Сопоставительный анализ результатов испытаний оснований армированных вертикальными элементами и свайных фундаментов

Определение физико-механических грунтов на площадке испытаний и использованием стандартных методик. Устройство армированного основания и свайного фундамента при проведении полевых испытаний. Схема передачи нагрузки на армированное свайное основание.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 27.02.2018
Размер файла 606,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Казанский государственный архитектурно-строительный университет

СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ РЕЗУЛЬТАТОВ ИСПЫТАНИЙ ОСНОВАНИЙ АРМИРОВАННЫХ ВЕРТИКАЛЬНЫМИ ЭЛЕМЕНТАМИ И СВАЙНЫХ ФУНДАМЕНТОВ

Попов А.О. Кандидат технических наук

Аннотация

Армированное вертикальными элементами грунтовое основание представляет собой композитный массив, формируемый путем устройства в грунтовой среде вертикальных элементов. Отличительной особенностью армированного основания от свайного в том, что нагрузка на армированное основание передается через грунт. Использование армированных оснований имеет многотысячелетнюю историю. Археологические раскопки на берегах Цюрихского озера показали, что поселение эпохи неолита располагались на подобных основаниях, а первые письменные упоминания встречаются на страницах «Ветхого завета». Появление и массовое использование монолитного железобетона при устройстве фундаментов (ростверков) считается моментом «забвения» этой достаточно эффективной технологии.

В настоящей работе приведены опытные данные и сопоставительный анализ результатов испытаний оснований армированных вертикальными элементами и свайных фундаментов, которые имели одинаковые геометрические параметры. Испытания опытных образцов выполнены в идентичных инженерно-геологических условиях Приказанского района на опытном полигоне КазГАСУ.

Ключевые слова: армированное основание, свайный фундамент, осадка.

Abstract

Reinforced vertical elements soil Foundation represents a composite array generated by the device in a soil medium vertical elements. A distinctive feature of the reinforced base of the pile is that load on the reinforced base is transmitted through the soil. The use of reinforced bases has a millennial history. Archaeological excavations on the banks of lake Zurich showed that the Neolithic settlement was located on similar grounds, but the first written references are found in the pages of the old Testament.The emergence and widespread use of reinforced concrete in the foundations (raft foundations) is considered a time of “forgetfulness” of this very efficient technology.

In this paper we present the experimental data and comparative analysis of the results of tests of the foundations of reinforced vertical elements and pile foundations, which have the same geometrical parameters. Tests of prototypes made in identical geological conditions Prikazana district at the pilot test site construction University.

Keywords: reinforced foundation, pile foundation, settlement.

Основная часть

Результаты испытаний и сопоставительный анализ проведен на материалах, полученных в ранних работах автора [1-4] и данных приведенных в работе Мирсаяпова И.Т. и Артемьева Д.А. [5].

Выбор экспериментальной площадки принимался исходя из инженерно-геологических условий Приказанского района и грунтов получивших наибольшее распространение. Приказанский район расположен по обоим берегам р. Казанка у впадения её в р. Волгу. Рельеф Приказанского района имеет террасовидное строение и состоит из 4 надпойменных террас (рис. 1.). Исходя из чего, были выбраны грунтовые условия площадки исследований, которые были представлены песками со следующими осредненными физико-механическими характеристиками: с = 1,95 г/см3; Е = 19,0МПа, ц = 29°; с=2кПа.

Рис. 1 Схематичное изображение геолого-литологического строения Приказанского района

Физико-механические характеристики грунтов определены непосредственно на площадке испытаний с использование стандартных методик ГОСТ 30-416-96, в полевой лаборатории ПЛЛ-10.

Устройство армированного основания и свайного фундамента при проведении полевых испытаний осуществлялось с глубины опытного котлована 0,3 м. Формирование армоэлементов и свай в грунтовом массиве осуществлялось буровым способом. Бурение скважин производилось шнековым способом, геологическим буром заводского изготовления ОАО «ГЕОТЕСТ», имеющим диаметр шнека 50 мм.

Армоэлементы и сваи изготавливались из бетона класса В 10, армированного стержневой арматурой класса А-III ш 12мм. Бетонный раствор изготавливался на площадке полигона.

Поверх армированного массива устраивается песчаная подготовка - буферный слой из песка средней крупности, заданной плотности сложения, толщиной 300мм. Для свайного фундамента, где сваи имели непосредственный контакт с ростверком устраивалась бетонная подготовка из бетона класса В 7,5 (рис.2.).

Рис. 2 Схема проведения испытаний: а - схема расположения прогибомеров 6 ПАО [1, 2, 3]; б - схема расположения армирующих элементов[1, 2] / свай [3]; в -разрез по армированному основанию [1, 2, 3]; г - разрез по свайному фундаменту[4]

Для армированного основания выровненной поверхности песчаной подготовки устраивалась монолитная железобетонная плита площадью 4,0 м2, в случае же свайного фундамента по бетонной подготовке устраивалась идентичная бетонная плита. Для моделирования процесса реальной работы сооружения нагрузка, как в первом, так и втором случае передавалась через четыре опоры.

Выбор данных опытных моделей армированных массивов и свайных фундаментов связан с их прочностными и деформационными характеристиками, которые назначались согласно теории расширенного подобия, с нелинейным масштабным модулем б.

При вышеприведенных прочностных и деформационных характеристиках были смоделированы все следующие стадии напряженно-деформированного состояния армирующих элементов и свай: сжатие близкое, к осевому, на этапе линейных деформаций армированного и свайного основания и изгиб на этапе нелинейных деформаций армированного основания и свайного фундамента. Для исследования работы армированного грунтового массива и свайного фундамента, была использована методика моделирования работы грунтового основания в соответствии с рекомендациями [6].

Статические испытания (рис. 3) штампами выполнялись по требованиям ГОСТ 20276-99 [8]. Загружение армированного и свайного основания проводилось ступенями по 5,0 т. На каждой ступени загружения фиксировались осадка основания, по показаниям измерительного оборудования - индикаторов часового типа ИЧ и прогибомеров 6 ПАО. Для уменьшения возможного влияния осадки фундаментов на точность показаний измерительных приборов, последние устанавливались на стальную ферму, опоры которой располагались на расстоянии > 3,0 м от грани штампа. Нагружение армированного вертикальными элементами грунтового основания осуществлялось с помощью гидравлического домкрата ступенями до условной стабилизации осадок. За условную стабилизацию осадок принято 0,01мм за последний час наблюдений. По завершению испытаний фиксировались показания индикаторов, и осуществлялась разгрузка армированного основания ступенями соответствующими ступеням нагружения.

Рис. 3 Общий вид испытания [1-4]

При величине нагрузки 500 кН, соответствующей второй фазе напряжено-деформированного состояния характер напряженного состояния армирующего элемента в центральной зоне изменяется. У оголовка усилие составляет 10,6кН и снижается в средней части до 7,85 кН, в нижней зоне армированного основания увеличивается до 14,8кН. Напряженное состояние армирующих элементов, находящихся по грани и в угловой зоне армированного основания качественно не изменяется. В уровне оголовка усилие составляет 11,2 кН, в нижней зоне армированного основания увеличивается до 13,6 кН.При величине нагрузки 200,0 кН, соответствующей первой фазе напряжено-деформированного состояния. Армирующие элементы, расположенные в центральной зоне массива испытывают усилия сжатия. В верхней части армирующего элемента усилие достигает 0,5 кН и увеличивается в нижней зоне, где составляют 5,9кН. Армирующие элементы, находящиеся по грани штампа и в угловой зоне испытывают одинаковый характер распределения сжимающих усилий. В верхней части армирующего элемента усилие достигает 0,6 кН,и увеличиваются к нижней зоне, где составляет 6,0кН.

При величине нагрузки 950,0 кН, соответствующей третьей фазе напряжено-деформированного состояния характер напряженного состояния армирующего элемента в центральной зоне не изменяется. У оголовка усилие составляет 19,7 кН, в нижней зоне усилие составляет 20,7 кН. Напряженное состояние армирующих элементов, находящихся по грани и в угловой зоне следующее: в уровне оголовка усилие составляет 13,5 кН, и увеличивается к нижней зоне, где составляет 21,6кН.

Исследование напряженного состояния армирующих элементов на последовательных стадиях работы армированного грунтового массива показывает, что до формирования уплотненного ядра распределение усилий по длине, центрального армирующего элемента, носит неравномерный характер - усилия в средней части несколько меньше, чем верхней и нижней. В момент формирования уплотненного ядра интенсивность усилий по глубине изменяются, при этом верхняя часть армирующего элемента испытывает снижение прироста сжимающих усилий, а в средней и нижней части армирующих элементов прирост усилий продолжается с той же интенсивностью.

По фазовое исследование напряженного состояния армирующих элементов расположенных по грани и в угловой зоне показывает, что на всех стадиям напряженного состояния имеет место прирост сжимающих усилий при этом очертания эпюры усилий остается без изменения. Эпюры усилий в армирующих элементах, расположенных по грани и в угловой зоне армированного основания, имеют следующий характер распределения: наименьшее значение в верхней зоне, небольшое увеличение в средней, а наибольшая величина определена в нижней зоне армированного основания.

На начальном этапе загружения осадки (рис. 4) армированного основания и свайного фундамента схожи, близки не только значения, но еще и углы наклона кривой к оси ординат. Предельное состояние свайного фундамента наступило гораздо раньше (рис. 4б), и с точки II величины осадок в значительной степени отличаются. При этом несущая способность армированного массива 1,6 раз оказалась выше, несущей способности свайного основания.

Рис. 4 График развития осадки S, мм, квадратного штампа Ашт = 4,0 м2:а - армированное вертикальными элементами грунтовое основание [1 - 4]; б - свайное основание [5]

Рис. 5 Схемы передачи нагрузки на армированное вертикальными элементами грунтовое и свайное основание

Отличительной особенностью армированного массива от основания свайного фундамента заключается в том, что нагрузка на армоэлементы передается через грунт (рис. 5), отсутствует непосредственный контакт с ростверком, именно это отличие от свайных фундаментов приводит к тому, что несущая способность увеличивается в 1,6 раз, а осадка снижается до 2,3 раз. армированный свайный фундамент основание

Отсутствие, какой либо связи армоэлементов с конструкцией ростверка формирует напряженно-деформированное состояние отличное от основания, как свайных фундаментов, так и фундаментов на естественном основании. На начальном этапе загружения армоэлементы, в отличии от свай, воспринимают в значительной мере меньшую нагрузку. Диаметрально противоположная картина происходит в грунте окружающем сваи и армирующие элементы, так грунтовый массив окружающий армирующие элементы на начальной стадии загружения воспринимает значительные давления вплоть до исчерпания несущей способности, при этом армоэлементы в момент исчерпания несущей способности грунтового массива включаются в работу и воспринимают значительные сдвиговые усилия. На этапе нелинейных деформаций армированного основания армоэлементы подвержены изгибу, что в полной мере позволяет использовать прочностные характеристики как железобетонных, так и стальных армирующих элементов. В случае же свайных фундаментов прочностные и деформационные характеристики свай используются не полностью, в связи с тем, что работая в основном на осевое сжатие, предельное состояние грунта под острием сваи наступит гораздо раньше, чем исчерпание несущей способности поперечного сечения сваи.

Литература

1. И.Т. Мирсаяпов, А.О. Попов. Методика расчета армированных оснований // Вестник гражданских инженеров, 2009, №2(19). С. 124-125.

2. И.Т. Мирсаяпов, А.О. Попов. Оценка прочности и деформативности армированных грунтовых оснований// Геотехника, 2010, №4. С. 58-67.

3. А.О. Попов. Несущая способность и осадки грунтовых оснований, армированных вертикальными элементами// Ж. Промышленное и гражданское строительство, №11. ООО «Издательство ПГС», 2014. С. 27-31.

4. А.О. Попов. Расчет конечной осадки глинистых оснований, армированных вертикальными элементами// Инженерно-строительный журнал, № 4 (56). Изд-во: Федеральное государственное автономное образовательное учреждение высшего образования “Санкт-Петербургский политехнический университет Петра Великого”, 2015. С. 19-27.

5. И.Т. Мирсаяпов, Д.А. Артемьев. Полевые испытания плитно-свайных фундаментов// Труды международной конференции, 2011. Пермь. С. 75-80.

6. Методические рекомендации по моделированию грунтового основания при исследовании напряженно-деформированного состояния сооружения. НИИСК. Киев, 1981. 45 с.

7. ГОСТ 30416-96. Грунты. Лабораторные испытания. Минстрой России. М.: Стройиздат, 1996. 29 с.

8. ГОСТ 20276-99 Грунты. Метод полевого определения характеристик прочности и деформируемости. Минстрой России. М.: Страйиздат, 1999. 40 с.

9. ГОСТ 10180-90. Бетоны. Методы определения прочности по контрольным образцам/ ГосстройСССР. М.: Страйиздат, 1990. 67 с.

Размещено на Allbest.ru

...

Подобные документы

  • Обработка результатов исследований физико-механических свойств грунтов основания. Определение размеров подошвы фундамента гражданского здания. Расчет осадки основания. Определение несущей способности свай. Последовательность конструирования фундамента.

    курсовая работа [297,8 K], добавлен 20.11.2014

  • Расчет основания по деформациям. Оценка грунтов и грунтовой обстановки. Глубина заложения фундамента, критерии выбора его типа и определение размеров. Распределение напряжений и оценка осадки методом послойного суммирования. Расчет свайного фундамента.

    курсовая работа [503,3 K], добавлен 27.03.2014

  • Контролируемые параметры оснований и фундаментов. Состояние прилегающей территории, цоколя и стен подвала. Тип и глубина заложения фундаментов. Физико-механические характеристики грунтов основания. Уровень грунтовых вод. Деформации грунтов основания.

    презентация [2,5 M], добавлен 26.08.2013

  • Оценка инженерно-геологических условий строительной площадки. Расчёт недостающих физико-механических характеристик грунтов основания. Проектирование фундамента мелкого заложения на естественном основании и свайного фундамента промышленного здания.

    курсовая работа [1,3 M], добавлен 22.10.2014

  • Характеристика проектируемого здания. Определение физико-механических характеристик грунтов. Расчетные нагрузки по второй группе предельных состояний. Определение глубины заложения фундаментов 13-ти этажного дома, размеров фундамента мелкого заложения.

    курсовая работа [3,4 M], добавлен 04.11.2010

  • Понятие и назначение свай, их классификация и характеристики, виды и отличительные черты. Требования к забивным железобетонным сваям, их устройство и составные элементы. Порядок проведения полевых испытаний грунтов сваями динамическими нагрузками.

    презентация [3,9 M], добавлен 23.02.2010

  • Определение физико-механических характеристик грунтов площадки строительства. Построение геологического разреза и плана здания. Выбор глубины заложения подошвы свайного фундамента, расчет его параметров и осадок. Водопонижение и гидроизоляция фундаментов.

    курсовая работа [697,3 K], добавлен 18.06.2013

  • Условия производства работ по устройству основания и возведению фундаментов. Характеристики грунтов и анализ инженерно-геологических условий строительной площадки. Определение глубины заложения подошвы свайного и фундамента на естественном основании.

    курсовая работа [104,6 K], добавлен 23.05.2013

  • Физико-механические характеристики грунтов. Состав работ при устройстве фундаментов. Определение расчетного сопротивления, осадки и деформации основания, расчеты фундаментов мелкого заложения и свайных, объема котлована, стоимости затрат и материалов.

    курсовая работа [324,1 K], добавлен 10.11.2010

  • Характеристика физико-механических свойств грунтов. Определение размера фундамента под колонну здания с подвалом. Расчет осадки фундамента до и после реконструкции. Анализ влияния технического состояния фундамента и конструкций на условия реконструкции.

    курсовая работа [575,4 K], добавлен 01.11.2014

  • Оценка инженерно-геологических условий и свойств грунтов. Определение расчетного давления на грунты оснований. Разработка вариантов фундамента на естественном основании. Определение технико-экономических показателей устройства оснований и фундаментов.

    курсовая работа [1,3 M], добавлен 20.04.2015

  • Определение физико-механических показателей грунтов и сбор нагрузок на фундаменты. Оценка инженерно-геологических условий площадки строительства. Проектирование фундаментов мелкого заложения. Расчет ленточного свайного фундамента под несущую стену.

    курсовая работа [1,9 M], добавлен 19.04.2012

  • Оценка инженерно-геологических условий площадки строительства. Определение физико-механических характеристик грунтов площадки строительства. Определение нормативных, расчетных усилий, действующих по верхнему обрезу фундаментов. Расчет свайных фундаментов.

    курсовая работа [347,7 K], добавлен 25.11.2013

  • Анализ физико-механических свойств грунтов пятна застройки. Расчет фундамента под отдельно стоящую колонну, ленточного. Основные положения по расчету и проектированию свайных фундаментов, их конструирование и принципы реконструкции, безопасность.

    дипломная работа [1,8 M], добавлен 14.05.2015

  • Исследование местных условий строительства. Расчет физико-механических свойств наслоений грунтов на площадке строительства. Выбор глубины заложения фундамента. Определение параметров фундамента стаканного типа под одноконсольную одноветвевую колонну.

    курсовая работа [48,0 K], добавлен 29.10.2013

  • Оценка инженерно-геологических условий площадки строительства. Сводная ведомость физико-механических свойств грунтов. Выбор возможных вариантов фундаментов. Проектирование фундамента мелкого заложения на естественном основании и свайного фундамента.

    курсовая работа [754,7 K], добавлен 08.12.2010

  • Физико-механическая характеристика грунтов, их виды: фундамент мелкого заложения на естественном и искусственном основании, фундамент глубокого заложения. Проектирование фундамента мелкого заложения, свайного фундамента. Анализ расчёта осадки фундамента.

    курсовая работа [907,2 K], добавлен 17.03.2012

  • Анализ физико-механических характеристик грунта основания ИГЭ-1, ИГЭ-2. Сбор нагрузок на обрез фундамента. Расчет размеров подошвы фундаментов мелкого заложения на естественном основании для разных сечений. Осадки основания фундамента мелкого заложения.

    курсовая работа [2,1 M], добавлен 11.12.2022

  • Анализ инженерно-геологических условий, свойств грунтов, оценка расчетного сопротивления грунтов. Анализ объемно-планировочных и конструктивных решений здания. Определение глубины заложения и обреза фундаментов. Определение осадки свайного фундамента.

    курсовая работа [460,4 K], добавлен 27.04.2015

  • Оценка инженерно-геологических условий строительной площадки. Физико-механические свойства грунтов. Выбор глубины заложения фундамента и определение площади его подошвы. Расчетное сопротивление грунта основания. Виды и конструкция свайного ростверка.

    курсовая работа [1,4 M], добавлен 05.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.