор корсета. Если выпрямляется не целиком все сооружение, а какаято его часть или ярус, то усилие домкрата расходуется не только, на подъем этой части, но и на «разрыв» сооружения, т.е. на преодоление сил сцепления раствора. Поэтому в зоне предполагаемого разрыва производится штрабление кладки или расчистка шва.

Сравнительно высокие столбы, а также сквозные или расчлененные трещинами конструкции выпрямляются с применением страховочных креплений -- оттяжек, траверс, рам и т.п. Усилие домкратов с помощью наклонных бревенчатых или металлических упоров передается на вертикальный распределительный элемент или в обойму одного из верхних ярусов крепления.

Выпрямление звонниц, минаретов, и башен, т.е. зданий с очень высоко расположенным центром тяжести, представляет собой сложную задачу, требующую постадийного расчета устойчивости и разработки системы взаимосвязанных подъемных и удерживающих устройств. Так как длина толкающих упоров ограничивается предельной их гибкостью, массой и углом наклона (не более 45°), выпрямление высотных сооружений осуществляется натяжными тросовыми системами. Существуют методы выпрямления, основанные не на подъеме, а на опускании сооружения с помощью домкратов, мешков с песком, сгораемых шпальных клеток, закладываемых в специальные штрабы и проемы со стороны, противоположной наклону. Как при подъеме, так и при опускании промежуточное положение конструкции фиксируется временными прокладками и контролируется системой отвесов. При достижении проектного положения штрабы закладываются, швы зачеканиваются и инъецируются.

Особого рода сложность возникает при выпрямлении длинных волнообразно наклоненных стен, например, крепостных, или фрагментов деформированных зданий. Принцип подъема или опускания сохраняется, однако возникает необходимость в искусственном расчленении конструкции на блоки -- вертикальном распиливании и горизонтальном штраблении стен. Подъем крепостных прясел многометровой толщины и стен так называемой полубутовой кладки требует двухстороннего или сквозного крепления, так как может сопровождаться расслоением кладки и выпучиванием лицевого слоя. Подъем крепостных стен успешно проведен при реставрации Кирилло-Белозерского, Боровского и Даниловского монастырей, Псковского кремля. Тонкостенные прясла и кирпичные ограды иногда могут быть выпрямлены и без разрезания на блоки с помощью распределительных траверс при дифференцированных усилиях в домкратах.

Укрепление элементов распорных систем

Как отмечалось, почти любой вид деформации арок и сводов есть заключительный или промежуточный этап многоходового процесса общей деформации здания или системы «памятник--среда». Поэтому полный комплекс укрепления распорных конструкций включает мероприятия по укреплению не только самих сводов, но и стен, столбов, связей и других конструкций, несущих эти своды или воспринимающих их распор.

Укрепление опорного контура сводов. Наибольшую опасность для распорных конструкций представляет горизонтальная подвижка опор, при которой снижается подъем, высота сжатой зоны сечений и, соответственно, несущая способность арочных элементов. Поэтому одна из важнейших задач -- обеспечение несмещаемости опор арок и сводов

Конструкции связевого каркаса

1 -- "глухой " железобетонный анкер;

2 -- воздушная связь;

3 -- вильчатый анкер;

4 -- угловая заделка современной стеновой связи;

5 -- канал древней деревянной связи;

6 -- сопряжение современных воздушной и стеновой связей;

7 -- имитация деревянной связи;

8 -- опорная железобетонная подушка-анкер;

9 -- болтовое соединение разорванной металлической связи;

10 -- анкер в виде пакета металлических профилей

Распространенным приемом служит восстановление функций утраченного или поврежденного связевого каркаса. В расчищенные каналы древних деревянных стеновых связей устанавливаются металлические стержни из арматуры или проката, соединяемые в углах для образования замкнутого контура. В зонах приложения наибольшего распора, например в плоскости подпружных арок, между распалубками или в средней части лотков сомкнутых сводов стеновой каркас соединяется с элементами воздушных связей, что снижает его деформативность и увеличивает зону удержания воздушной связи. Каналы бетонируются. При надлежащих армировании и сечении каналов стеновые связи могут работать как железобетонные пояса, способные воспринимать кроме растяжения и изгибающие моменты от действия распределенного распора на участках между анкерами связей.

Иногда при отсутствии каналов древних связей или по иным причинам возникает необходимость устройства наружного бандажа, стягивающего опорный контур в уровне пят сводов или выше. Например, свод Никольской церкви на Соловках укреплен постановкой наружного комбинированного (металлического с железобетонными анкерными подушками) пояса, скрытого под конструкцией кровли.

Для предотвращения развития деформаций, связанных с неравномерными осадками, подвижками или поворотами стен и столбов, применяются, как правило, жесткие конструкции усиления, способные воспринимать большие сжимающие и изгибающие усилия. Иногда они сочетаются с гибкими связями, работающими только на растяжение. Например, в новгородском Знаменском соборе независимые перемещения стен и центральных столбов, вызвавшие критические деформации сводов подклета, предполагается остановить устройством системы пересекающихся металлических обетонированных связей в уровне перекрытия (над сводами), а также установкой мощных железобетонных распорок между фундаментами. Все обоймы и распорки располагаются ниже уровня современного пола, но являются, тем не менее, открытыми конструкциями, так как между ними экспонируются фрагменты стен и столбов древней церкви Знамения.

В соборе нижегородского Благовещенского монастыря укрепление опорного контура сводов верхнего яруса произведено с помощью системы монолитных железобетонных поясов, причем общий стягивающий пояс врезан по периметру с анкеровкой в кладку стен с внутренней их стороны.

В Соловецком монастыре в 1983 г. выполнено укрепление сползающей в ров восточной стены Новобратского корпуса с помощью системы перевернутых кирпичных полуарок, упирающихся верхним концом в низ цоколя здания, а нижним -- в валунный фундамент крепостной стены XVI в. Перевернутые арки и полуарки могут, видимо, использоваться как скрытые контрфорсы для фиксации взаимного положения блоков здания, расположенных на разных уровнях и на небольшом расстоянии друг от друга. Основным достоинством перевернутых арок стало то обстоятельство, что обратный распор от потенциальной подвижки пят компенсируется пассивным отпором грунта (постели) под аркой.

Существуют и открытые неперевернутые арки-распорки, в которых противодействие сжатию и смещению пят достигается пригрузкой арки, т.е. искусственным отпором. Применению арок-распорок, как и вообще открытых арочных конструкций укрепления, может препятствовать их архитектурная «активность». Более нейтрально выглядят контрфорсы обычной или современной конструкции.

Укрепление сводов, деформированных при смещении опор и при перегрузках. Восстановление несущей способности сводов при их выполаживании, провисании, волнообразной деформации и т.п. -- сложная, порой трудноразрешимая задача, так как снижение высоты сжатой зоны сечений при названных деформациях связано с необратимыми (в основном) изменениями геометрии сводов. Незначительное увеличение высоты сжатой зоны происходит при расклинке раскрытых швов снизу, так как при этом несколько увеличивается длина нижней поверхности и свод как бы поднимается кверху, а кривая давления опускается. Следует расклинивать одновременно обе поверхности. Естественно, что расклинка трещин и швов имеет смысл лишь при положительной кривизне свода, так как расклинка провисающих участков еще больше увеличивает их провис

Укрепление деформированных сводов

А -- расклинка:

1 -- положение оси сжатой зоны до и после деформации;

2 -- клин;

N1 -- начальное приложение нормальной силы;

R/sin -- продольное усилие от расклинивания;

N2 -- приложение суммарной нормальной силы после расклинивания;

Б-- стадии "выдавливания " свода "зонтом":

3 -- зачеканка пустых швов между отдельными клиньями и блоками;

В -- подвеска "висячей " зоны;

4 -- провисшая часть свода;

5 -- железобетонная плита;

6 -- анкеры;

7 -- рабочая схема;

Г--укрепление свода дублирующим арочным элементом

Эффективным, но редким способом изменения геометрии свода служит его «выдавливание» кверху до расчетного рабочего положения с помощью выдвижной опалубки -- так называемого зонта. При достаточно равномерном давлении снизу кладочные элементы раздвигаются, образуя временно совсем необжатые участки кладки, удерживающиеся на опалубке. Далее производится равномерная зачеканка раствором раскрытых швов и трещин, и опалубка убирается. Приведенный способ уместен для пластичной кладки (слабый раствор, пустошовка) и при отсутствии какой-либо нагрузки на свод.

Часто применяющаяся зачеканка трещин и пустых швов не изменяет геометрии свода и не увеличивает высоты сжатой части сечения. Положительное действие данного способа заключается только в стабилизации существующей формы и в повышении сопротивляемости поперечным сдвигам (от местных нагрузок) за счет бокового сцепления раствора. Зачеканка или инъекция швов необжатых, так называемых висячих, зон не изменяет их характера, они остаются необжатыми, не работающими участками свода и удерживаются от падения лишь сцеплением раствора. Фиксация «висячих» зон возможна с помощью их подвески к дублирующим элементам -- аркам, балкам, плитам, проложенным над сводом и передающим нагрузки на здоровые участки кладки или на опоры. Подобные решения осуществлены при укреплении сводов перекрытия Московской консерватории и других объектов. Следует помнить, что подвешивание рабочих зон сводов, как и их подпирание снизу, недопустимо, так как нарушает принцип существования распорных конструкций.

В некоторых случаях увеличения высоты сжатой зоны укрепляемого свода можно добиться и без изменения существующей геометрии за счет включения в совместную работу деформированной полосы свода и дублирующего арочного элемента, который выкладывается и бетонируется поверху. Совместная работа слоев составного сечения обеспечивается радиальными стержневыми шпонками и инъекцией существующих зазоров между слоями. Шаг и диаметр шпонок при этом определяются по величине сдвигающих усилий в составном сечении. Такой способ применен в 1981 г. в Астрахани при усилении деформированных крестовых сводов и подпружных арок Большой трапезной палаты кремлевского Троицкого собора.

Разгрузка деформированных сводов. В тех случаях, когда нерационально приложенная нагрузка создает недопустимые напряжения в кладке или когда нет возможности погасить действие возросшего распора за счет ужесточения опорного контура, целесообразна частичная или полная разгрузка свода. Разгрузка сводов с помощью одиночных или перекрестных балок, подведенных под стены, нагружающие свод, выполнена в Трапезной палате Андроникова монастыря, в Верхоспасском соборе Большого Кремлевского дворца, в соловецкой Никольской церкви.

В Трапезной палате Андроникова монастыря тонкие (в один кирпич) своды третьего яруса, сложенные в 1506 г., неоднократно деформированные, имеющие расчлененный опорный контур, не могли считаться надежным основанием для конструкций помещения, организуемого при приспособлении чердака над сводами. Поэтому в 1977 г. стены и перекрытие нового помещения (облегченной фахверковой конструкции) выполнены с опиранием на монолитные железобетонные балки (L = 15,2 м, h = 0,8 м), забетонированные с зазором 5--10 см от поверхности сводов. Балки опираются на угловые бетонные подушки, заанкеренные в кладку стен

Схема разгрузки сводов

А -- система железобетонных балок над крестовыми сводами Трапезной палаты Андроникова монастыря (разрез, план):

I -- своды;

2 -- трещины деформации;

3 -- конструкции чердачного приспособления;

4-- система балок;

5 -- угловые опорные подушки;

Б -- система перекрестных балок над сводом (разрез, план)

Разгружая своды, балки одновременно работают как связевые элементы, препятствующие горизонтальным подвижкам стен, несущих эти своды.

Перекрестные железобетонные двух-ветвевые балки, разгружающие аварийный свод над Золотой Царицынской палатой Большого Кремлевского дворца, выполнены в 1979 г. различной высоты в соответствии с величиной потенциальных нагрузок (рис. 84, Б). Их верхняя арматура соединена с анкерными шайбами в торцевых стенах в целях уменьшения пролетного момента. Ветви балок и соединяющие их диафрагмы врезаны в кладку нагружающих своды стен на 7--8 см с инъекцией усадочных швов. Зазор между низом балок и сводом составляет 5 см, воспринимаемая балками расчетная нагрузка-- 1300 кН.

В соловецкой Никольской церкви помимо железобетонных балок, снимающих тяжелую продольную нагрузку с восстановленного участка свода Ризничной палаты, введены и две монолитные железобетонные арки с затяжками, усиливающие подпружные арки свода в местах приложения чрезмерной поперечной нагрузки.

Эффективный способ разгрузки неустойчивого опорного контура от распора восстанавливаемых сомкнутых сводов, шатров и куполов -- их замкнутое поярусное армирование. Качественно выполненное армирование кладки в средней трети высоты сводов способно существенно компенсировать нерациональность формы, снизить значение изгибающих моментов и напряжений в сечениях. Кольцевое армирование кладки заложено в проекте реконструкции купола мечети Рабия Султан в г. Туркестане. Поярусное армирование свода в сочетании с воздушными связями выполнено при восстановлении завершения надвратной церкви московского Даниловского монастыря (1984 г.).

Иногда методически и логически оправдана замена восстанавливаемой распорной конструкции на ее безраспорную или «малораспорную» имитацию. Тонкостенные железобетонные оболочки, имитирующие своды Трапезной палаты церкви Богоявления в Иркутске, способны гасить свой распор за счет жесткости армированных нервюр и опорных ребер.

Бетонные имитации небольших пологих сводов междуэтажных перекрытий могут выполняться с горизонтальной верхней поверхностью и плоским плитным армированием. В целях улучшения контакта с сохранившимися фрагментами старой кладки для изготовления бетонных сводов может быть применен так называемый кирпичный бетон с кирпичным боем вместо щебня и известково-цементным вяжущим.

Известную сухость, свойственную бетонным сводам, можно в значительной степени устранить «смягчением» опалубки, т.е. устройством ее поверхности без острых углов и кромок, со сплошной прокладкой из картона или строительного войлока, как это, например, успешно сделано в Иркутске на церкви Богоявления. При устройстве бетонных имитаций или при введении в кирпичные своды больших бетонных фрагментов и заплат резко меняется акустика помещений. Поэтому в их конструкциях должны быть предусмотрены отверстия-голосники, снижающие мембранный эффект, а по верхней поверхности устроена засыпка из керамзита или другого легкого звукопоглощающего материала.

Укрепление при структурном разрушении сводов. Особую сложность представляет укрепление кладки при ее морозном или солевом структурном разрушении. Исследование большого числа сводов выявило достаточно «типовой» вид слоистого разрушения, когда регулярно замораживаемая мокрая кладка сводов расчленена на ряд самостоятельно существующих сводчатых образований толщиной 3--6 см, пролетом 1,5-- 3 м с чрезвычайно малой собственной устойчивостью формы. Любое давление на нижнюю поверхность таких сводов способно вызвать падение слабо скрепленных слоев как из растянутой, так и из сжатой зоны общей толщины свода.

Укрепление кладки сводов, имеющей слоистый характер разрушения, проведено на объектах Соловецкого монастыря, некоторых памятниках Ленинградской области и др. Временно подкрепленная нижняя поверхность сводов была «обобрана» от заведомо висячих элементов. Затем в швы были аккуратно забиты металлические костыли длиной 10--15 см для некоторой расклинки кирпичей в нижних слоях кладки, а также для крепления штукатурной сетки, используемой для армирования толстого намета при восстановлении утраченных зон кладки. Шаг костылей определялся по месту. Далее выполнялся послойный намет специального штукатурного раствора, включающего известь, цемент, цемянку и песок.

Перечисленные меры позволили получить достаточно устойчивые участки, способные воспринимать давление электродрели при сверлении скважин. Скважины иногда проходили на всю толщину свода и пересекали все расслоения. Часть скважин использовалась для установки анкерных стержней, а другая -- для заделки инъекционных трубок, через которые производилось заполнение пустот и трещин раствором.

Укрепление деревянных конструкций

Основной вид усиления стержневых систем -- ферм, стропил и завершающих конструкций -- частичная или полная замена их поврежденных элементов. Способ замены и стыковки зависит от характера работы стержня в системе. Сжатые элементы-- верхние пояса ферм и подкосы соединяются и включаются в работу с помощью лобовых и угловых врубок, подстрахованных хомутами и шпильками. Наиболее ответствен в сжатых частях ферм опорный узел. При его неплотном соединении, допускающем люфт, происходит «расползание» контура верхнего пояса. Соответственно опускаются подвешенные к нему конструкции перекрытия или затяжка. Провис нижнего пояса тем больше, чем острее угол наклона верхнего: при наклоне верхних поясов ферм московского Манежа 18° провис затяжек и потолка составляет 40--60 см.

Замена растянутых элементов -- подвесок и нижних поясов ферм сложнее, так как при любом способе соединения материал стыкуемых конструкций работает в невыгодном режиме скалывания или поперечного смятия волокон. Обычно стык нижних поясов осуществляется с помощью боковых деревянных или металлических накладок, стянутых болтами. Иногда при небольших растягивающих усилиях применяется старый способ соединения -- так называемый «голландский зуб».

Короткая вставка в поясах ферм, стропил, а также в балках перекрытий называется обычно протезом. Протезирование изгибаемых элементов, например концов длинных потолочных балок, требует высокой прочности работ, применения тщательно подогнанных хомутов и стержней. Протезируют обычно уникальные неразрезные пояса ферм и балки или потолочные конструкции, несущие ценный лепной декор и имеющие акустичекое значение (конструкции перекрытий Московской консерватории).

Если по какой-либо причине протезирование элементов и подтяжка узлов не обеспечивают несущей способности конструкции (или надлежащей геометрии подвесного перекрытия), фермы и стропила или усиливаются дополнительными стержнями, или дублируются современными конструкциями. К частичному дублированию относят, например, устройство металлическх затяжек, разгружающих нижние пояса ферм и распорных завершающих систем, стойки и прогоны металлических фахверков в каркасных деревянных зданиях. При полном дублировании разгружаются все элементы исторических конструкций, которым отводится главным образом экспозиционная роль. Пропорциональное и констролируемое разделение функций между дублирующими и основными элементами, например стальными и деревянными балками перекрытий, представляется нереальным как из-за различных жесткостных характеристик материалов, так и из-за сложности передачи нагрузки.

Кроме решения методических проблем, а также вопросов статики и конструирования узлов из разнородных материалов, усиление и консервация деревянных сооружений подразумевают и обеспечение оптимального температурно-влажностного режима, вентиляции и пожарной защиты. Лесоматериал, заменяющий разрушенные элементы, должен быть кондиционным и ни в коем случае не служить стимулятором распространения гриба и жуков.

Укрепление и консервация срубов. Укрепление массивных деревянных сооружений в виде простых и сложных срубов, мостов, ряжей и т.п. заключается главным образом в переборке венцов стен, подвалов, наката. Выборочная замена сгнивших венцов производится с местным «разжимом» сруба клиньями или домкратами. При замене подряд нескольких целых венцов, углов и несущих простенков вышерасположенная часть сруба вместе с конструкцией перекрытия предварительно вывешивается.

Следует заметить, что введение свежих бревен в сильно деформированные (перекошенные и провалившиеся) срубы мало влияет на их устойчивость. Более того, новые элементы, не связанные в самостоятельный каркас, могут оказаться чужеродными жесткими включениями в пластичную структуру старого сруба, концентрирующими нагрузки и напряжения. Угловые соединения при высыхании новой (сырой) древесины расходятся, причем чем больше диаметр венцов и их влажность, тем больше зазор на врубках. Неплотные и пустые угловые сопряжения могут стать причиной выпадения целой стены или обрушения всего сруба под действием ветровой и любой другой боковой нагрузки. Наиболее сложно укрепление высоких срубов -- башен, церквей, мельниц.

Среди способов сохранения срубов -- полная их переборка с предварительной нумерацией венцов и последующая специальная обработка древесины, например пропитка в вакуумных камерах. Необработанный, разобранный материал, оставаясь на площадке или в штабеле, может быстро потерять свои кондиции -- усохнуть, загнить или деструктироваться из-за смены среды существования. Вновь собираемые на старом или, тем более, новом месте срубы из необработанной древесины часто настолько меняют свою геометрию, что их столярные и декоративные элементы -- двери, окна, причелины и др. оказываются совершенно непригодными, значительно не «вписываясь» в свои проемы и места. Любая разборка и транспортировка исторических срубов на территории специальных заповедников, как и использование для вычинки современной древесины, должны быть строго аргументированы.

Температурно-влажностный резким и сохранность памятников архитектуры

Понятие о микроклимате и его основные характеристики

Реставрация и консервация неизбежно связаны с тем или иным вмешательством в структуру памятника, и всегда в какой-то мере изменяют эту структуру. Поэтому очень важно создать условия, позволяющие возможно долго обходиться без такого вмешательства или свести его к минимуму. Решение этой задачи во многом сводится к учету тех параметров окружающей среды, которые так или иначе влияют на функционирование и сохранность памятников архитектуры, и к созданию условий этой среды, соответствующей наилучшей сохранности реставрируемого объекта.

Для понимания сущности средств и методов создания условий воздушной среды, обеспечивающих сохранность памятников архитектуры, необходимо иметь представление о температурном и влажностном режимах как воздушной среды сооружения, так и ограждающих конструкций здания. Важно также уметь оценивать и влияние на сооружение внешних условий окружающей среды.

Под микроклиматом помещений в широком смысле этого термина понимают, с одной стороны, состояние воздушной среды, с другой, -- температурные и влажностные характеристики ограждающих конструкций и предметов, находящихся в здании или помещении (мебели, предметов искусства, оборудования и др.). Параметры воздушной среды внутри помещения и температура внутренних поверхностей ограждений и находящихся в нем предметов, воздействуя комплексно, формируют те или иные качества микроклиматических условий. Эти условия могут быть как благоприятными, так и неблагоприятными.

Оценка степени благоприятности микроклиматических условий всегда подразумевает учет двух групп требований. Первая группа -- это так называемые санитарно-гигиенические требования, т.е. обеспечение условий комфортного пребывания в помещении людей, поэтому их часто называют комфортными. Вторая -- технологические требования, к числу которых следует отнести и необходимость обеспечения условий сохранности как самих строительных конструкций, так и элементов интерьеров и тех предметов, что находятся в помещениях.

Для понимания содержания качества микроклимата полезно иметь в виду, с одной стороны, перечень определяющих его параметров воздушной среды, а с другой, -- методы учета комплексного воздействия последних.

Итак, состояние воздушной среды с позиций микроклимата определяется тремя параметрами: температурой воздуха tв; относительной влажностью воздуха ф, которая представляет собой отношение количества водяного пара, находящегося в воздухе данного состояния, к тому количеству, которое насыщает воздух при данной температуре (выражается либо в процентах, либо в долях единицы); подвижность воздуха v, т. е. скорость его перемещения без учета направления.

Четвертый параметр, существенно определяющий микроклиматические условия, -- так называемая результирующая температура, которая в самом простом представлении является средневзвешенной температурой окружающих строительных поверхностей и предметов, т. е. отношением суммы произведений температуры на площадь соответствующей поверхности к сумме площадей поверхностей.

Заметим, что комфортному состоянию людей соответствует довольно широкий диапазон изменения названных выше параметров. Более того, одинаковое тепловое состояние человека и одинаковые тепловые ощущения могут иметь место при различных комбинациях метеорологических параметров воздуха. Так, при повышении температуры для сохранения первоначального теплового состояния можно увеличить подвижность воздуха или понизить температуру ограждающих конструкций. Для оценки комплексного воздействия введены шкалы эквивалентно-эффективных температур (ЭЭТ) и результирующих температур (РТ). Например, ЭЭТ соответствуют все бесчисленные комбинации температуры, относительной влажности и подвижности воздуха, вызывающие одинаковые тепловые ощущения у человека, причем такие, которые возникают в неподвижном воздухе, полностью насыщенном водяным паром при температуре, численно равной эквивалентно-эффективной.

Если оценить перечисленные выше параметры для наиболее часто встречающихся ситуаций, то можно получить следующие диапазоны, более или менее соответствующие комфортному состоянию людей: температура воздуха 18-- 22 °С; относительная влажность воздуха 40--70%; среднерациональная температура окружающих поверхностей 14-- 18 °С.

Правильно организованный температурно-влажностный режим оказывает огромное влияние на обеспечение долговременной сохранности реставрируемых памятников архитектуры, а также сохранности исторических и художественных ценностей в музейных, культовых и других старинных зданиях. Требования к микроклиматическим параметрам воздуха в этих зданиях определяются, как правило, материалом ограждающих конструкций и предметов, хранящихся в рассматриваемых зданиях и сооружениях.

Таблица 1. Параметры температурно-влажностного режима воздуха при ЭЭТ=18 °С

Температура, °С

18,0

20,0

18,9

21,1

20,0

22,2

23,3

24,0

Относительная влажность, %

100

49

70

30

69

17

25

9

Подвижность, м/с

0

0

0

0

0,25

0,25

1,0

1,0

Анализ табл. 1 свидетельствует о том, что материалы и экспонаты предъявляют более жесткие требования к их влажностному состоянию по сравнению с их тепловым состоянием. Связано такое положение с тем, что большинство строительных материалов (кирпич, бетон, штукатурка, дерево и др.) точно так же, как и музейные экспонаты, представляют собой капиллярно-пористую структуру с весьма развитой системой капилляров.

В основе механизма взаимодействия капиллярно-пористых тел с влажным воздухом лежат адсорбция и десорбция парообразной влаги.(т. е. ее поглощение и выделение) системой капилляров, стенки которых смачиваются водой, образуя при этом вогнутый мениск. Направление переноса влаги зависит от знака разности парциального давления водяного пара в воздухе Рnb и непосредственно над поверхностью мениска (внутри капилляра) Рnk

Влажный воздух можно рассматривать как смесь, состоящую из сухой части (кислород, азот, углекислота и инертные газы) и водяного пара. Эта смесь находится под барометрическим давлением, представляющим собой сумму давлений сухой части и водяного пара, которое и принято называть парциальными.

При Рnb> Рnk имеет место поглощение материалом парообразной влаги из воздуха и, наоборот, когда Рnb < Рnk' материал испаряет влагу в воздух. При поглощении и испарении влаги меняются размеры тела, т. е. имеют место так называемые влажностные деформации, которые способствуют постепенному разрушению капиллярно-пористого тела. Особенно неблагоприятны ситуации, когда темп изменения Рnb , достаточно высок. Иногда и такое положение имеет место при применении в помещениях систем механической вентиляции и кондиционирования воздуха с достаточно большими диапазонами изменения регулируемых параметров температуры и влажности.

Длительное пребывание материала в воздухе с постоянной влажностью приводит к тому, что Рnb становится равным Рnk', и материал приобретает так называемое равновесное (стационарное) состояние. Каждому материалу соответствует вполне определенное равновесное состояние, которое наиболее благоприятно для его физико-химических, прочностных и других качеств и гарантирует длительную сохранность. Такие оптимальные значения относительной влажности (при условии их относительного постоянства во времени) и приведены в табл. 2.

Таблица 2. Рекомендуемые параметры температурно-влажностного режима для различных материалов и экспонатов

Материал и экспонат

Температура, °С

Относительная влажность, %

Стекло «корродированное»

18--24

40

Эмали «выщелочные»

18--24

40

Металлы, их сплавы, оружие нумизматика

18--24

15--40

Археологические экспонаты

18--24

20--30

Изделия из стекла

18--25

50

Эмали

18--24

50

Изделия из кожи, пергамент

18--24

40--50

Ткани, одежда, ковры

18--24

40--50

Изделия из кости

18--24

40--60

Живопись на холсте

18--24

50--60

Лакированные изделия

18--24

50--60

Рукописи, книги, рисунки литографии

18--25

45--60

Живопись на дереве

18--25

40--60

Керамика, фарфор

18--25

40--60

Фотодокументы

10--12

50--60

Мебель

18--25

40--60

При оценке состояния ограждающих конструкций довольно часто приходится отыскивать причины их переувлажнения и выпадения конденсата либо на поверхности этих конструкций, либо в их толще. Оценки эти, как правило, связаны с определением температуры точки росы tp.

Удельное содержание влаги в воздухе (в расчете на 1 кг сухой его части) называется влагосодержанием d. Можно показать, что при неизменном барометрическом давлении парциальное давление водяного пара в воздухе зависит только от влагосодержания, т. е. Рn = f(d), и не зависит от температуры. Поэтому при нагревании или охлаждении воздуха, до тех пор пока не меняется его влагосодержание, парциальное давление водяного пара остается неизменным, а давление насыщения (парциальное давление насыщенного водяного пара), зависящее от температуры [Рny = f(t)], при этом изменяется. Следовательно, изменяется также и относительная влажность воздуха.

Рассмотрим процесс охлаждения влажного ненасыщенного воздуха при постоянном влагосодержании. При понижении температуры парциальное давление ненасыщенного водяного пара остается неизменным, поскольку не меняется влагосодержание, а давление насыщенного водяного пара снижается из-за падения температуры. Следовательно, относительная влажность воздуха растет.

Наконец, при некоторой температуре tp неизменное парциальное давление водяного пара станет равным максимально возможному при этой температуре давлению насыщенного водяного пара, а относительная влажность -- равной единице, т. е. влажный воздух достигает состояния насыщения. При дальнейшем охлаждении влажного воздуха уменьшается его влагосодержание и начинается выпадение из него конденсата.

Температура tp, при которой парциальное давление водяного пара будет давлением насыщения, называется точкой росы влажного воздуха (температурой точки росы).

При теплотехнических расчетах ограждений производится проверка значений температуры внутренних поверхностей на предмет отсутствия выпадения конденсата.

Качество воздушной среды в помещениях памятников архитектуры определяется не только температурой и влажностью воздуха, но также его запыленностью, загазованностью, бактериальной загрязненностью, уровнем ионизации и другими факторами.

Взаимодействие здания и его элементов с окружающей средой

Температурно-влажностный режим помещений определяется совокупностью внешних и внутренних факторов. К внутренним факторам можно отнести тепло-, влаго- и газовыделения от пребывающих в помещениях людей, освещения, эманацию радона и торона с поверхности строительных конструкций, в состав которых входят минеральные заполнители (гранит, мрамор, базальт и др.).

Для отделки помещений (даже при выполнении реставрационных работ) все более широко используются различные синтетические материалы, выделяющие в воздух помещений целый спектр газов и летучих веществ, их степень токсичности и другие вредные воздействия не всегда достаточно компетентно оцениваются при проектировании и выполнении строительных работ.

Внешние факторы -- это, как правило, те климатические и природные условия, в которых расположено сооружение. К ним относятся солнечная радиация, температура и влажность наружного воздуха, скорость и направление ветра, продолжительность и интенсивность осадков и др. Для проектирования систем обеспечения микроклимата, в зданиях перечисленные показатели наружного климата нормируются на основе многолетних наблюдений.

Важно иметь в виду, что любые нормы, даже самые совершенные, разрабатываются, как правило, для современного строительства (чаще всего массового).

Каждый памятник архитектуры является уникальным сооружением, в том числе с позиций формирования в нем микроклиматических условий и влияния на них воздействия наружного климата, объемно-планировочных решений, теплозащитных качеств наружных и внутренних ограждений, назначения здания и режима его эксплуатации, предметов искусства, находящихся в нем и т.д. При реставрации и консервации памятника специалисты в области инженерного оснащения и строительной теплофизики обязаны при выборе расчетных показателей внутреннего микроклимата и наружного климата учитывать эти особенности.

Так, при разработке систем обеспечения микроклимата соборов Московского Кремля были проведены полномасштабные Исследовательские работы, позволившие рекомендовать рациональные и обоснованные решения. В частности, на основании сорбционно-деформативных характеристик материалов был сделан вывод о том, что для Успенского, Архангельского, Благовещенского соборов температура внутреннего воздуха зимой должна быть не менее 18°С, а летом-- не более 20°С. Относительная влажность внутреннего воздуха должна составлять 50% при возможном отклонении в течение суток на 5% в сторону увеличения в теплое время года и в сторону уменьшения -- в холодное. Подобные результаты послужили обоснованием необходимости оснащения соборов круглогодичными установками кондиционирования воздуха.

Другим примером могут служить комплексные исследования параметров микроклимата в ряде помещений корпуса Бенуа Государственного Русского музея, которые позволили для климата Петербурга рекомендовать более простую систему регулирования параметров воздушной среды в обследованных помещениях с увлажнением воздуха зимой и подогревом на 3--4°С в весенний и осенний периоды года.

Большое влияние на микроклимат памятника архитектуры и проектирование системы регулирования микроклимата оказывают теплозащитные показатели ограждающих конструкций, которые в памятниках, как правило, отличаются двумя особенностями: большой тепловой инертностью и переменным по высоте сопротивлением теплопередачи, что является следствием различной толщины ограждения в нижней и верхней частях памятника.

Ограждения по-разному реагируют на колебания наружной температуры: одни быстро пропускают эти колебания внутрь помещений (малоинерционные тонкие ограждения), другие (инерционные массивные) медленно. Во втором случае отклонения температуры внутри помещения от требуемых значений оказываются существенно меньшими, чем в первом за счет как бы «накапливания» тепла или холода в толще ограждений. Свойство ограждений сохранять относительное постоянство температуры внутренней поверхности определяется показателем его тепловой инерции, или массивности.

Действующие нормы ориентированы на относительно маломассивные ограждения, для которых и установлены расчетные значения наружной температуры. Выбор расчетной наружной температуры для массивных ограждений требует проведения достаточно сложных расчетов, но зато определяет выбор рациональных и экономичных решений, а кроме того, часто позволяет упростить систему, что для реставрируемых зданий иногда очень важно.

Неудачный выбор расчетной наружной температуры осуществлен при проектировании отопительной системы Казанского собора в Петербурге. В соборе толщина стен (кроме купола) составляет 2,8--1,2 м. Расчеты показывают, что для таких стен расчетная наружная температура не должна быть ниже --17°С. Принятая же температура (по нормам для жилых зданий) составила --26°С. Результат -- перетапливание большинства помещений (tв = 24--26°С). Холодно только в молитвенном зале (tв = 10--12°С), но не в связи с недостаточной мощностью отопительной системы, а из-за неорганизованного поступления наружного воздуха через неплотности в световых проемах (особенно в барабане). При проектировании отопления никаких обследований, в том числе и аэрационных, не проводилось.

Следует отметить, что наибольшие неприятности в части режимов функционирования конструкций происходят в холодный период года. В теплое время возникают проблемы, связанные с обеспечением микроклиматических параметров в основном за счет перегрева помещений.

Нормальная работа ограждающих конструкций зимой во многом определяется местом расположения теплоизоляционного слоя. Если тепловая изоляция расположена с внутренней стороны ограждения, это может привести к выпадению конденсата в толщине ограждения. Если тепловая изоляция расположена снаружи, то подобное явление, как правило, исключено.

Роль влажностного режима ограждающих конструкций в формировании температурно-влажностных условий в зданиях

Влажностный режим ограждающих конструкций довольно часто существенно меняется по целому ряду причин. К ним можно отнести рост так называемого культурного слоя и связанное с этим изменение уровня грунтовых вод;

устройство инженерных коммуникации, что часто приводит к нарушению гидроизоляции и изменению гидрогеологической ситуации; изменение функционального назначения здания и соответственно тепловых и влажностных нагрузок; и, наконец, оснащение зданий современными системами регулирования микроклимата, которые также часто приводят к изменению температурного и влажностного режимов ограждений. Как правило, все рассмотренные факторы ведут к переувлажнению конструкций.

Влажностный режим ограждающих конструкций тесно связан с их тепловым режимом. Во-первых, с повышением влажности строительных материалов повышается и их способность проводить теплоту. Следовательно, при прочих равных условиях сырые ограждения будут иметь пониженные теплозащитные качества по сравнению с такими же, но сухими ограждениями. Во-вторых, переувлажнение ограждения приводит не только к выпадению конденсата, но и к его замерзанию, так как основная часть зоны конденсации находится в области отрицательных значений температуры. А многократное чередование оттаивания и замерзания является, в конечном счете, причиной разрушения конструкции.

Влажностный режим ограждения кроме участия в формировании так называемого теплового комфорта в помещениях влияет и на другие чрезвычайно важные санитарно-гигиенические аспекты, которые заключаются в том, что влажный строительный материал является благоприятной средой для развития в нем грибов, плесеней и других биологических процессов. В большинстве случаев эти процессы происходят в частях ограждений, расположенных в непосредственной близости от их внутренних поверхностей.

Не останавливаясь на вопросах расчета влажностного режима ограждающих конструкций, рассмотрим причины появления в них влаги и сформулируем некоторые рекомендации по нормализации этого режима.

Строительная влага вносится в ограждение при его возведении либо при последующих ремонтах. Количество этой влаги зависит от конструкции ограждения и способа возведения.

Грунтовая влага проникает в ограждение из грунта вследствие капиллярного переноса. В стенах здания эта влага может подниматься до 2,5 м от уровня земли. Для предохранения ограждения от этого вида влаги в современном строительстве включают гидроизоляционные слои. В древних же сооружениях гидроизоляция стен, как правило, отсутствует.

В некоторых случаях грунтовая влага в состоянии подниматься и выше 2,5 м. Подобное явление для старинных зданий можно объяснить двумя причинами: уменьшением со временем радиусов капилляров; большей степенью высушенности конструкций долго простоявших зданий.

Метеорологическая влага может проникать внутрь ограждения в связи с выпадением атмосферных осадков. В наружные стены эта влага проникает или при косом дожде в результате смачивания наружной поверхности, или около карнизов и наружных водостоков в результате их неисправности, но, что еще хуже, -- в результате неквалифицированного их проектирования, когда не учитываются, с одной стороны, интенсивность и продолжительность осадков, с другой, -- геометрия кровли и расположение здания в застройке.

Известную роль в поступлении метеорологической влаги в подвальные части зданий играет замощение дворовых территорий в районах бывшей усадебной застройки в крупных городах. Такое положение можно наблюдать во многих зданиях в Москве и в Петербурге.

В большинстве наших городов подлинным бедствием в этом отношении является образование наледи и сосулек на карнизной части кровли (особенно в местах расположения наружных водостоков). Наружные водостоки по этой причине требуют ежегодного ремонта, а борьба с обледенением кровли приводит, как правило, к нарушению ее герметичности.

Причиной появления обледенения кровли следует считать относительно высокую температуру в межчердачном пространстве, особенно в связи с прокладкой в нем магистральных трубопроводов отопления. Во избежание этого следует интенсифицировать вентиляцию межчердачного пространства (особенно в теплые зимние дни и в начальный период весны).

Для предохранения стен от увлажнения метеорологической влагой необходимо защищать их наружную поверхность материалами, слабо впитывающими влагу.

Гигроскопическая влага находится в ограждении в связанном состоянии за счет свойств материала сорбировать (поглощать) водяной пар из воздуха.

Довольно часто при производстве работ в зимнее время в раствор добавляют хлористые соли. А они-то как раз и обладают высокой сорбционной способностью, интенсивно поглощают влагу из воздуха и тем самым переувлажняют конструкцию, что часто служит причиной появления сырых пятен на внутренней поверхности стен и налетов выщелоченных солей («высолов») -- на наружной.

Конденсация влаги из воздуха. Процесс конденсации влаги из воздуха тесно связан с теплотехническим режимом ограждения. В подавляющем большинстве случаев конденсация влаги является единственной причиной повышения влажности конструкции. Явление конденсации тесно связано с понятием точки росы и достаточно рассмотрено ранее. Исключение явления конденсации -- одна из целей теплотехнического расчета.

Системы поддержания требуемого микроклимата

К средствам регулирования микроклимата принято относить системы отопления, вентиляции и кондиционирования воздуха. Совместно с ограждающими конструкциями эти системы обеспечивают поддержание требуемых параметров как воздуха, так и известной нам среднерадиационной температуры. При этом ограждения играют в таком случае, по определению специалистов, пассивную роль, а названные системы -- активную.

Отметим, что особенностью инженерных систем является их относительная недолговечность. Если здание строится на века, то системы, обеспечивающие его сохранность, физически и морально стареют сравнительно быстро -- за несколько десятков лет. Возникающая при этом необходимость их модернизации практически всегда связана с прокладкой новых магистралей, что не может обойтись без той или иной степени внедрения этих устройств в уже существующие конструктивные элементы здания. Наиболее обременительны в этом отношении системы вентиляции и кондиционирования воздуха, транспортные пути которых (воздуховоды) отличаются большими габаритами. Причем следует отметить то обстоятельство, что этими системами чаще всего оснащают помещения с высокохудожественными интерьерами.

Словом, любая модернизация систем обеспечения микроклимата всегда связана с определенными утратами для здания и его интерьеров. Совместные усилия архитекторов-реставраторов и инженеров должны сводиться к тому, чтобы эти утраты были минимальными.

Системы отопления предназначены для обеспечения заданного температурного режима. Влажностный режим при функционировании только отопительных систем не регулируется, хотя, как правило, при работающем отоплении в зимнее время относительная влажность воздуха в помещениях не превышает 40%, а часто поддерживается на уровне 20--30%, что, безусловно, нельзя признать удовлетворительным. При этом разновидность отопительной системы практически не имеет значения. Более того, известны случаи, когда непродуманные решения отопительных систем становились причиной порчи как интерьеров, так и произведений искусства.

...

Подобные документы

  • Классификация реставрационных и консервационных работ. Задачи и виды фиксации памятников архитектуры. Общие особенности проектирования при реставрации. Эскизный проект реставрации. Рабочий проект и проект приспособления. Флигель усадьбы Чернышова.

    реферат [36,0 K], добавлен 06.11.2012

  • Принципы и значение установления возможных причин деформаций и их величин для правильного проектирования и производства геодезических измерений. Процесс реставрации памятников архитектуры, его основные этапы и основные критерии оценки эффективности.

    реферат [14,9 K], добавлен 09.12.2015

  • Подготовка проектной документации, оказывающей влияние на безопасность объектов капитального строительства. Работы по инженерным изысканиям и защите информации. Деятельность по реставрации объектов культурного наследия (памятников истории и культуры).

    отчет по практике [23,2 K], добавлен 14.11.2011

  • Черты и элементы стиля барокко в архитектуре. Изучение древнего псковского зодчества, ансамбля Кремля, его памятников. Исследование эволюции псковской архитектуры на протяжении нескольких веков. Благовещенский собор XIX в. Башни Крома и Довмонтова города.

    курсовая работа [47,3 K], добавлен 14.05.2014

  • Расчет количества строительных материалов на 1 этаж здания. Особенности производства каменных работ в зимнее время. Растворы с химическими добавками и применение подогрева. Вяжущие противоморозные добавки. Особенности применения бутобетонной кладки.

    контрольная работа [137,4 K], добавлен 21.11.2010

  • Фотографии памятников, созданных в стилях русско-византийском, классицизма и необарокко (Александринский театр, павильоны Аничкова двора, Главное адмиралтейство, соборы, дворцы архитектуры) 19 в. Санкт-Петербурга и Москвы. Их создатели, годы постройки.

    презентация [2,2 M], добавлен 14.03.2011

  • Тобольск как один из самых живописных и зрелищных городов России, оставляющий неизгладимое впечатление своей захватывающей панорамой и величественной красотой архитектурных памятников. История создания самых важных зданий города, особенности архитектуры.

    реферат [958,7 K], добавлен 23.12.2015

  • Краткая история появления профессии архитектор. Реконструкция старых городов и памятников архитектуры. Создание ландшафтных панорам. Карьера и зарплата. Особенности работы в крупных проектных институтах и государственных органах, связанных с архитектурой.

    презентация [9,7 M], добавлен 16.02.2015

  • Архитектурные сооружения, построенные на территории городов Гезлёв, Солдайя, Солхат, Кафа, Бахчисарай. Общая характеристика крымско-татарских сооружений. Архитекторы Ходжа Синан, Омер. Критическое состояние архитектурных памятников и сооружений Крыма.

    курсовая работа [59,5 K], добавлен 16.11.2008

  • Исследование истории построения архитектурных памятников города Орска. Анализ использования стиля раннего модерна с сильным влиянием немецкого классицизма и элементами русской национальной архитектуры. Описания возведения здания вокзала станции "Орск".

    презентация [542,9 K], добавлен 11.12.2011

  • История создания Казанского Преображенского храма г. Тутаева Ярославской области. Особенности защиты памятников культуры расположенных на оползневых берегах водных объектов. Характеристика и оценка технического и геоэкологического состояния храма.

    реферат [25,7 K], добавлен 26.02.2015

  • История развития архитектуры в Узбекистане. Монументальные здания Самарканда. Сложный архитектурный ансамбль соборной мечети Биби-Ханым. Красота усыпальницы Тимуридов—Гур-Эмир в Самарканде, памятников тимуридского времени. Архитектурные ансамбли Бухары.

    реферат [3,8 M], добавлен 28.03.2011

  • Проблемы сохранения памятников культуры и архитектуры Санкт-Петербурга: реставрация, уничтожение, перестройка зданий, застройка пустующих мест, установка малых и больших скульптурных форм в историческом центре города; организация публичных дискуссий.

    курсовая работа [1,5 M], добавлен 08.05.2011

  • Дмитриевский собор как один из самых ярких и известных памятников Владимиро-Суздальской архитектуры "домонгольского" периода. Благородство форм и идеальные пропорции храма. Белокаменная резьба собора. Царь Давид как главная тема скульптурного декора.

    реферат [2,8 M], добавлен 12.05.2015

  • Архитектурно-планировочное решение здания. Расчёт ленточного и свайного фундаментов, теплотехнический расчет наружной стены. Выполнение каменных и монтажных работ, подбор монтажного крана. График производства работ и калькуляция трудовых затрат.

    дипломная работа [798,3 K], добавлен 09.12.2016

  • Изучение биографии профессора Тамбовского государственного технического университета, заслуженного архитектора А.С. Куликова. Создание и открытие монумента "Вечный огонь", памятников В.И. Ленину, Г.Р. Державину и Героям Советского Союза в городе Тамбове.

    реферат [20,1 K], добавлен 15.03.2016

  • Характеристика возводимого здания и определение объемов работ. Калькуляция трудовых затрат и заработной платы. Технология и организация каменных и монтажных работ, выбор оборудования и методов. Охрана труда и техника безопасности в строительстве.

    курсовая работа [841,8 K], добавлен 06.06.2012

  • Описание принципов и правил реконструкции и реставрации существующих каменных зданий, для обеспечения их конструктивной надежности и долговечности. Традиционные методы восстановления и усиления отдельных конструктивных элементов зданий из каменной кладки.

    реферат [1,7 M], добавлен 13.10.2011

  • Указания по приемке, складированию и хранению материалов. Монтаж перегородок из пазогребневых плит. Требования безопасности при работах с применением грузоподъемных механизмов и устройств. Указания по возведению кирпичных стен. Выполнение каменных работ.

    практическая работа [723,6 K], добавлен 09.11.2012

  • Архитектурно-строительная характеристика объекта строительства. Объемно-планировочное и конструктивное решение. Методы производства работ. Опалубочные, арматурные работы. Состав комплексного процесса. Правила техники безопасности при производстве работ.

    отчет по практике [1,8 M], добавлен 16.04.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.