Усиление металлических конструкций фиброармированными пластиками: состояние проблемы

Анализ состояния проблемы применения композитных материалов для усиления строительных конструкций. Обзор данных о российских и о зарубежных нормативных документах и руководствах по применению композитных материалов для усиления строительных конструкций.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 24.05.2018
Размер файла 44,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

79. Aylor, D.M. (1993), “The Effect of a Seawater Environment on the Galvanic Corrosion Behaviour of Graphite/Epoxy Composites Coupled to Metals”, High Temperature and Environmental Effects on Polymeric Composites, ASTM STP 1174, C.E. Harris and T.S. Gates, eds., American Society for Testing and Materials (ASTM), pp. 81-94.

80. Bellucci, F. (1991), “Galvanic Corrosion between Nonmetallic Composites and Metals: I. Effect of Metal and of Temperature”, Corrosion, National Association of Corrosion Engineers (NACE), 47(10), pp. 808-819.

81. Bellucci, F. (1992), “Galvanic Corrosion between Nonmetallic Composites and Metals: II. Effect of Area Ratio and Environmental Degradation”, Corrosion, National Association of Corrosion Engineers (NACE), 48(4), pp. 281-291.

82. Bonk, R.B., Ostendorf, J.F., Ambrosio, A.M., Pettenger, B.L. and Froelich, K.A. (1996), “Evaluation of Adhesives for Adhering Carbon/Epoxy Composites to Various Metallic Substrates”, Proceedings of the 41st International SAMPE Symposium and Exhibition, Anaheim, CA, March 24-28, 1996, Society for the Advancement of Material and Process Engineering (SAMPE), pp. 1472-1485.

83. Boyd, J., Chang, G., Webb, W., Speak, S., Gerth, D. and Reck, B. (1991), “Galvanic Corrosion Effects on Carbon Fiber Composites”, Proceedings of the 36th International SAMPE Symposium and Exhibition, San Diego, CA, April 15-18, 1991, Society for the Advancement of Material and Process Engineering (SAMPE), pp. 1217-1231.

84. Bourban, P.E., McKnight, S.H., Shulley, S.B., Karbhari, V.M. and Gillespie, J.W. Jr., (1994), “Durability of Steel/Composite Bonds for Rehabilitation of Structural Components,” Proceedings of the 1994 ASCE Materials Engineering Conference, San Diego, CA, pp. 295-302.

85. Ceriolo, L., Di Tommaso, A. (2001). Cast Iron Bridge Failure Due to Impact: reduced Vulnerability through FRP Composite Materials Strengthening. In National Conf. on Structure failures and reliability of civil constructions, Istituto Universitario di Architettura di Venezia, 6 - 7 December.

86. Colombi P, Fanesi E, Fava G, Poggi C. Steel elements strengthened by FRP materials:

87. durability under mechanical and environmental loads. In Di Tommaso A, editor. Mechanics of masonry structures strengthened with FRP - materials modelling, testing, design, control, Padova (I): Libreria Cortina; 2004, p. 387-398.

88. Gettings, M. and Kinloch, A.J. (1977), “Surface Analysis of Polysiloxane/Metal Oxide Interfaces”, Journal of Materials Science, 12(12), pp. 2511-2518.

89. Karbhari, V. M., and Shulley, S. B. 1995. Use of Composites for Rehabilitation of Steel Structures - Determination of Bond Durability, Journal of Materials in Civil Engineering, ASCE, 4(7): from 239-245.

90. Moy, S. S. J. 2002. Early Age Curing under Cyclic Loading - an Investigation into Stiffness Development in Carbon Fibre Reinforced Steel Beams. In Proc., ACIC 2002, Southampton University, UK, 15-17April, edited by R. A. Shenoi, S. S. J. Moy, L. C. Hollaway. Thomas Telford.

91. Rajagopalan, G., Immordino, K.I. and Gillespie, J.W. Jr. (1996), “Adhesive Selection Methodology for Rehabilitation of Steel Bridges with Composite Materials”, Proceedings of the American Society for Composites 11th Technical Conference, Atlanta, GA, October 7-9, 1996, Technomic, pp. 222-230.

92. Shulley, S.B., Huang, X., Karbhari, V.M. and Gillespie, J.W. Jr., (1994) “Fundamental

93. Considerations of Design and Durability in Composite Rehabilitation Schemes for Steel Girders With Web Distress,” Proceedings of the 1994 ASCE Materials Engineering Conference, San Diego, CA, pp. 1187-1194.

94. Tavakkolizadeh, M., and Saadatmanesh, H. 2001. Galvanic Corrosion of Carbon and Steel in Aggressive Environment, Journal of Composites for constructionConstruction, ASCE, 3(5): from 200-210.

95. Tucker, W. C., and Brown, R. 1989. Blister Formation on Graphite/Polymer Composites Galvanically Coupled with Steel in Seawater, Journal of composite Composite Mmaterials, ASCETechnomic, 4(23): from 227-238389-395.

96. Tucker, W.C., Brown, R. and Russell, L. (1990), “Corrosion between a Graphite/Polymer Composite and Metal”, Journal of Composite Materials, Technomic, 24(1), pp. 92-102.

97. Wetzel, E. (1995), “Assessment of Heating Techniques for Metal to Composite Bonding in Infrastructure Rehabilitation”, B.S. Thesis, University of Delaware, Newark, DE.

98. West, T.D. (2001), “Enhancements to the Bond between Advanced Composite Materials and Steel for Bridge Rehabilitation,” M.S. Thesis, University of Delaware (U.S.A.), pp. 16-85.

References

1. Ovchinnikov I.G., Pochtman M.Ju. Tonkostennye konstrukcii v uslovijah korrozionnogo iznosa. Raschet i optimizacija (monografija). Dnepropetrovsk: Izd-vo DGU, 1995.192 s.

2. Naumova G.A., Ovchinnikov I.G. Raschety na prochnost' slozhnyh sterzhnevyh i truboprovodnyh konstrukcij s uchetom korrozionnyh povrezhdenij (monografija). SGTU. Saratov.2000. 227 s.

3. Naumova G.A., Ovchinnikov I. G., Snarskij S.V. Raschet truboprovodnyh konstrukcij s jekspluatacionnymi povrezhdenijami. Volgograd. Nauchnoe izdanie. VolgGASU, 2009. 184 s.

4. Chernjavskij V.L., Hajutin Ju.G., Aksel'rod E.Z., Klevcov N.V., Fatkullin N.V. Rukovodstvo po usileniju zhelezobetonnyh konstrukcij kompozitnymi materialami. M. 2006. 60 s.

5. Bokarev S.A., Ivanov A.A., Smerdov D.N., Jashnov A.N., Zhil'cov P.D., Maksimenkov P.E. Innovacionnye metody usilenija konstrukcij mostov. SibGUPS i OOO Glavgrosstroj. Novosibirsk. 2008. 38 s.

6. TU 1916-005-61664530-2011. Uglerodnye odnonapravlennye lenty dlja sistem vneshnego armirovanija (SVA). Tehnicheskie uslovija. ZAO «Prepreg-SKM».M. 2011. 24 s.

7. STO 13613997-001-2011. Standart organizacii. Usilenie zhelezobetonnyh konstrukcij kompozitnymi materialami. OOO «Zika». M. 2011. 55 s.

8. STO 2236-002-2011. Standart organizacii. Sistema vneshnego armirovanija iz polimernyh kompozitov FibARM dlja remonta i usilenija stroitel'nyh konstrukcij. Obshhie trebovanija. Tehnologija ustrojstva. ZAO «Prepreg-SKM».M. 2011. 16 s.

9. Jekspertnoe zakljuchenie na STO 2256-002-2011. «Sistema vneshnego armirovanija iz polimernyh kompozitov FibARM dlja remonta i usilenija stroitel'nyh konstrukcij. Obshhie trebovanija. Tehnologija ustrojstva. ZAO «Prepreg-SKM».M. 2011. 16 s.». Filial OAO CNIIS «NIC Mosty». 2011. 5 s.

10. STO 2256-002-2011. Standart organizacii. Sistema vneshnego armirovanija iz polimernyh kompozitov FibARM R dlja remonta i usilenija stroitel'nyh konstrukcij. ZAO «Prepreg-SKM» pri uchastii NIIZhB.M. 2012. 61 s.

11. Zalesov A.S., Zenin S.A., Pashhanin A.A., Kudinov O.V. Rekomendacii po raschetu usilenija zhelezobetonnyh konstrukcij sistemoj vneshnego armirovanija iz polimernyh kompozitov FibARM. M. NIIZhB. 2012. 29 s.

12. Bokarev S.A., Nerovnyh A.A., Bardaev P.P. Rukovodstvo po usileniju zhelezobetonnyh proletnyh stroenij zheleznodorozhnyh mostov sistemoj vneshnego armirovanija na osnove uglerodnyh volokon. Pervaja redakcija. OAO «Rossijskie zheleznye dorogi». M. 2012.60 c.

13. Svod pravil. Usilenie zhelezobetonnyh konstrukcij kompozicionnymi materialami. Pervaja redakcija. OAO «NIC «Stroitel'stvo»-NIIZhB im.A.A.Gvozdeva, ZAO «Triada-Holding». M. 2012. 61 s.

14. Concrete Engineering Series 23»Recommendation For Design And Construction Of Concrete Structures Using Continuous Fiber Reinforcing Materials, Research Committee on Continuous Fiber Reinforcing Materials», Tokyo, 1997. Japan Society of Civil Engineers (JSCE). 325 p.

15. Design Manual «Seismic Retrofiting Design and Constraction Guidelines for Existing Reinforced Concrete (RC) Buildings with FRP Materials». Japan Building Disaster Prevention Association (JBDPA). Tokyo, Japan, (1999), 115 p.

16. FIP Task Group 9.3 - FRP reinforcement in RC structures, 1999. Fib CEB-FIP

17. ACI 440.3R-04 - Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing or Strengthening Concrete Structures. American Concrete Institute (ACI). Farmington Hills, Mich., (2004), 40p.

18. CNR-DT 203/2006 - Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars, 2006. Consiglio Nazionale Delle Ricerche.

19. ACI 440R-07 “Report on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures,” ACI Committee 440, American Concrete Institute, Farmington Hills, Mich., (2007), 100p.

20. 440.2R-08 - Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. American Concrete Institute (ACI)

21. Design Manual No. 3, «Reinforcing Concrete Structures with Fiber Reinforced Polymers», Intelligent Sensing for Innovative Structures Canada Corporation, Winnipeg, Manitoba, Canada, (2001), 158 p.

22. CAN/CSA-S806-02 - Design and Construction of Building Components with FibreReinforced Polymers. Canadian Standards Association (CSA). Toronto, Ontario, Canada, (2007), 218p.

23. ACI 440.4R-04 "Prestressing Concrete Stuctures with FRP Tendons (Reapproved 2011)," ACI Committee 440, American Concrete Institute, Farmington Hills, Mich., (2004), 35p.

24. fib Bulletin No. 40, “FRP Reinforcement in RC Structures”, International Federation for Structural Concrete, Lausanne, Switzerland, (2007), 160p.

25. CNR-DT 203/2006 «Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforces Polymer Bars». ROME - CNR, 2007. 39 p.

26. CNR-DT 202/2005 «Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures». Metallic structures. Preliminary study. ROME - CNR, 2007. 57 p.

27. CNR-DT 200/2004 «Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures». Materials, RC and PC structures, masonry structures. ROME - CNR, 2004. 154 p.

28. CNR-DT 201/2005 «Guidelines for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures». Timber structures. Preliminary study. ROME - CNR, 2007. 58 p.

29. Al-Saidy, A.H, Klaiber, F.W. and Wipf, T.J. (2004), “Repair of Steel Composite Beams with Carbon Fiber-Reinforced Polymer Plates,” ASCE Journal of Composites for Construction, 8, pp. 163-172.

30. Angus, C.C., Cheng, J.J. and Yam, C.H. “Study of the Tensile Strength of CFRP/Steel Double Lap Joints,” Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Canada. 2004.

31. de Bruyne, N.A. (1944), “The Strength of Glued Joints”, Aircraft Engineering, 16, 115-118, 140.

32. Frauenberger, A., Liu, X., Meyyappan, L., Mata, J., Gupta, T., Silva, P.F., Dagli, C.H., Pottinger, H.J., Nanni, A. and Marianos, W.N. Jr. (2003), “FRP Repair and Health Monitoring of Railroad Steel Bridges”, CIES Report 03-44, University of Missouri, Rolla.

33. Gillespie, J. W., Mertz, D. R., Edberg, W. M., Ammar, N., Kasai, K., and Hodgson, I. C. 1996. Rehabilitation of Steel Bridge Girders through Applications of Composite Materials. In Proc., 28th International SAMPE Technical Conference, November 4-7.

34. Hart-Smith, L.J. (2001), “Bolted and Bonded Joints”, in Composites, Vol. 21, ASM Handbook, American Society for Materials (ASM) International, 271-289.

35. Hollaway L.C., Cadei J. (2002). Progress in the technique of upgrading metallic structures with advanced polymer composites. Prog. Struct. Engng. Mater., 4, 131148.

36. Kennedy, G.D. (1998), “Repair of Cracked Steel Elements Using Composite Fibre Patching,” M.S. Thesis, University of Alberta, Canada

37. Lanier, B.K. (2005), “Study in the Improvement in Strength and Stiffness Capacity of Steel Multi-sided Monopole Towers Utilizing Carbon Fiber Reinforced Polymers as a Retrofitting Mechanism,” M.S. Thesis, North Carolina State University, Raleigh, NC

38. Liu, X., Silva, P., Nanni, A. 2001. Rehabilitation of Steel Bridge Members with FRP Composite Material. In Proc., CCC 2001, Composite in Construction, Porto, Portugal, 10-12 October, edited by J. Figueras, L. Juvandes and R. Furia. Eds.

39. Matta, F. (2003), “Bond between Steel and CFRP Laminates for Rehabilitation of Metallic Bridges”, Thesis, University of Padova, Padova, Italy, 171 pp.

40. Mertz, D.R., and Gillespie, J.W. Jr (1996), “Rehabilitation of Steel Bridge Girders through the Application of Advanced Composite Materials,” IDEA Project Final Report, Contract NCHRP-93-ID011, Transportation Research Board, 30 pp.

41. Mertz, D.R., Gillespie, J.W. Jr. and Edberg, W. (1996), “Rehabilitation of Steel Bridges with Composite Materials”, Recent Advances in Bridge Engineering, Evaluation, Management and Repair, J.R. Casas, F.W. Klaiber and A.R. Marн, eds., CIMNE, Barcelona, Spain, 556-569.

42. Mertz, D. M., Gillespie, J. W., and Edberg, W. 1996. Rehabilitation of Steel Bridges with Composite Materials. In Proc., Recent Advances in Bridge Engineering, Barcelona.

43. Mosallam, A. S., Chakrabarti, P. R., and Spencer, E. 1998. Experimental Investigation on the Use of Advanced Composites & High-Strength Adhesives in Repair of Steel Structures. In 43rd International SAMPE Symposium May 31- June 4.

44. Moy, S. S. J., Nikoukar, F. 2002. Flexural Behaviour of Steel Beams Reinforced with Carbon Fibre Reinforced Polymer Composite. In Proc., ACIC 2002, Southampton University, UK, 15-17 April, edited by R. A. Shenoi, S. S. J. Moy, L. C. Hollaway. Thomas Telford.

45. Nozaka, K., Shield, C.K. and Hajjar, J.F. (2005), “Effective Bond Length of CarbonFiber-Reinforced Polymer Strips Bonded to Fatigued Steel Bridge I-Girders,” ASCE Journal of Composites for Construction, 10[2], pp. 195-205.

46. Ono, K., Sugiura, K., Sasaki, A., Wakahara, N. and Komaki, H. (2001), ``Bond Characteristics of Carbon Fiber Reinforced Plastics to Structural Steels'' Proc. Int. Conf. on High Performance Materials in Bridges, Kona, Hawaii, ASCE, Reston, VA, 34-43.

47. Photiou, N., Hollaway, L.C., Chryssanthopoulos, M.K. (2004). Strengthening of an artificially degraded steel beam utilising a carbon/glass composite system. In L.C. Hollaway, M.K. Chryssanthopoulos and S.S.J. Moy (eds), Proc. Int. Conf., Advanced Polymer Composites for structural applications in construction ACIC 2004, 20-22 April 2004, Guilford UK. Cambridge, England:Woohead Publishing Limited.

48. Schnerch D., Stanford K., Sumner E.A., Rizkalla S. (2004). Strengthening steel structures and bridges with high modulus carbon fiber reinforced polymers: resin selection and scaled monopole behaviour. TRB 2004 Annual Meeting, CD-ROM.

49. Sebastian, W.M. (2003), “Nonlinear Influence of Contraflexure Migration on Nearcurtailment Stresses in Hyperstatic FRP-Laminated Steel Members,” Computers and Structures, 81[16], pp. 1619-1632.

50. Sen, R. and Liby L. (1994), “Repair of Steel Composite Bridge Sections using CFRP Laminates”, Final Report submitted to the Florida Department of Transportation (FDOT), University of South Florida, Tampa, FL.

51. Sen, R., Liby, L., Mullins, G. 2001. Strengthening Steel Bridge Sections Using CFRP Laminates, Composites: Part B, 32: from 309-322.

52. Tavakkolizadeh A., Saadatmanesh H. (2003a). Repair of damaged steel-concrete composite girders using carbon fiber-reinforced polymer sheets. Journal of Composites for Construction, 7(4), Novemeber 1, 311-322.

53. Tavakkolizadeh, M., Saadatmanesh, H. 2001. Repair of Cracked Steel Girder Using CFRP Sheets. In Proc.,ISEC-01, Creative Systems in Structural and Construction Engineering, Hawaii, January 24-27.

54. Tavakkolizadeh, M., Saadatmanesh, H. 2002. Repair of Steel Bridges with CFRP Plates. In Proc., ACIC 2002, Southampton University, UK, 15-17 April, edited by R. A. Shenoi, S. S. J. Moy, L. C. Hollaway. Thomas Telford.- Tavakkolidazeh, M. and Saadatmanesh, H. (2003), “Strengthening of Steel-Concrete Composite Girders Using

55. Carbon Fiber-Reinforced Polymer Sheets,” ASCE Journal of Structural Engineering, 129, pp. 30-40.

56. Vatovec, M., Kelley, P.L., Brainerd, M.L. and Kivela, J.B. (2002), “Post Strengthening of Steel Members with CFRP”, Proceedings of the 47th International SAMPE Symposium and Exhibition, Long Beach, CA, May 12-16, 2002, Society for the Advancement of Material and Process Engineering (SAMPE), pp. 941-954.

57. Albrecht, P. (1987), “Fatigue Strength of Adhesively Bonded Cover Plates,” ASCE Journal of Structural Engineering, 113, pp. 1236-1250.

58. Bassetti, A., Nussbaumer, A., Hirt, M. 2000. Crack Repair and Fatigue Life Extension of Riveted Bridge Members using Composite Materials. In Proc., Bridge Engineering Conference, ESE-IABSE-FIB, 26-30 March 2000, Sharm El Sheik (Egypt).

59. Bassetti, A. 2001. Lamelles Prйcontraintes en Fibres de Carbone pour le Renforcement de Ponts Rievetйs Endammaйes Endommagйs par Fatigue. Ph.D. Thesis no. 2440, Swiss Federal Institute of Technology, ( EPFL), Lausanne, Switzerland.

60. Jones, S.C. and Civjan, S.A. (2003), “Application of Fiber Reinforced Polymer Overlays to Extend to Steel Fatigue Life,” ASCE Journal of Composites for Construction, 7, pp. 331-338.

61. Matta, F., Karbhari, V.M., Tinazzi, D., Vitaliani, R. Static and fatigue behaviour of steel/CFRP adhesive bonds for the rehabilitation of metallic bridges. In Di Tommaso A, editor. Mechanics of masonry structures strengthened with FRP - materials modelling, testing, design, control, Padova (I): Libreria Cortina; 2004, p. 411-420.

62. Miller, T.C. (2000), “The Rehabilitation of Steel Bridge Girders Using Advanced Composite Materials”, M.S. Thesis, University of Delaware, Newark, DE, 58-79.

63. Nussbaumer, A., Bassetti, A., Colombi, P. Elements en acier sous charges de fatigue renforcйs par des lamelles precontraintes en materiau composite. Construction Metallique 2004; 3:3-13.

64. Tavakkolizadeh, M., and Saadatmanesh, H. 2003. Fatigue Strength of Steel Girders Strengthened With Carbon Fiber Reinforced Polymer Patch, Journal of Structural Engineering, ASCE, 2(129): from 186-196.

65. Buyukozturk, O., Gunes, O. and Karaca, E. (2004), “Progress on Understanding Debonding Problems in Reinforced Concrete and Steel Members Strengthened Using FRP Composites”, Construction and Building Materials, Vol. 18[1], 9-19.

66. Buyukozturk, O., Gunes, O., Karaca, E. (2003). Progress on Understanding Debonding Problems in reinforced Concrete and Steel Members Strengthened using FRP Composite. In Proc., 10th International Conference and Exhibition London, UK, 1-3 July.

67. Colombi, P., Panzeri, N., Poggi, C. Experimental characterization of steel elements reinforced by adhesively bonded CFRP plates. In: Chryssanthopoulos M, Hollaway LC, editors. Advanced Polymer Composites for Structural Applications in Construction, Abington (UK): Woodhead Publishing Limited; 2004, p. 245-257.

68. Colombi, P., Bassetti, A. and Nussbaumer, A. (2003), “Analysis of Cracked Steel Members Reinforced by Pre-Stress Composite Patch”, Fatigue and Fracture of Engineering Materials and Structures, 26(1), 59-66.

69. Colombi, P., Bassetti, A., Nussbaumer, A. (2003). Delamination Effects on Cracked Steel Members Reinforced by Prestressed Composite Patch, Theoretical and Applied Fracture Mechanics, Elsevier, 39: from 61-71.

70. Deng J., Lee M.M.K., Moy S.S.J. (2004). Stress analysis of steel beams reinforced with a bonded CFRP plate. Composite Structures, Vol. 65, 205-215.

71. Lenwari, A., Thepchatri, T. and Watanabe, E. (2002), “Prediction of Premature Separation of Bonded CFRP Plates from Strengthened Steel Beams Using a Fracture Criterion”, Structural Engineering and Mechanics, 14(5), pp. 565-574.

72. McKnight, S. H., Bourban, P. E., Karbhari, V. M., and Gillespie, J. W. 1994. Surface Preparation of Steel for Adhesive Bonding in Rehabilitation Applications. In Proc. Of the Third Materials Engineering Conference, Infrastructure: New Materials and Methods of Repair, edited by Basham KD. San Diego, CA: ASCE.

73. Photiou, N., Hollaway, L.C., Chryssanthopoulos, M.K. (2003). Characterization of adhesively bonded plates for upgrading structural steelwork. In M.C. Forde (ed.), Proc. Int. Conf., Structural Faults and Repair, London. Edinburgh: Engineering Technics Press.

74. Carolin, A. 2003. Carbon Fiber Reinforced Polymers for Strengthening of Structural Elements. Doctoral Thesis no. 2003:18, Lulea University of Technology, Lulea, Sweden.

75. Cecchi A., Zerbo V. 2004. Analisi di stabilitа di travi metalliche rinforzate con FRPmaterials. In 2nd Nat. Symp. Mechanics of Masonry Structures strengthened with FRP-materials: modeling, testing, design, control“, Venezia, 6-8 Dicembre, edited by Ceriolo L., Zerbo V. Libreria internazionale Cortina:Padova.

76. Hill P. S. 2000. Use of High Modulus Carbon Fibers for Reinforcement of Cast Iron Compression Struts within London Underground - Project Details.

77. Liu, X., Nanni, A., Silva, P. 2003. Rehabilitation of Steel Bridge Columns with Composite Materials. In Proc., 10th International Conference and Exhibition London, UK, 1-3 July 2003.

78. Shaat, A. and Fam, A. (2004), “Strengthening of Short HSS Steel Columns Using FRP Sheets,” Proceedings of the 4th International Conference on Advanced Composite Materials in Bridges and Structures, Calgary, Canada.

79. Teng J.G., Hu Y.M. 2004. Suppression of local buckling in steel tubes by FRP jacketing in FRP Composites in civil Engineering, CICE 2004, Seracino ed., Taylor & Francis Group, London 2005.

80. Aylor, D.M. (1993), “The Effect of a Seawater Environment on the Galvanic Corrosion Behaviour of Graphite/Epoxy Composites Coupled to Metals”, High Temperature and Environmental Effects on Polymeric Composites, ASTM STP 1174, C.E. Harris and T.S. Gates, eds., American Society for Testing and Materials (ASTM), pp. 81-94.

81. Bellucci, F. (1991), “Galvanic Corrosion between Nonmetallic Composites and Metals: I. Effect of Metal and of Temperature”, Corrosion, National Association of Corrosion Engineers (NACE), 47(10), pp. 808-819.

82. Bellucci, F. (1992), “Galvanic Corrosion between Nonmetallic Composites and Metals: II. Effect of Area Ratio and Environmental Degradation”, Corrosion, National Association of Corrosion Engineers (NACE), 48(4), pp. 281-291.

83. Bonk, R.B., Ostendorf, J.F., Ambrosio, A.M., Pettenger, B.L. and Froelich, K.A. (1996), “Evaluation of Adhesives for Adhering Carbon/Epoxy Composites to Various

84. Metallic Substrates”, Proceedings of the 41st International SAMPE Symposium and Exhibition, Anaheim, CA, March 24-28, 1996, Society for the Advancement of Material and Process Engineering (SAMPE), pp. 1472-1485.

85. Boyd, J., Chang, G., Webb, W., Speak, S., Gerth, D. and Reck, B. (1991), “Galvanic Corrosion Effects on Carbon Fiber Composites”, Proceedings of the 36th International SAMPE Symposium and Exhibition, San Diego, CA, April 15-18, 1991, Society for the Advancement of Material and Process Engineering (SAMPE), pp. 1217-1231.

86. Bourban, P.E., McKnight, S.H., Shulley, S.B., Karbhari, V.M. and Gillespie, J.W. Jr., (1994), “Durability of Steel/Composite Bonds for Rehabilitation of Structural Components,” Proceedings of the 1994 ASCE Materials Engineering Conference, San Diego, CA, pp. 295-302.

87. Ceriolo, L., Di Tommaso, A. (2001). Cast Iron Bridge Failure Due to Impact: reduced Vulnerability through FRP Composite Materials Strengthening. In National Conf. on Structure failures and reliability of civil constructions, Istituto Universitario di Architettura di Venezia, 6 - 7 December.

88. Colombi P, Fanesi E, Fava G, Poggi C. Steel elements strengthened by FRP materials:

89. durability under mechanical and environmental loads. In Di Tommaso A, editor. Mechanics of masonry structures strengthened with FRP - materials modelling, testing, design, control, Padova (I): Libreria Cortina; 2004, p. 387-398.

90. Gettings, M. and Kinloch, A.J. (1977), “Surface Analysis of Polysiloxane/Metal Oxide Interfaces”, Journal of Materials Science, 12(12), pp. 2511-2518.

91. Karbhari, V. M., and Shulley, S. B. 1995. Use of Composites for Rehabilitation of Steel Structures - Determination of Bond Durability, Journal of Materials in Civil Engineering, ASCE, 4(7): from 239-245.

92. Moy, S. S. J. 2002. Early Age Curing under Cyclic Loading - an Investigation into Stiffness Development in Carbon Fibre Reinforced Steel Beams. In Proc., ACIC 2002, Southampton University, UK, 15-17April, edited by R. A. Shenoi, S. S. J. Moy, L. C. Hollaway. Thomas Telford.

93. Rajagopalan, G., Immordino, K.I. and Gillespie, J.W. Jr. (1996), “Adhesive Selection Methodology for Rehabilitation of Steel Bridges with Composite Materials”, Proceedings of the American Society for Composites 11th Technical Conference, Atlanta, GA, October 7-9, 1996, Technomic, pp. 222-230.

94. Shulley, S.B., Huang, X., Karbhari, V.M. and Gillespie, J.W. Jr., (1994) “Fundamental Considerations of Design and Durability in Composite Rehabilitation Schemes for Steel Girders With Web Distress,” Proceedings of the 1994 ASCE Materials Engineering Conference, San Diego, CA, pp. 1187-1194.

95. Tavakkolizadeh, M., and Saadatmanesh, H. 2001. Galvanic Corrosion of Carbon and Steel in Aggressive Environment, Journal of Composites for constructionConstruction, ASCE, 3(5): from 200-210.

96. Tucker, W. C., and Brown, R. 1989. Blister Formation on Graphite/Polymer Composites Galvanically Coupled with Steel in Seawater, Journal of composite Composite Mmaterials, ASCETechnomic, 4(23): from 227-238389-395.

97. Tucker, W.C., Brown, R. and Russell, L. (1990), “Corrosion between a Graphite/Polymer Composite and Metal”, Journal of Composite Materials, Technomic, 24(1), pp. 92-102.

98. Wetzel, E. (1995), “Assessment of Heating Techniques for Metal to Composite Bonding in Infrastructure Rehabilitation”, B.S. Thesis, University of Delaware, Newark, DE.

99. West, T.D. (2001), “Enhancements to the Bond between Advanced Composite Materials and Steel for Bridge Rehabilitation,” M.S. Thesis, University of Delaware (U.S.A.), pp. 16-85.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.