Влияние форм наружных углов на температурные показатели для внутренних поверхностей стен здания
Рассмотрение специальной проблемы изменения показателя температуры на внутренней поверхности угла в зависимости от его величины. Результаты экспериментального определения температуры внутренней поверхности наружных углов с позиции санитарной гигиены.
Рубрика | Строительство и архитектура |
Вид | статья |
Язык | русский |
Дата добавления | 08.04.2019 |
Размер файла | 492,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Влияние форм наружных углов на температурные показатели для внутренних поверхностей стен здания
Подковырин Владимир Сергеевич, аспирант, Сибирский федеральный университет
Подковырина Ксения Алексеевна, преподаватель, Сибирский федеральный университет
Аннотация
температура угол наружный поверхность
В исторической практике строительства формообразованию зданий наиболее свойственны были прямые углы наружных стен зданий, однако в настоящее время все чаще строятся объекты с разнообразной формой таких наружных углов. В теле конструкции наружного угла здания распределение температур и характер теплопередачи отличается от глади стены, что делает его уязвимым местом в обеспечении санитарной гигиены и тепловой защиты. В действующих строительных нормах и правилах для выполнения санитарно-гигиенических требований температура внутренней поверхности наружных углов здания регламентирована не ниже температуры точки росы внутреннего воздуха. Нарушение данных требований может привести к промерзанию углов, образованию конденсата, а впоследствии - плесени и грибка. В статье рассматривается специальная проблема изменения показателя температуры на внутренней поверхности угла в зависимости от его величины - рассмотрены формы прямого и тупого углов. Представлены результаты экспериментального определения температуры внутренней поверхности наружных углов с величинами 90° и 135°. По полученным данным произведено сравнение этих углов с позиции санитарной гигиены.
Ключевые слова: тепловизор, наружный угол здания, санитарная гигиена, эксперимент, температура точки росы, геометрия здания, архитектура, прямой угол, тупой угол, инфракрасная съемка
Abstract
Podkovyrin Vladimir Sergeevich, Post-graduate student, the department of Building Design and Real Estate Expertise, Siberian Federal University, Architectural Engineer, LLC “Noria”
Podkovyrina Kseniya Alekseevna, Educator, the department of Building Engineering and Real Estate Expertise, Siberian Federal University
In the construction practice, the most common angles in architectural morphogenesis are the right angles of outside building walls, but most recent projects utilize various forms of such outside corners. Within the internal structure of the external building corner the temperature distribution and the nature of the heat transfer differs from the surface of the wall, which makes it more vulnerable in sanitary maintenance and thermal protection. In the current construction norms and rules, for carrying out sanitary maintenance requirements the temperature of the indoor surface of the outside corners of the building should not be lower than the temperature of the condensation point of the indoor air. Violation of these requirements can lead to freezing of the corners, formation of condensate, and eventually mold and mildew. The article examines the special problem of changes to the temperature index on the indoor surface of the corner depending on its size and explores the forms of right angle corners. The author presents the results of experimental reading of temperature of the indoor surface of outside corners with 90 and 135-degree angles. The acquired data allowed comparing these angles from the position of sanitary maintenance.
Keywords: building geometry, condensantion point temperature, experiment, sanitary hygiene, external corner of the building, thermal imager, architecture, right angle, obtuse angle, infrared imaging
Введение
Ни одна наука не связана так тесно с геометрией как архитектура. Геометрия архитектурного пространства зависит от функционального назначения объекта строительства, а также влияет на психологическое состояние человека, находящегося в этой среде. Плоскость помещения образовывает геометрическую фигуру, которая может иметь углы различных градусов. В настоящее время большое количество зданий имеет прямоугольную форму с наружными углами 90°, однако существуют объекты, где наружные углы являются острыми или тупыми. Наружный угол - это одно из наиболее уязвимых мест в структуре тепловой защиты здания. Температура на внутренней поверхности наружного угла всегда ниже, чем на глади стены, что в некоторых случаях является причиной промерзания углов, выпадения конденсата и образования плесени. Согласно [2] и [3], потери через наружный угол здания, а также температура на внутренней поверхности зависят от его формы и конструкции.
Данная проблема изучена рядом исследователей [4-7].
В статье [4] рассмотрены теплонапряженные элементы, такие как угловой фрагмент наружной стены и фрагмент сопряжения угловой части наружной стены с балконной плитой, а также дана количественная оценка теплопереноса через них. Приведены мероприятия, с помощью которых можно увеличить температуру в области теплонапряженных элементов.
В работах [5-6] предлагается алгоритм теплотехнического расчета строительных конструкций с теплотехнически неоднородными участками (краевыми зонами) на основе характеристик, которые непосредственно влияют на теплозащиту зданий. При определении поэлементных требований, следует учитывать, что форма здания влияет на уровень его теплозащиты.
В [7] предположено, что дополнительные потери тепла пропорциональны отношению площадей наружной и внутренней поверхности угла. В результате выполнен пересчет коэффициента, который учитывает добавочные потери теплоты на угловую часть (для углов от 30° до 165°).
Целью работы являлось экспериментальное определение и сравнение температуры внутренней поверхности наружных углов 90° и 135° при одних и тех же климатических условиях.
Материалы и методы
В ходе эксперимента велась инфракрасная съемка углов 90° и 135°. Эксперимент проводился в корпусе №24 Сибирского федерального университета в кабинете А423. Наружные стены представляют собой многослойную конструкцию, где несущим слоем является кирпичная кладка из кирпича глиняного обыкновенного на цементно-песчаном растворе толщиной 640 мм, с утеплением каменной ватой толщиной 100 мм и навесным фасадом в качестве наружного лицевого слоя. На рисунке 1 представлен план кабинета с точками съемки.
В ходе работы были установлены следующие климатические параметры: температура наружного воздуха, tн = -12 °С; температура внутреннего воздуха, tв = 30 °С; относительная влажность внутреннего воздуха, цв = 15%.
Рисунок 1 - План кабинета с точками съемки
Для тепловизионной съемки углов использовался инфракрасный тепловизор FLIR ThermaCAM SC640 (рис.2) с объективом FOL 19 мм и параметрами, представленными в таблице 1.
Рисунок 2 - FLIR ThermaCAM SC640
Таблица 1 - Параметры тепловизора FLIR ThermaCAM SC640
Параметр |
Величина |
|
Коэффициент излучения |
0,96 |
|
Отраженная температура |
28°С |
|
Расстояние |
3м |
|
Температура внешней оптики |
20°С |
|
Пропуск внешней оптики |
1 |
Результаты и обсуждения
На рисунках 3-4 представлены результаты тепловизионной съемки углов 90° и 135°.
Рисунок 3 - Распределение температуры внутренней поверхности угла 90°
Рисунок 4 - Распределение температуры внутренней поверхности угла 135°
Согласно полученным данным, на рисунке 5 были построены графики линейного распределения температуры на внутренней поверхности стен для углов 90° и 135°.
Рисунок 5 - Распределение температуры на внутренней поверхности углов 90° и 135°
Заключение
В результате эксперимента установлено, что при данных условиях и данной конструкции стен разница температуры внутренней поверхности наружных углов 90° и 135° составила 5,2°С. Возможно, здесь оказывает влияние оконный проем, и при глухой стене разница в температуре внутренней поверхности будет меньше.
Следует заметить, что эксперимент проводился в пустом кабинете, при относительной влажности внутреннего воздуха - 15%. Соответственно при повышении относительной влажности до привычной - 30-60% (во время занятий при нахождении в кабинете большого количества студентов), температура точки росы повысится и тогда вероятность выпадения конденсата на внутренней поверхности угла 90° будет значительно выше, чем у угла 135°.
Библиография
1. СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003. Введ. 1.01.2012. М.: ОАО «НИЦ «Строительство», 2012.
2. Фокин К. Ф. Строительная теплотехника ограждающих частей здания. М.: АВОК ПРЕСС, 2006. 256 с.
3. Назиров Р. А., Подковырин В. С., Подковырина К. А. Определение температуры внутренней поверхности в наружных углах здания // Известия высших учебных заведений. Строительство. 2016. № 10-11 (694-695). С. 106-111.
4. Козлобродов А. Н., Иванова Е. А. Анализ совместного влияния нескольких теплонапряженных элементов на тепловое состояние строительных конструкций // Вестник Томского государственного архитектурно-строительного университета. 2016. № 1 (54). С. 133-139.
5. Корниенко С. В. Оценка влияния краевых зон ограждающих конструкций на теплозащиту и энергоэффективность зданий // Инженерно-строительный журнал. 2011. № 8. С. 5-12.
6. Корниенко С. В. Теплотехнический расчет строительных конструкций с краевыми зонами // Вестник Волгоградского государственного архитектурно-строительного университета. Строительство и архитектура. 2013. № 34 (53). С. 22-29.
7. Толстова Ю., Харитонова Т. Теплопотери острых углов зданий // Сантехника, отопление, кондиционирование. 2011. № 8 (116). С. 52-53.
Размещено на Allbest.ru
...Подобные документы
Теплотехнический расчет наружных стен, чердачного перекрытия, перекрытий над неотапливаемыми подвалами. Проверка конструкции наружной стены в части наружного угла. Воздушный режим эксплуатации наружных ограждений. Теплоусвоение поверхности полов.
курсовая работа [288,3 K], добавлен 14.11.2014Общая характеристика объекта строительства. Определение объемов работ при кладке наружных стен. Обзор применяемых машин и механизмов. Создание технологической карты на кирпичную кладку наружных стен и внутренних перегородок с монтажом перемычек.
отчет по практике [4,2 M], добавлен 14.08.2015Определение наружных климатических условий и параметров внутренней среды помещений. Схема конструкции двухслойной стены с наружным утеплением и штукатуркой по сетке. Температура точки росы для температурно-влажностных условий на поверхности стены.
реферат [1,5 M], добавлен 24.01.2015Средняя температура самого холодного месяца в качестве расчетной температуры наружного воздуха в расчете влажностного режима ограждения, обеспечение его оптимальных параметров. Сопротивления теплоотдаче у внутренней и наружной поверхности ограждения.
контрольная работа [62,8 K], добавлен 27.01.2012Теплотехнический расчет наружных ограждений жилого пятиэтажного здания к климатических условиях г. Москвы. Техническая характеристика здания, конструкция ограждений, планы и разрезы. Проверка наружных стен на конденсацию влаги в толще ограждений.
курсовая работа [368,6 K], добавлен 22.09.2011Теплотехнический и влажностный расчет наружных ограждающих конструкций. Осуществление проверки отсутствия конденсации водяных паров на внутренней поверхности наружного ограждения. Определение основных тепловых потерь через ограждающие конструкции здания.
курсовая работа [995,9 K], добавлен 03.12.2023Теплотехнический расчет ограждающих конструкций. Сопротивление теплопередаче наружных стен, чердачного покрытия, перекрытий над подвалом, наружных дверей и ворот, заполнений световых проемов. Аэродинамический расчет систем вентиляции жилого здания.
курсовая работа [196,4 K], добавлен 26.09.2014Объемно-планировочное решение рядовой секции здания. Описания фундаментов, наружных и внутренних стен, перекрытий, перегородок, окон, дверей и отделки здания. Теплотехнический расчет чердачного перекрытия. Инженерное и санитарно-техническое оборудование.
курсовая работа [447,4 K], добавлен 02.11.2014Климатическая характеристика района строительства, определение сопротивлений теплопередаче наружных и внутренних стен, подвального и чердачного перекрытий, дверей, световых проемов. Отопление здания, расчет водоструйного элеватора и расширительного бака.
курсовая работа [315,8 K], добавлен 03.11.2010Общий вид строительной площадки. Контуры здания в осях, наружных, внутренних стен. Расположение постоянных дорог и соседних зданий. Ось подкранового пути. Расстояние до наиболее удаленного монтируемого элемента. Определение границы рабочей зоны крана.
презентация [3,6 M], добавлен 13.03.2013Климатические данные пункта строительства. Объёмно планировочное решение и инженерное оборудование здания. Отделка внутренних помещений и фасада жилого дома. Конструктивный остов здания, теплотехнический расчёт наружных стен, чердачного перекрытия.
курсовая работа [135,0 K], добавлен 14.03.2013Планировочное решение малоэтажного жилого дома. Функциональное зонирование помещений. Проектирование входного узла и лестницы. Конструирование наружных и внутренних стен, перегородок. Инженерное обеспечение здания. Благоустройство приусадебного участка.
реферат [148,5 K], добавлен 24.07.2011Технико-экономические показатели объемно-планировочного и конструктивного решения производственного здания с нормальным режимом эксплуатации. Определение глубины заложения фундамента, сечения элементов наружных стен с учетом требований к энергосбережению.
курсовая работа [43,4 K], добавлен 06.08.2013Проект цеха для производства керамзитобетонных однослойных панелей наружных стен; номенклатура выпускаемых изделий. Расчёт состава бетонной смеси; сырьё и полуфабрикаты; укладка и уплотнение бетонной смеси. Подбор основного технологического оборудования.
курсовая работа [336,1 K], добавлен 07.06.2011Проведение теплотехнического расчета стены, пола, потолка, наружных дверей и световых проемов жилого дома. Определение влажностного режима наружных ограждений. Выполнение проверки на отсутствие периодической конденсации на внутренних поверхностях здания.
курсовая работа [246,9 K], добавлен 23.08.2014Расчетные параметры наружного и внутреннего воздуха, температура точки росы. Сопротивление теплопередаче ограждающих конструкций жилого дома. Расчет температуры внутренней поверхности стены. Индекс изоляции воздушного шума межкомнатными перегородками.
курсовая работа [2,1 M], добавлен 16.02.2014Минимальное расстояние видимости поверхности дороги, встречного автомобиля. Вычисление направлений и углов поворота. Вычисление пикетажных положений. Определение отметок поверхности земли по оси трассы. Типы поперечных профилей земляного полотна.
дипломная работа [1,8 M], добавлен 04.07.2015Характеристика объёмно-планировочного решения здания. Технология строительства ленточного фундамента. Кладка наружных и внутренних стен. Выбор окон и дверей. Анализ конструктивных особенностей плит. Расчёт и конструирование сплошной панели перекрытия.
курсовая работа [1,2 M], добавлен 29.12.2014Технико-экономические показатели по генеральному плану проектируемого здания. Теплотехнический расчет ограждающих конструкций: толщины наружных стен, утеплителя на кровлю, глубины заложения фундамента. Конструктивное решение строительных элементов.
контрольная работа [105,9 K], добавлен 07.02.2011Архитектурно-строительное решение здания, его наружная и внутренняя отделка. Проектирование конструкции каркасно-панельным методом. Теплотехнический расчет стен, показатели теплоусвоения поверхности и физико-технические характеристики составляющих пола.
контрольная работа [966,2 K], добавлен 07.08.2011