Прогнозирование огнестойкости стальных конструкций с огнезащитой
Проведение исследования основных механизмов изменения прочностных и деформативных свойств применяемых в строительстве сталей. Главная особенность изучения влияния интенсивности нагревания на величину критической температуры сжатых стальных стержней.
Рубрика | Строительство и архитектура |
Вид | автореферат |
Язык | русский |
Дата добавления | 15.02.2018 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Алгоритм расчета температур для случая, когда стальная пластина с одной стороны ограничена идеальной теплоизоляцией, а с другой - облицовкой состоит из следующих формул:
- температура обогреваемой поверхности облицовки:
;
- температура в средних слоях "" облицовки:
;
где:;
- температура стальной пластины:
где:
Исследования огнезащитной эффективности покрытий для стальных конструкций позволили получить зависимости изменения коэффициентов теплопроводности и теплоемкости огнезащитных облицовок при огневом воздействии (табл. 4). Для получения этих зависимостей проводились огневые испытания стальных облицованных конструкций. При наличии экспериментальных данных путем решения обратной задачи теплопроводности с помощью ЭВМ по разработанной программе были определены теплофизические характеристики (коэффициенты теплопроводности и теплоемкости) материала.
Таблица 4 Теплотехнические характеристики облицовок
№ п/п |
Наименование материала |
ГОСТ или ТУ |
Плотность, ,кг/м3 |
Коэффициент теплопроводности, Вт/(м· К) |
Коэффициент теплоемкости, Дж/(м· К) |
Степень черноты S |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
1 |
Бетон на гранитном щебне |
ГОСТ 7473-76 |
2330 |
=1,3-0,00035 |
=481+0,84 |
0,63 |
|
2 |
Плиты мраморовидные облицовочные гипсовые |
ТУ РФ 2.195-1980 |
2000 |
=0,59-0,000116 |
=634+0,84 |
0,50 |
|
3 |
Цементно-песчаная штукатурка |
ГОСТ 7473-76 |
1930 |
=0,96-0,00044 |
=598+0,63 |
0,87 |
|
4 |
Кирпич силикатный |
ГОСТ 379-79 |
1700 |
=0,89-0,00035 |
=674+0,60 |
0,90 |
|
5 |
Кирпич глиняный обыкновенный |
ГОСТ 530-71 |
1580 |
=0,39+0,00023 |
=596+0,419 |
0,94 |
|
6 |
Керамзитобетон |
ГОСТ 7473-76 |
1400 |
=0,36+0,000081 |
=707+0,48 |
0,60 |
|
7 |
Листы ГВЛ |
ГОСТ Р 51829-2001 |
1150 |
=0,135+0,00035 |
=849+0,59 |
0,86 |
|
8 |
Листы ГКЛ |
ГОСТ 6266-97 |
960 |
=0,135+0,00035 |
=849+0,59 |
0,86 |
|
9 |
Плиты асбестоперлитоцементные |
ТУ 21-24-76-76 |
960 |
=0,055+0,00035 |
=667+0,63 |
0,90 |
|
10 |
Плиты "Акмигран" |
ГОСТ 17918-72 |
300 |
=0,056+0,00019 |
=1268+1,4 |
0,90 |
|
11 |
Состав "Ньюспрей" |
ТУ 5767-002-20942052-00 |
300 |
=0,056+0,00022 |
=748+0,063 |
0,90 |
|
12 |
Покрытие по стали фосфатное огнезащитное |
ГОСТ 23791-79 |
200 |
=0,025+0,00022 |
=1086+0,63 |
0,89 |
|
13 |
Состав "Девиспрей" |
ТУ 5767-003-20942052-02 |
200 |
=0,02+0,000055 |
=748+0,063 |
0,89 |
|
14 |
Плиты минераловатные "Paroc FPS-17" |
Технический регламент |
180 |
=0,02+0,00015 |
=670+0,065 |
0,92 |
|
15 |
Плиты минераловатные "Conlit" фирмы "Rockwool" |
Технический регламент |
165 |
=0,025+0,00015 |
=680+0,065 |
0,92 |
|
16 |
Плиты базальтоволокнистые ПНТБ |
ТУ 576940-024-5042022414-96 |
140 |
=0,03+0,00015 |
=582+0,065 |
0,92 |
Полученные параметры теплофизических характеристик для различных облицовок позволили построить номограммы прогрева стальных неограниченных пластин в зависимости от толщины стали , и толщины облицовки для 16 видов материалов.
В тех случаях, когда получение теплофизических характеристик расчетом не представлялось возможным (например, при исследовании вспучивающихся покрытий), проводились дополнительные теплофизические испытания огнезащищенных стальных плит, в результате которых определялись зависимости огнезащитной способности покрытий от толщины металла . Эти зависимости можно применять для расчета пределов огнестойкости конструкций.
Анализ исследований по определению огнезащитной эффективности средств огнезащиты позволил разработать структурно-методологическую схему выбора огнезащиты (рис. 9).
Рис. 9. Структурно-методологическая схема выбора огнезащиты
Основные выводы
1. Разработана система методик по исследованию огнестойкости сжатых и изгибаемых стальных конструкций из сталей обычных марок и сталей с повышенными показателями термостойкости и с использованием различных видов огнезащитных материалов.
2. Разработана математическая модель, описывающая динамику деформирования несущих стальных балок, в условиях различных режимов огневого воздействия. Выявлен механизм действия деформации температурной кратковременной ползучести на процесс нарастания прогиба в балках. Определены параметры, описывающие процесс деформирования стальных изгибаемых элементов при высоких температурах.
Предложенная математическая модель расчета деформирования стальных балок в условиях огневого воздействия, с учетом температурной ползучести стали, позволяет определять влияние скорости нагрева на процесс деформировании балки.
Модель апробирована с использованием экспериментальных данных, полученных автором и опубликованных в литературе для стальных балок из сталей в условиях стандартного огневого воздействия. Результаты расчетов и экспериментальные данные удовлетворительно согласуются.
3. Создана современная по техническому уровню экспериментальная установка для проведения испытаний на огнестойкость изгибаемых стальных балок при статической нагрузке. Конструктивное исполнение установки позволяет создавать и контролировать в огневой камере различные режимы огневого воздействия, обеспечивать различные уровни нагружения соответствующие реальным условиям эксплуатации (способ опирания, трехсторонней обогрев, трехметровый пролет балки и др.).
Выявлены основные закономерности влияния напряженного состояния и скорости нагрева стали на величину критической деформации стальных балок. Показано, что использование новых марок стали с термостойкими добавками увеличивает время до момента обрушения балок при огневом воздействии.
4. Проведенный комплекс исследований прочностных и деформативных свойств сталей конструкционных и сталей с повышенными показателями термостойкости позволил:
- установить закономерности, характеризующие уровень и вид напряженного состояния, влияние скорости нагрева и марки стали на деформацию температурной ползучести малоуглеродистой стали ВСт3пс, низколегированной 09Г2С и новых марок сталей 06БФ и 06МБФ с повышенными показателями термостойкости;
- выявить основные закономерности и взаимосвязь между прочностными свойствами при повышенных температурах и видом напряженного состояния (растяжение, сжатие), скоростью нагружения исследованных марок стали;
- выявить характер изменения модуля упругости Е (Т) и предела текучести при нагреве исследуемых сталей при растяжении и сжатии и установить величину расхождения прочностных показателей;
5. Предложена модель деформации кратковременной температурной ползучести. В основу модели положена теория ползучести, позволяющая рассматривать влияние температуры, которая изменяется со временем. Адекватное описание этой моделью наблюдаемой динамики нарастания необратимых деформаций стали в экспериментах позволяет рекомендовать её для определения ползучести стали в условия огневого воздействия. Её использование позволило:
- установить взаимосвязь между прочностными и деформативными свойствами исследованных марок стали и температурными режимами в условиях огневого воздействия, показать возможность оценки необратимых температурных деформаций стали с учетом различных скоростей нагрева;
- определить параметры ползучести м , , Z и мс, и Zc, описывающие процесс ползучести при нестационарных режимах нагрева, соответствующих режимам нагрева стальных конструкций с различными видами огнезащитных покрытий при огневом воздействии;
- установить, что деформацию ползучести , не превышающую 2%, при режимах нагрева стали от 3 до 30 град/мин можно рассчитывать в данном интервале при средней скорости нагрева.
6. Разработаны расчетные и экспериментальные методы оценки несущей способности сжатых стальных конструкций из наиболее применяемых марок стали ВСт3пс и 09Г2С, рекомендованных для строительных конструкций, с учетом деформации ползучести и различных режимов огневого воздействия для прогнозирования, математического моделирования, противопожарного нормирования несущих стальных конструкций по критическим деформациям.
Сконструирована, изготовлена и оснащена приборами лабораторная установка для исследования несущей способности сжатых стальных стержней при высокотемпературном воздействии и разработана методика экспериментального определения прогиба в среднем сечении сжатых элементов.
Полученное в диссертации удовлетворительное совпадение экспериментальных и расчетных данных свидетельствует о приемлемости принятых в основу аналитических исследований допущений, а также позволяет считать условия работы испытываемых стержней достаточно близкими к расчетным.
Предложенный в настоящей главе метод расчета критической температуры одинаково приемлем для сжатых стальных стержней из строительных сталей с реальными размерами и их моделей.
7. Предложена новая методика определения огнезащитных свойств покрытий и облицовок для стальных конструкций, позволяющая выбрать наиболее эффективный вариант огнезащиты.
На основании систематических исследований и математической обработки результатов с использованием численных методов на базе ЭВМ получены зависимости изменения теплофизических характеристик облицовок при нагреве их до высоких температур. С их помощью обработаны экспериментальные данные крупномасштабных экспериментов по исследованию огнезащитной эффективности различных видов покрытий для стальных конструкций и установлены зависимости скорости прогрева стали от вида, толщины облицовки. Это позволило:
-определить зависимости для расчетов толщины стальной облицованной неограниченной пластины , скорость прогрева которой будет аналогична скорости прогрева стенки стержня конструкции;
- установить, что важным фактором, влияющим на прогрев стальных конструкций является приведенная толщина металла , которая в значительной степени зависит от формы сечения. Подбирать оптимальную форму сечения с точки зрения огнестойкости следует до выбора вида и толщины огнезащиты;
- построить номограммы прогрева стальных неограниченных пластин с различной толщиной стали и с различными видами огнезащитных материалов. С помощью данных номограмм можно определять температуру прогрева стержневых конструкций обогреваемых с четырёх сторон с приведенной толщиной стали = ;
- выявить основные закономерности и взаимосвязь между огнезащитными свойствами материалов и процессом деформирования несущих стальных элементов при огневом воздействии. Получить данные, характеризующие реальные условия нагрева стали при огневом воздействии на строительные конструкции с различными видами огнезащитных покрытий;
- получить новые экспериментальные данные, характеризующие влияние на огнезащитную эффективность способа крепления плитных материалов, грунтовочного и поверхностного слоев для огнезащитных покрытий, штукатурок и вспучивающихся красок.
8. Разработана система научно обоснованного выбора огнезащитных покрытий в целях обеспечения требуемой огнестойкости для стальных конструкций, позволяющая использовать её для практических целей.
Основное содержание диссертационной работы отражено в следующих публикациях
1. Яковлев А.И., Голованов В.И. Расчет критической температуры при определении предела огнестойкости сжатых стальных конструкций // Огнестойкость строительных конструкций: Сб. научн. тр. - М.: ВНИИПО . -1984. - С. 5-12.
2. Яковлев А.И., Савкин Н.П. Голованов В.И. Гипсокартонные листы - огнезащитная облицовка несущих металлических конструкций производственных зданий и сооружений // Промышленное строительство. - 1984. -№1. - С. 29-32.
3. Голованов В.И. Прочностные свойства строительных сталей при сжатии в условиях высоких температур. // Обеспечение пожарной безопасности зданий, сооружений и населенных пунктов: Сб. научн. тр. - М.:ВНИИПО. - 1990. - С. 45-50.
4. Голованов В.И., Зотов С.В. Расчет несущей способности строительных конструкций при реальном пожаре в помещениях радиотелевизионной башни // Огнестойкость строительных конструкций и безопасность людей при пожаре: Сб. научн. тр. - М.: ВНИИПО. - 1991 - С. 8-14.
5. Голованов В.И. Учет температурной ползучести стали при расчетах на огнестойкость металлических конструкций // Пожаровзрывобезопасность. - 1993. - №3. - С. 47-50.
6. Голованов В.И. Ружинский А.В. Метод испытания на огнестойкость стальных конструкций с огнезащитными покрытиями и облицовками // Пожаровзрывобезопасность. - 1994. - №2. - С. 37-39.
7. Голованов В. И., Ружинский А.В. Методы огнезащиты несущих металлических конструкций // Материалы Всероссийской XIII научно-практической конференции, - М.: ВНИИПО. - 1995. - С. 366-367.
8. Голованов В.И., Харитонов В.С. Огнестойкость строительных конструкций // Юбилейный сборник трудов ФГУ ВНИИПО МЧС России, 1997. - С. 232-250.
9. Голованов В.И., Павлов В.В., Пехотиков А.В. Огнестойкость многопустотных железобетонных перекрытий с различными видами огнезащиты // Пожарная безопасность. - 1999. - №2. - С. 57-66.
10. Голованов В.И., Павлов В.В., Пехотиков А.В. Новые виды огнезащиты и методы определения огнестойкости стальных несущих конструкций // Проблемы горения и тушения пожаров на рубеже веков: Материалы Всероссийской XV научно-практической конференции. - М.: ВНИИПО. -1999. - С. 121-122.
11. Страхов В.П., Крутов А.М., Голованов В.И и др. Разработка композиционной огнезащиты повышенной эффективности из термостойких базальтоволокнистых материалов и водосодержащих составов// Пожаровзрывобезопасность. -1999. - №2. - С. 13-24.
12. Голованов В.И., Павлов В.В., Пехотиков А.В. Огнезащита многопустотных железобетонных перекрытий // Пожарное дело. - 2000. - №4. - С. 41-43.
13. Голованов В.И., Павлов В.В., Пехотиков А.В. Метод расчета и критерии нормирования необратимых деформаций несущих строительных элементов при пожарах в уникальных зданиях и сооружениях // Крупные пожары: предупреждение и тушение: Материалы Всероссийской XVI научно-практической конференции - М.: ВНИИПО. - 2001. - С.293-294.
14. Голованов В.И., Павлов В.В., Пехотиков А.В. Обеспечение огнестойкости несущих строительных конструкций // Пожарная безопасность. - - 2002. - №3. - С. 48-58.
15. Голованов В.И., Пехотиков А.В., Соловьев Д.В. Исследование огнестойкости несущих конструкций из новых марок стали под нагрузкой // Снижение риска гибели людей при пожарах: Материалы Всероссийской XVIII научно-практической конференции. М.:ФГУ ВНИИПО, - 2003. - С.145-146.
16. Голованов В.И., Яйлиян Р.А. Математическая модель расчета деформации стальных балок в условиях пожара.// Пожарная безопасность многофункциональных и высотных зданий и сооружений: Материалы XIX международной научно-практической конференции. - М.:ФГУ ВНИИПО, - 2005. - С. 132-137.
17. Голованов В.И. Деформация кратковременной температурной ползучести строительных сталей с улучшенными деформативными свойствами. // Пожарная безопасность многофункциональных и высотных зданий и сооружений: Материалы международной XIX научно-практической конференции. - М.: ФГУ ВНИИПО, - 2005. - С. 208-211.
18. Голованов В.И. Математическая модель расчета прогиба стальных балок в условиях пожара с учетом кратковременной температурной ползучести стали // Чрезвычайные ситуации: теория, практика, инновации "ЧС - 2006": Материалы докладов международной научно- практической конференции, Гомель, Беларусь. - 2006. - С. 253-255.
19.Голованов В.И., Павлов В.В., Пехотиков А.В. Инженерный метод расчета огнестойкости стальных конструкций с огнезащитой из минераловатных плит " ROCKWOOL CONLIT" // Пожарная безопасность. - 2006. - №4. -С.78- 85.
20. Голованов В.И., Яйлиян Р.А., Пехотиков А.В. Расчет деформации балок из сталей с повышенными показателями огнестойкости в условиях огневого воздействия // Пожарная безопасность. - 2006. - №5. - С.28-36.
21. Голованов В.И., Пехотиков А.В., Павлов В.В. Расчет огнестойкости конструкций из стали с повышенными показателями огнестойкости для объектов нефтегазовой промышленности // Территория нефтегаз. - 2007. -№4. - С.72-77.
22. Голованов В.И., Павлов В.В., Пехотиков А.В. Новые огнезащитные облицовки для несущих стальных конструкций. // Исторические и современные аспекты решения проблем горения, тушения и обеспечения безопасности людей при пожарах: Материалы XX международной научно-практической конференции. - М.:ФГУ ВНИИПО, - 2007. - С.227-229.
23. Голованов В.И. Расчет деформации стальных балок в условиях огневого воздействия // Проблемы прогнозирования чрезвычайных ситуаций: Материалы VII международной научно-практической конференции - М.: Центр "Антистихия" - 2007. - С.37-38.
24. Хасанов И.Р., Голованов В.И. Развитие методов исследования огнестойкости и пожарной опасности строительных конструкций и инженерного оборудования // Юбилейный сборник трудов ФГУ ВНИИПО МЧС России, - 2007. -С. 121-158.
Размещено на Allbest.ru
...Подобные документы
Начальные этапы развития стальных каркасных конструкций в многоэтажном строительстве. Чикагская архитектурная школа. Начало каркасного строительства в Европе. Архитектура небоскребов в США. Международная архитектура стальных конструкций. Навесные стены.
реферат [96,0 K], добавлен 22.05.2008Материалы для металлических конструкций. Преимущества и недостатки, область применения стальных конструкций (каркасы промышленных, многоэтажных и высотных гражданских зданий, мосты, эстакады, башни). Структура стоимости стальных конструкций. Сортамент.
презентация [335,6 K], добавлен 23.01.2017Этапы проектирования стальных конструкций балочной клетки, выбор схемы и расчет балок. Проверка местной устойчивости сжатого пояса и стенки. Конструирование опорной части и укрупнительного стыка балки. Подбор сечения сплошной колонны балочной площадки.
курсовая работа [560,9 K], добавлен 21.06.2009Новые методы монтажа и организации производства, новые виды техники, применяющиеся в современном строительстве. Процесс изготовления конструкций. Резка прокатной стали, образование отверстий, сварочные операции, грунтовка и окраска стальных конструкций.
отчет по практике [23,1 K], добавлен 11.09.2014Принципиальные требования к объемно-планировочным и технологическим решениям строительных конструкций, используемых на нефтегазовых месторождениях. Расчет нагрузок, прочностных и деформативных характеристик материалов. Эксплуатация и ремонт объектов.
реферат [1,5 M], добавлен 24.02.2015Расчёт стального настила и балочных клеток; нагрузки на главную балку и подбор её сечения с проверкой его по несущей способности и жёсткости, прочности монтажного болтового стыка. Определение нагрузок на сквозную колонну. Расчёт базы колонны с траверсами.
курсовая работа [415,7 K], добавлен 12.10.2015Обеспечение пожарной безопасности зданий. Расчет фактического предела огнестойкости металлической фермы покрытия, деревянной балки, железобетонных плит перекрытий с круглыми пустотами и железобетонной колонны. Меры по увеличению огнестойкости конструкций.
курсовая работа [1,3 M], добавлен 28.11.2013Определение огнестойкости металлических конструкций. Основные способы увеличения огнестойкости металлических конструкций. Основы огнезащиты металлов. Сущность метода испытания конструкций на огнестойкость. Защита объектов от огневого воздействия.
реферат [4,1 M], добавлен 17.11.2011Проверка соответствия фактической степени огнестойкости здания противопожарным требованиям, повышение огнестойкости строительных конструкций. Расчет фактического предела огнестойкости металлической фермы покрытия, деревянной балки, железобетонных плит.
курсовая работа [2,5 M], добавлен 12.12.2013Анализ возможности применения расчетной методики по определению фактических пределов огнестойкости металлических строительных конструкций на примере здания административно-торгового комплекса "Автоцентр Lexus". Экспертиза строительных конструкций.
дипломная работа [3,5 M], добавлен 14.02.2014Состав, строение, свойства строительных металлов. Поведение металлических строительных конструкций при пожаре. Методы огнезащиты металлических конструкций. Применение низколегированных сталей. Расчет предела огнестойкости железобетонной панели перекрытия.
курсовая работа [94,9 K], добавлен 30.10.2014Применение древесины в строительстве, оценка ее положительных и отрицательных свойств. Средства соединения элементов деревянных конструкций. Расчет конструкций рабочей площадки, щита и прогонов кровли, клееной балки, центрально-сжатой стойки (колонны).
курсовая работа [306,1 K], добавлен 12.03.2015Характеристика проектируемого объекта, расчет огнестойкости железобетонных конструкций. Вентилируемая фасадная система с лицевым слоем из композитных панелей. Требования пожарной безопасности. Применение огнезащитной вермикулитовой штукатурки "Совер".
дипломная работа [2,0 M], добавлен 05.09.2013Расчет фактических пределов огнестойкости железобетонных балок, многопустотных железобетонных плит и других строительных конструкций. Теплофизические характеристики бетона. Определение нормативной нагрузки и характеристика расчетного сопротивления.
курсовая работа [738,3 K], добавлен 12.02.2014Ремонт и реконструкция гидротехнических сооружений, виды и состав ремонтов. Способы подводной сварки и резки металла. Способы погружения стальных свай и шпунта. Технология возведения причалов. Техника безопасности в гидротехническом строительстве.
шпаргалка [54,8 K], добавлен 20.02.2010Проект цеха для производства проката из углеродистой и легированной сталей. Технологический процесс, генеральный план участка. Объемно-планировочное решение, выбор конструктивных элементов здания; тепло- и светотехнический расчет, противопожарная защита.
курсовая работа [1,6 M], добавлен 24.07.2011Основные преимущества каркасных домов из легких тонкостенных стальных конструкций. Технология создания быстровозводимых зданий. Блок-схема производства и строительства здания на основе ЛСТК, конструктивные решения и проектирование, сборка и монтаж.
контрольная работа [2,3 M], добавлен 15.03.2015Генеральный план участка и объемно-планировочное решение здания. Сбор нагрузок на балочную клетку между осями. Область применения технологической карты. Конструктивно-технологические требования по предотвращению хрупкого разрушения стальных конструкций.
дипломная работа [1012,8 K], добавлен 10.04.2017Исследование состояния теплофизических свойств ограждающих конструкций зданий. Лабораторные исследования теплозащитных свойств ограждающих конструкций. Математическое моделирование 3-слойной ограждающей конструкции. Расчет коэффициента теплосопротивления.
дипломная работа [4,2 M], добавлен 20.03.2017Особенности технологии строительства малоэтажного жилого дома. Сравнительный анализ различных видов конструктивных схем. Устройство фундамента, кровли. Каркасные и безкаркасные здания. Основные виды конструктивных систем, применяемых в строительстве.
презентация [4,6 M], добавлен 07.03.2016