Опасный материал в строительстве – пенополистирол

Распространение горячеформованного пенополистирола в строительной индустрии. Раскрытие негативных свойств широко используемого в строительстве жилья эконом-класса утеплителя – пенополистирола, развенчивание мифов о необычайных свойствах этого материала.

Рубрика Строительство и архитектура
Вид статья
Язык русский
Дата добавления 21.11.2018
Размер файла 611,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Опасный материал в строительстве - пенополистирол

В.В. МАЛЬЦЕВ, зам. ген. директора по науке

ОАО «Гипролеспром», д.х.н., академик РАЕН;

В.Г. НИКОЛАЕВ, обозреватель

Аннотация

В раскрываются негативные свойства наиболее широко используемого в строительстве жилья эконом-класса утеплителя - пенополистирола. Развенчиваются мифы о необычайных свойствах этого материала.

Пенополистирол

Бурное развитие химической промышленности совпало с эпохой "холодной войны". Для новых систем обороны и нападения понадобились адекватные тепло- и звукоизоляционные материалы. Им надлежало отличаться, в частности, экономичностью, простотой в изготовлении, удобством в применении, легкостью, низкой теплопроводностью. Заказ военных был успешно выполнен. Появились полимерные утеплители, в том числе пенополистирол.

Горячеформованный пенополистирол (ГОСТ 15588-86) получил широкое распространение в строительной и упаковочной индустриях. Пенополистирол (ППС) - газонаполненный пенопласт на основе полистирола (ПС). В современных производствах вспенивание ПС осуществляется в основном за счёт использования высококипящих жидкостей (изопентан, метиленхлорид и др ), которые вводят при полимеризации стирола (С), в полистирольный «бисер». При нагревании например в горячей воде, бисер вспенивается, образуя предвспененные гранулы, которые после сушки и вылёживания спекаются в объёмные блоки при температурах 140-170°С и давлениях 150-200 КГС/см2. Блоки затем режут на нужные размеры. В промышленности используется также экструзионный пенополистирол с непрерывным методом получения (ППС).

Не секрет, что война и комфорт -- "вещи несовместные". Поэтому когда материал доказал коммерческую ценность при массовом решении задач энергосбережения в гражданской сфере, полная информация о нем стала опасна для профильного бизнеса.

Поэтому пенопласт, легкий и теплый на ощупь материал, состоящий на 98% состоит из воздуха, подаренный нам полвека назад химиками и названный ими пенополистиролом, широко используют при строительстве разных технологических зданий, жилых домов, панельные стены которых похожи на пирог с химической начинкой или с надетыми на стену из монолитного железобетона с наружной и внутренней стороны термоблоками из вспененного полистирола. Такой дом гордо называют «ТЕРМОДОМ».

Для пропаганды использования пенополистирола в строительстве ему присваивают множество мифов:

Миф первый: Высокие теплоизоляционные свойства.

Теплоизоляторы по критерию теплопроводности. Большинство утеплителей из вспененных пластмасс, как правило, имеют коэффициент теплопроводности 0,035-0,048 Вт/мК при температуре 25°С. Отдельные производители заявляют, что этот показатель достигает значений 0,020 Вт/мК и даже 0,018 Вт/мК. Но вспененным пластмассам присуще водопоглощение. Так гранулированный пенополистирол, изготовленный беспресовым методом увеличивает свое водопоглощение до 350% по массе. Но и это еще не предел. Зафиксированы случаи, когда плиты беспрессового пенополистирола при эксплуатации покрытия с поврежденным гидроизоляционным ковром приобретают влажность до 900%. Понятно, что при таком количестве поглощенной воды, ни о каком нормативном значении коэффициента теплопроводности теплоизоляционного материала и речи быть не может. пенополистирол строительство утеплитель горячеформованный

В течение часа человек выделяет около 100 г влаги. Если это жилое помещение, то к этому количеству необходимо добавить влагу, появляющуюся при приготовлении пищи, стирке и т.д., в результате чего влажность увеличивается многократно. Поэтому для создания комфортного и здорового микроклимата наружные стены должны «дышать», что означает - обладать хорошей паропроницаемостью. Однако паропроницаемость абсолютно всех вспененных утеплительных материалов, применяемых в строительстве на порядок меньше, чем минераловатных и стекловолоконных утеплителей. Например, коэффициент паропроницания пенополиуретана и пенополистирола равен приблизительно 0,05 мг/мчПа, в то время как у минераловатных изделий - 0,4-0,6 мг/мчПа. Поэтому, как показывают результаты исследований, проведенные франкфуртским Институтом строительной физики и ганноверским Институтом строительной техники, применение в качестве утеплителя пенополистирольных плит уменьшает диффузию водяного пара через наружные стены в среднем на 55-57%. Технический университет в Хельсинки проводил мониторинг параметров микроклимата в санкт-петербургских домах, утепленных пенополистиролом. В этих домах старые, традиционные окна советского изготовления были заменены новыми, современными со стеклопакетами и вентиляционными клапанами, была восстановлена вентиляция, установлена система управления температурой теплоносителя. Однако в первую же зиму относительная влажность воздуха в 70% квартир достигла 80% при температуре воздуха 18°С, а такие условия являются весьма благоприятными для развития грибков.

Миф второй: Долговечный материал.

Это свойство явилось причиной более пристального изучения свойств многих теплоизоляционных материалов, в том числе и пенополистирола. Особенно глубокие исследования были проведены лабораторией профессора А. И. Ананьева в НИИ Строительной Физики (Москва). Поводом к проведению исследований стали результаты вскрытия покрытия подземного торгового комплекса на Манежной площади в Москве, построенного несколько лет назад. При вскрытии покрытия, находящегося в эксплуатации всего два года, было обнаружено значительное разрушение пенополистирольных плит, на которых образовались значительные раковины и трещины. В результате деструкционных процессов толщина некоторых плит уменьшилась 80-14 мм, при этом плотность пенополистирола в зоне самой тонкой части увеличилась более чем в четыре раза - до 120 кг/м3. Приведенное сопротивление теплопередаче теплоизоляционного слоя покрытия в зоне чрезмерной деструкции пенополистирольных плит стало составлять 0,32 кв. м°С/Вт, что отличает его от проектного значения, равного 2,7 кв. м°С/Вт, более чем в восемь раз. Причина столь катастрофического состояния утеплителя заключалась, как показали результаты исследований, в нарушении технологии производства работ и отсутствием учета ряда физических и химических особенностей пенополистирола при проектировании. Этой же лабораторией были проведены исследования беспрессового пенополистирола, эксплуатировавшегося, так сказать, в более ординарных условиях - наружных ограждающих конструкциях зданий. Результаты показали довольно существенное увеличение (0,047-0,05 Вт/м°С) теплопроводности утеплителя. Высокую сходимость с результатами НИИСФ показывают исследования, проведенные Нижегородским государственным архитектурно-строительным университетом. Полученные там данные показывают, что величина приведенного значения сопротивления теплопередаче наружных стен, утепленных беспрессовым пенополистиролом, уменьшилась в среднем на 49-59%.

Заведующий лабораторией российского НИИ строительной физики, доктор технических наук Александр АНАНЬЕВ и председатель правления Российского общества инженеров строительства (РОИС), доктор технических наук Олег ЛОБОВ зафиксировали случаи, когда за семь-десять лет эксплуатации конструкций втрое снизилась способность пенополистирола держать тепло. Это, по их мнению, происходит потому, что, кроме процесса естественного разрушения, действуют и другие факторы: например, ремонт квартир, неосторожное обращение жильцов с бытовой химией. Плохо переносит пенополистирол и летучие углеводородные соединения (они появляются, когда фасад красят или покрывают гидроизоляцией).

Безоглядное применение полимеров, как утверждает российский профессор Борис БАТАЛИН, сорок лет посвятивший изучению стройматериалов, может привести к тому, что сиюминутная экономия обернется впоследствии многомиллиардными затратами. Доказано, что через 10-15 лет пенополистирол неминуемо постареет, ухудшатся его теплозащитные свойства. А значит, тепла для обогрева домов понадобится вдвое больше.

С этой точки зрения более эффективен экструзионный пенополистирол (ЭППС), который, как показывают результаты моделирования в ВНИИстройполимер, выдерживает 50-летние циклические температурно-влажностные нагрузки, но при условии применения в земляном полотне (подстилка дорожному покрытию) и для утепления подвальных помещений. Косвенно эти данные подтверждают и результаты обследования, выполненные Белорусским национальным техническим университетом. Обследованию были подвергнуты построенные в 1976 г. сооружения, в ограждающих конструкциях которых был использован экструзионный пенополистирол. Для лабораторных исследований были взяты контрольные образцы, результаты изучения которых показали, что утеплитель находится в превосходном состоянии. Подчеркнем, экструзионный пенополистирол применяется на Западе в качестве утеплителя расположенного в земле - в основном под дорожным полотном автомагистралей или искусственных водоемов, т.е. там, где не подвергается воздействию водяного пара.

Миф третий: Экологичный материал.

К материалам на основе полистирола особенно много претензий в связи с выделением вредных веществ. Дело в том, что, во-первых, 100%-ая полимеризация происходит только теоретически. На самом деле этого у полистирола никогда не бывает, процесс полимеризации идет не до конца, на 97-98%; во-вторых, процесс полимеризации обратим, поэтому полимеры постоянно разлагаются под влиянием света, кислорода, озона, воды, механических и ионизирующих воздействий, и особенно под влиянием тепла. Образовывающийся таким образом свободный стирол проникает в помещения, и люди длительное время живут в обстановке, когда в жилой атмосфере есть стирол (пусть концентрации и ниже ПДК). От этих микродоз стирола страдает сердце, особые проблемы возникают у женщин. Стирол оказывает сильное воздействие на печень, вызывая среди прочего и токсический гепатит.

Основная токсикологическая опасность полистирола (ПС) и пенополистирола (ППС) соответственно состоит в том, что ПС относится к равновесным полимерам, которые при обычных условиях эксплуатации подвержены процессу деполимеризации и в результате уже при обычных условиях эксплуатации находится в термодинамическом равновесии со своим высокотоксичным мономером - стиролом (С):

ПС n = ПС n-1 + С.

Если термодинамическое равновесие полистирола сдвигается вправо, следовательно, стирол постоянно выделяется в окружающую среду. Наличие термодинамического равновесия полистирола доказано экспериментально. Концентрация С в ПС зависит от температуры (повышение температуры вызывает повышение концентрации С). При температуре 25°С концентрация С в ПС составляет 10,6 Кмолей/м3. Так как один Кмоль ПС составляет 104 грамма, то при 25°С в 1 м3 пенополистирола будет содержаться 104 микрограмм стирола, что очень много с учётом того что величина ПДК (линейной концепции) для развитых стран. ПДК стирола составляет 0,002 мг/м3 для воздуха населённых мест и помещений!!!

Исследования в Минске показали, что даже при комнатной температуре образцы систем утепления с тонкослойными штукатурками и теплоизоляцией из пенополистирола отечественного производства исторгают недопустимо много стирола (превышение ПДК -- в 3,7-10,1 раза). А при 80 градусах (до такой температуры летом способны нагреваться внешние слои стены) зафиксировано 169-кратное превышение! "Голенький" же образец пенополистирола при тех же 80 градусах выдал стирола в количестве 525 ПДК.

Пенопласт также подвергается выветриванию, при котором в малых концентрациях возникают газосодержащие смеси. Если они долго воздействуют на организм ребенка или больного человека, то обязательно обеспечат затяжные и непонятные болезни. В западных странах все эти стойкие органические загрязнители (СОЗы) подпадают под запрет специальной Стокгольмской конвенции.

Член-корреспондент Российской академии наук Борис Гусев и его коллеги обнаружили, что за период эксплуатации разлагается до 10-15% пенополистирола, притом разложившаяся часть -- на 65% стирол. А он имеет повышенные кумулятивные свойства -- накапливается в печени, но не выводится. Значит, считают ученые, надо уменьшить ПДК стирола, выделяющегося в жилье, раз в 600. Выходит, применять это вещество в жилищной сфере нельзя вообще.

Для особо рьяных защитников полистирола и пенополистирола приведем выдержку из учебника по общей химии для вузов: «… полистирол быстро «стареет», имеет склонность к растрескиванию, характеризуется невысокой термической стойкостью, низкой прочностью и плохой бензостойкостью…». [6, с. 606].

Предельно допустима концентрация (ПДК)

Говоря о таком параметре, как ПДК необходимо упомянуть, что существуют две концепции оценки влияния вредных веществ на организм человека - пороговая и линейная. В пороговой концепции утверждается, что снижать концентрации вредных веществ нужно до некоторого уровня (порога), определяемого значением предельно-допустимой концентрации (ПДК). Малые концентрации (ниже уровня ПДК) вредных веществ безвредны. Этой концепции придерживаются в России и странах бывшего СССР. В линейной концепции предполагается, что вредное влияние на человека пропорционально (линейно) зависит от суммарного количества поглощенного вещества, то есть от произведения его концентрации на время. Отсюда вывод: Малые концентрации при длительном потреблении вредны. Этой концепции фактически придерживается ряд стран: США, ФРГ, Канада, Бельгия, Япония и некоторые другие. Переход к линейной концепции вынудит пересмотреть очень многие нормативы. Например, величина ПДК на сернистый ангидрид должна быть уменьшена в 6,2 раза, а на стирол - в 594 (!) раза. Столь низкое требуемое значение ПДК на стирол в помещении вызвано особыми свойствами стирола. Это вещество относится к конденсированным ароматическим соединениям, имеющим в своей молекуле одно или несколько бензольных ядер, и, подобно аналогичным веществам (бензол, бензпирен, безантрацен), имеет повышенные коммулятивные (накопительные) свойства: накапливается в печени и не выводится наружу.

Выводы наших исследователей-экологов весьма категоричны. Во-первых, необходимо пересмотреть нормы ПДК, которые для жилищного строительства должны быть уменьшены в десятки и сотни раз в соответствии с коммулятивными свойствами вредных материалов. Во-вторых, по мнению ученых, среди веществ, содержащихся в строительных материалах, наибольшей степенью коммулятивности обладает стирол, что требует уменьшения ПДК при его использовании в жилищном строительстве до таких минимальных значений, что это равносильно полному запрещению применения продуктов полимеризации стирола в жилищном строительстве вообще.

Но и это еще не все. При окислении стирола кислородом воздуха образуется бензальдегид и формальдегид. При высоких температурах (от 160°С и выше) пенополистирол подвергается интенсивной термоокислительной деструкции разлагаясь в основном до высокотоксичного стирола, сильнейшим образом отравляя окружающую среду и людей, что и имеет место при пожарах в зданиях, утеплённых ППС. Помимо этого, при пожарах ППС плавится и его плав горит, а температура горящего сплава ППС достигает 1100°С, что приводит к разрушению даже мощных металлических конструкций. Именно из-за высокой температуры горения ППС его используют как основной компонент в напалмовых бомбах, используемых, в том числе и для уничтожения бронетехники противника!!! Из-за этих свойств ППС его категорически запретили к применению как утеплителя в железнодорожных вагонах ещё более 15 лет назад. В работах НПО «ВНИИСТРОЙПОЛИМЕР» по санитарно-химической оценке различных строительных конструкций утеплённых ППС, проведённых в 70х..80х годах прошлого века было показано, что ни одна из представленных конструкций, не может быть применена в строительстве жилых зданий. Причиной этого было превышение реального содержания стирола в воздухе над значением ПДКсс. В 90х годах отрицательное заключение получил так называемый пенополистиролбетон, который предполагали заливать в полые конструкции. Превышение концентраций стирола в этом материале в 2-4 раза над уровнем ПДКсс.

Стирол (винилбензол, фенилэтилен) - непредельный, ароматический углеводород, С6Н5СН=СН2 -бесцветная жидкость со специфическим запахом, плотностью 0,906 г/см3, температура кипения 145,2°С.

Стирол-мономер применяется в производстве полистирола (в т.ч. ударного полистирола и пенополистирола), АБС-пластиков, бута-диен-стирольных каучуков, термоэластопластов, сополимеров с акрилонитрилом, винилхлоридом; сополимеры с дивинилбензолом - сырье для ионообменных смол; реакционноспособный растворитель полиэфирных смол, модификатор алкидных смол.

Вызывает раздражение слизистых оболочек верхних дыхательных путей, головную боль, расстройство центральной и вегетативной нервной системы. Предельно допустимая концентрация - 5 мг/м3 (предельная концепция), и 0,002 мг/м3 (линейная концепция). Стирол отрицательно воздействует на кровь человека, вызывая лейкоз, отрицательно действует на печень, может вызвать токсический гепатит. Особая опасность стирола состоит в том, что он обладает эмбриогенным действием, то есть при длительном воздействии вызывает уродство эмбриона в чреве матери (см. работы профессора Бокова А.Н., в трудах кафедры гигиены и токсикологии полимерных материалов Ростовского мединститута).

Известный факт: большинство молодых женщин, живших на БАМе в передвижных домиках (а их утепляли именно пенополистиролом), потеряли способность к рождению детей. А в Белоруссии в домах, с аналогичным утеплителем дети до 14 лет болеют в пять- шесть раз чаще, чем в обычных домах.

Кроме того, стирол обладает ещё одним опаснейшим свойством - высоким коэффициентом кумулятивности (накапливаемости), то есть ярко выраженной способностью накапливаться (концентрироваться) в организме человека. В доказательство приведём таблицу коэффициентов кумулятивности ряда вредных веществ выделяющихся из полимерных строительных материалов:

Коэффициенты кумулятивности ряда вредных веществ

Вещество

Коэффициент

Кумулятивности

Оксид углерода

0,1195

Диоксид азота

0,1760

Фенол

0,2815

Формальдегид

0,5750

Бензол

0,6330

Стирол

0,7005

Таким образом, даже при содержании стирола в воздухе помещений на уровне ПДКсс (0,002 мг/м3) он будет оказывать сильное токсическое действие на организм человека за счёт кумуляции (накопления).

Полистирол -- продукт полимеризации стирола (винилбензола). Полистирол -- твердое, упругое, бесцветное вещество. Это жесткий, аморфный полимер с невысокой механической прочностью при растяжении и изгибе. Полистирол имеет низкую плотность, термическую стойкость, обладает отличными диэлектрическими свойствами и весьма низкой прочностью при ударе. Он легко деформируется при относительно невысоких температурах (80°C).

Из полистирола получают пластические массы, которые широко применяют в электротехнической промышленности, для изготовления предметов бытового назначения (посуда, статуэтки, детские игрушки и т. д.), линз, облицовочных плиток и несъемной опалубки (термоблоков) для строительства и т.д.

Вывод

Таким образом, применение пенополистирола в строительстве жилых домов, будь то несъемная опалубка, внутристенный или перегородочный утеплитель, сэндвич-панели (плита ОSВ - пенополистирол - плита OSB), должно быть полностью запрещено. Конструкции с применением пенополистирола являются настоящими «газовыми камерами» для людей и представляют исключительно высокую пожароопасность. В случае пожара, шансы на спасение людей - минимальны.

Использование пенополистирола в любом виде при строительстве жилых домов должно рассматриваться как экологическое преступление против граждан РФ!!!

Но по заключению Государственного комитета санитарно-эпидемиологического надзора Российской Федерации материал считается абсолютно безвредным. Более того, Московским НИИ гигиены им. Ф.Ф. Эрисмана были проведены исследования проб воздуха из помещений, для утепления которых использовался пенополистирол; вредные для человека вещества, в том числе и стирол, не обнаружены. Следовательно, полистирольные плиты разрешены к применению для изоляции пищевых контейнеров и в качестве утеплительных плит для жилья.

Но задайте себе 2 вопроса (так, как это делают жители Украины):

1. На что нам, учитывая мировой опыт и тенденции, сдался пенополистирол?

2. Не стоит ли крепко задуматься не только о здоровье живущих, но и о здоровье еще не родившихся людей?

В завершение приведем выражение бывшего киевского мэра Владимира ГУСЕВА: "Чем больше мы строим панельных домов, тем больше нам придется строить больниц".

Тем не менее, надеяться на скорое сворачивание основанного на переработке нефти производства роняющего себя в глазах потребителей пенополистирола наивно. Всеми правдами и неправдами этот материал будет навязываться всему миру как можно дольше. Но если меркантильные интересы превыше всего -- ждите беды.

Около 12 лет назад стал активно продвигаться полистиролбетон, в котором предвспененные гранулы полистирола замешивали в обычный бетонный раствор.

НИИ «Железобетон» подала этот материал на экспертизу в Московскую СЭС и та завернула его использование в жилых и общественных зданиях из-за выделений стирола - опасного для человека вещества. Было установлено, что при комнатной температуре выделение стирола превышает ПДК в 2,5 раза, а при температуре 40єС превышение ПДК составляет в 3..4 раза.

Тогда НИИ «Железобетон» обратилась к академику Мальцеву В.В. найти средство для ликвидации выделений вредных летучих из полистиролбетона. Был заключен договор, и решение было найдено.

Этим решением стала защитная грунтовка «СТИРОДЕТ».

После обработки этой грунтовкой помещения повторно были обследованы Московской СЭС, и та дала добро на применение полистиролбетона.

Поэтому те, кто постоянно проживает в домах с утеплителем из пенополистирола или полистиролбетона настоятельно рекомендуем применение этой грунтовки.

Литература

1. Энциклопедия полимеров, т. 2 - М.: изд. «Советская энциклопедия», 1974 г.

2. Слоним И.Я. Урман Я.Г. кн. ЯМР - спектрометрия гетерогенных полимеров, М., 1982 г.

3. Химическая энциклопедия, т. 5 - М., изд. «Большая Российская Энциклопедия», 1997 г.

4. Министерство здравоохранения СССР, Главное санитарно- эпидемиологическое управление. «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест. М., 1984 г.

5. «Вредные вещества в промышленности» т.1. Ленинград, изд. «Химия», Ленинградское отделение, 1976 г.

6. Глинка. И.Л. Общая химия: Учебное пособие для вузов/Под ред. А.И. Ермакова. изд.29-е, исправленное. М.: Интеграл-Пресс, 2001. 728 с.

Размещено на Allbest.ru

...

Подобные документы

  • Конкурентные преимущества технологии модульного строительства. Сравнительная стоимость 1 м2 стены из разных комбинаций строительных материалов. Описание оборудования и технологии производства опалубки из пенополистирола. Экономическое обоснование проекта.

    бизнес-план [496,0 K], добавлен 21.06.2011

  • Понятие сертификации в строительстве. Нормативно-правовая база требований к строительной продукции, порядок проведения ее сертификации, органы, ее осуществляющие. Требования и порядок аккредитации органов, проводящих сертификацию строительной продукции.

    реферат [15,3 K], добавлен 21.09.2012

  • Организация и проведение работ по подготовке технических свидетельств о пригодности новых материалов, изделий, конструкций и технологий для применения в строительстве; нормативно-правова база; органы, осуществляющие сертификацию, порядок ее проведения.

    реферат [25,3 K], добавлен 15.04.2013

  • Классификация строительных материалов. Требования к составляющим бетона, факторы, влияющие на его прочность и удобоукладываемость. Ячеистые и пористые бетоны, их применение в строительстве. Лакокрасочные материалы и металлы, их применение в строительстве.

    контрольная работа [31,0 K], добавлен 05.05.2014

  • Технология 3D-печати зданий и сооружений. Применение экструдирования в строительстве: печать несъемной опалубки, армирование конструкции, укладка товарного бетона. Материал, применяемый в 3D строительстве. Преимущества и перспективы развития технологии.

    презентация [7,5 M], добавлен 06.12.2016

  • Транспортные работы в строительстве, основные механизмы для производства земляных работ, их общая характеристика. Основы технологии монтажа строительных конструкций. Применяемые в строительстве машины и механизмы, их классификация по различным признакам.

    контрольная работа [28,0 K], добавлен 07.12.2012

  • Эффективное применение кирпичной кладки в строительстве. "Проветривание" комбинированных стен. Теплоэффективные ограждающие конструкции жилых и гражданских зданий. Физические основы нормирования теплотехнических свойств керамического кирпича и камня.

    курсовая работа [423,5 K], добавлен 04.02.2012

  • Применение древесины в строительстве, оценка ее положительных и отрицательных свойств. Средства соединения элементов деревянных конструкций. Расчет конструкций рабочей площадки, щита и прогонов кровли, клееной балки, центрально-сжатой стойки (колонны).

    курсовая работа [306,1 K], добавлен 12.03.2015

  • История подрядных отношений в строительстве. Понятие договора строительного подряда. Права и обязанности сторон по договору строительного подряда. Особенности подрядных отношений в строительстве. Техническая документация и смета. Сдача и приемка работ.

    курсовая работа [40,6 K], добавлен 29.04.2011

  • Общие сведения о строительных материалах. Влияние различных факторов на свойства бетонных смесей. Состав, технология изготовления и применение в строительстве кровельных керамических материалов, дренажных и канализационных труб, заполнителей для бетона.

    контрольная работа [128,5 K], добавлен 05.07.2010

  • Краткая характеристика строительной организации. Оформление хозяйственных отношений со строительной организацией. Методика составления смет. Обеспечение качества строительно-монтажных работ. Документация по организации строительства и производству работ.

    отчет по практике [307,1 K], добавлен 06.11.2011

  • Свойства, состав, технология производства базальта. Устройство для выработки непрерывного волокна из термопластичного материала. Описание и формула изобретения, характеристика продукции. Виды строительных материалов. Применение базальта в строительстве.

    реферат [55,4 K], добавлен 20.09.2013

  • Группы и особенности продвижения строительной продукции. Единицы измерения ее объема. Этапы строительного процесса. Стадии кругооборота капитальных вложений. Представление о ритмичности работы организации. Система сертификации качества в строительстве.

    курсовая работа [200,9 K], добавлен 23.06.2014

  • Характеристика промышленных строительных материалов. Гранулированные доменные шлаки в производстве шлакопортланд-цемента. Шлакопортландцемент как универсальный материал, его строительно-технические свойства. Физико-механические свойства шлакового щебня.

    контрольная работа [57,4 K], добавлен 11.12.2010

  • Пути преодоления кризисных явлений в строительной отрасли и жилищном строительстве. Закон "О предотвращении мирового финансового кризиса и развитие строительной отрасли и жилищного строительства". Действия правительства по преодолению последствий кризиса.

    доклад [18,5 K], добавлен 27.05.2009

  • Понятие и специфика индивидуальных проектов в строительстве. Технология проектирования, нормативное регулирование, зарубежный опыт. Проектирование зданий с учетом функционального назначения. Строительство по индивидуальным проектам в Белгородской области.

    курсовая работа [3,3 M], добавлен 07.10.2011

  • История развития применения геосинтетических материалов в дорожном строительстве в Российской Федерации. Производство различных видов геотекстилей и геосеток, георешеток и геосот, геонитей, а также геоплит, используемых в качестве термоизоляторов.

    реферат [1,3 M], добавлен 08.12.2010

  • Специфика геодезических работ в строительстве и устройстве котлованов. Геодезическое обеспечение монтажа промышленных печей. Методика расчета крена здания с помощью измерения горизонтальных углов. Основы построения разбивочной сети на монтажном горизонте.

    контрольная работа [1,3 M], добавлен 10.03.2010

  • Квартиры элит-класса, бизнес-класса, эконом-класса, их планировка, достоинства, основные отличия. Классификация квартир вторичного рынка, их площадь, состояние, высота потолков. Современные таунхаусы и пентхаусы. Квартиры типовой планировки, их подвиды.

    презентация [883,5 K], добавлен 20.03.2014

  • Формы оперативного управления строительным производством. Индустриализация, углубление специализации и рост темпов строительства. Функции диспетчерской службы, эффективность применения диспетчеризации в строительстве. Аварийно-диспетчерское обслуживание.

    реферат [37,9 K], добавлен 14.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.