Проблема рационального расходования энергии при производстве сборного железобетона
Изучение проблемы рационального использования энергии при производстве сборного железобетона с позиций народного хозяйства. Рассмотрение методов сокращения расхода цемента путем введения в бетонную смесь высокоэффективных пластифицирующих добавок.
Рубрика | Строительство и архитектура |
Вид | статья |
Язык | русский |
Дата добавления | 28.10.2024 |
Размер файла | 23,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ташкентский государственный транспортный университет
ПРОБЛЕМА РАЦИОНАЛЬНОГО РАСХОДОВАНИЯ ЭНЕРГИИ ПРИ ПРОИЗВОДСТВЕ СБОРНОГО ЖЕЛЕЗОБЕТОНА
Кахаров З.В. доцент кафедры
«Инженерия железных дорог»
Исломов А.С. ассистент кафедры
«Строительная механика»
г. Ташкент
Аннотация
в данной статье рассмотрены проблема рационального расходования энергии при производстве сборного железобетона. Приведены различные методы сократить расход цемента благодаря введению в бетонную смесь высокоэффективных пластифицирующих добавок.
Ключевые слова: цемент, экономия цемента, тепло потери, пропарочные камера, высокоэффективные пластифицирующие добавки.
Annotation
Kakharov Z.V. Associate Professor of the Department of Railway Engineering Tashkent State Transport University (Uzbekistan, Tashkent)
Islomov A.S. Assistant of the Department of "Construction Mechanics" Tashkent State Transport University (Uzbekistan, Tashkent)
PROBLEM OF RATIONAL ENERGY CONSUMPTION IN PRODUCTION OF PRECAST REINFORCED CONCRETE
this article discusses the problem of rational energy consumption in the production of precast concrete. Various methods are given to reduce cement consumption due to the introduction of highly effective plasticizing additives into the concrete mixture.
Keywords: cement, cement economy, heat loss, steaming chamber, highly effective plasticizing additives.
Основная часть
Проблема экономии энергоресурсов возникла во второй половине XX века. В последние годы к ее решению начали подходить на научной основе - комплексно и всеобъемлюще. Бездумное расходование природных ресурсов: угля, нефти, газа, вырубка лесов (использование древесины как сырье для промышленности), постоянно возрастающее потребление энергии - все это население планеты расходует на свои бытовые нужды, а бурно развивающаяся промышленность - на технические. Сегодня как никогда встает вопрос об экономии энергоресурсов и рациональном их использовании во всех областях человеческой жизни.
Рассматривая проблему рационального расходования энергии при производстве сборного железобетона с позиций народного хозяйства, необходимо учитывать затраты энергии, расходуемой на производство цемента и арматуры. Это наиболее дорогостоящие, дефицитные и энергоемкие материалы, и грамотное их использование, исключающее перерасход топлива, приведет к экономии энергоресурсов.
Экономия цемента - одна из самых острых проблем современного отечественного строительства. Существуют реальные пути уменьшения потребления цемента строителями. сборный железобетон энергия цемент
Наибольший перерасход цемента наблюдается в бетонах, приготовленных на некачественных заполнителях. Так, использование песчано - гравийных смесей влечет за собой увеличение расхода цемента до 100 кг/м3. Это делается только для того, чтобы получить бетонную смесь необходимой пластичности и обеспечить нужную марку бетона по прочности. Приготовление же бетона на чистых и фракционных заполнителях требует наименьшего количества цемента и обеспечивает высокое качество конструкций.
Значительной экономии цемента можно достигнуть путем правильного проектирования состава бетона, не завышая его марку, для того чтобы бетон как можно скорее достиг требуемой прочности. Можно также существенно сократить расход цемента благодаря введению в бетонную смесь высокоэффективных пластифицирующих добавок (суперпластификаторов). Промышленность начала их выпускать специально для изготовления бетонов. К таким добавкам относится С-3. Благодаря разжижающему действию добавки С3 становится возможным уменьшить расход цемента на 20% без ухудшения основных физико-механических характеристик бетона. Если учесть, что при введении добавки сокращение расхода цемента на каждый кубометр сборных изделий в среднем составит 50-60 кг, то благодаря этому расход топлива значительно уменьшится.
Согласно расчетам на нагрев 1 м3 бетона в стальной форме до 80 градусов (температура изотермического выдерживания) требуется примерно 60 тыс.ккал. Поскольку нагрев происходит постепенно - со скоростью не более 20 градусов в час, то этот процесс неминуемо сопровождается значительным выделением тепла в окружающую среду. При исправном оборудовании необходимом для термообработки изделий, эти потери достигают 150 тыс.ккал, что в 2 -2,5 раза больше полезно затраченного тепла. При неисправном или небрежно эксплуатируемом оборудовании, а также при неоправданно завышенной длительности термообработки к потерям обязательным (планируемым) добавляются потери непроизводительные. Они колеблются в весьма широких пределах и на некоторых заводах достигают почти 200тыс.ккал на м3 бетона. Таким образом, суммарные тепло потери в несколько раз превышают количество тепла, затраченного на нагрев бетона с формой. Сократить тепло потери при термообработке изделий, можно не допуская неисправности в работке оборудования.
Пропарочные ямные камеры очень часто работают с неисправными крышками - не действуют или плохо действуют водяные затворы, в результате чего наблюдается перекос крышек, это приводит к большим потерям пара. В цехе для работающих создаются неблагоприятные гигиенические условия, высокая влажность способствует быстрому коррозированною металлических конструкций, оборудования. Избежать больших потерь тепла можно путем своевременного ремонта и профилактического осмотра камер.
Исследования, показали, что суммарные потери тепла в ямных камерах в процессе обработки изделий доходят до 70% от общего расхода тепла на термообработку изделий. Причина такого положения - устройство стенок и днища камер из тяжелого бетона, отличающегося высокой тепло проводимостью. Положение это можно исправить только совершенствованием конструктивного решения камер.
Одно из таких решений заключается в замене тяжелого бетона керамзитобетоном. В этом случае можно снизить тепло потери примерно на 50%. Если ограждения ямных камер делать из такого бетона, но с внутренними пароизоляцией и теплоизоляцией, то тепло потери можно снизить в 3 раза. Аналогичного эффекта можно добиться при устройстве стен камер из тяжелого бетона с несколькими воздушными прослойками.
Серьезного внимания заслуживает стендовая технология изготовления сборных железобетонных плоских плит. По этой технологии в виде пакета изготовляется сразу несколько изделий, разделенных тонкими прокладками из стального листа или пластика с вмонтированными в него электронагревателями. Расположенные между изделиями электронагреватели практически все тепло отдают в обе стороны, т.е. изделиям, так что тепло потери в окружающую среду происходят только через торцы, поверхность которых невелика.
Применение пакетного метода изготовления и термообработки плоских железобетонных изделий оказало большое влияние на организацию всего технологического процесса производства сборного железобетона. Вместо обычных форм начали использовать формы с силовыми бортами и плоским дном, которые значительно менее металлоемки. Изменились и многие технологические операции. Все это способствовало увеличению продукции на тех же производственных площадях в 1,5 -2 раза, уменьшению металлоемкости оборудования на 30-35%, повышению производительности труда на 10-15%. Но главное - появилась возможность резко снизить энергопотребление на тепловую обработку изделий. Есть все основания полагать, что пакетный способ термообработки сборных железобетонных изделий достоинству будет оценен производственниками и получит широкое применение на заводах ЖБИ.
В настоящее время разработан целый ряд методов электро - термообработки бетона при изготовлении сборных железобетонных изделий на заводах. Одним из наиболее экономичных (с точки зрения затрат энергии) способов электро-термообработки бетона является способ электро-прогрева или электродного прогрева, т.е. включение бетона в электрическую цепь как бы в качестве проводника. При этом электрическая энергия превращается в тепловую непосредственно в самом бетоне, что сводит к минимуму всякого рода потери. В зависимости от мощности электрического тока можно нагреть бетон до температуры 100 градусов, причем за любой промежуток времени - от нескольких минут до нескольких часов. Таким образом, появились широкие возможности выбирать оптимальные режимы термообработки изделий и благодаря этому обеспечить высокую производительность технологических линий.
В последние годы за рубежом широко рекламируется метод предварительного разогрева бетонных смесей непосредственно в смесителях с помощью пара: в смеситель загружаются заполнители и цемент и в процессе их перемешивания подается пар. Нагревая бетонную смесь, пар охлаждается и конденсируется. Количество подаваемого пара рассчитывается таким образом, чтобы после его полной конденсации водоцементное соотношение бетона соответствовало проектному. В смесителе бетонная смесь нагревается до температуры не более 60 градусов, после чего подается к месту формования изделий.
Список литературы
1. Кахаров, З. В. Анализ процесса схватывания бетона / З. В. Кахаров // Universum: технические науки. 2022. № 12-2(105). С. 63-65. EDN PAXACH.
2. Кахаров З. В., Пурцеладзе И. Б. Проблемы экономии энергоресурсов в строительстве //Инновационные научные исследования. 2022.
3. Кахаров З. В., Пурцеладзе И. Б. Сырьевые материалы, применяемые при производстве цемента //Вестник науки. 2023. Т. 3. №. 1 (58). С. 321-327.
4. Кахаров З. В., Эшонов Ф. Ф., Козлов И. С. Определение величин энергетических констант материалов при дроблении твердых тел //Известия Петербургского университета путей сообщения. 2019. Т. 16. №. 3. С. 499504.
5. Кахаров З. В., Эшонов Ф. Ф. Изменение состава веществ (материалов) в производстве //Научный журнал. 2019. №. 3 (37). С. 22-23.
6. Кахаров З. В., Мирханова М. М. Переход жидких, пластичных, сыпучих тел в твердое состояние //Научно-технический прогресс: актуальные и перспективные направления будущего. 2019. С. 164-166.
7. Кахаров З. В., Исломов А. С. Мировые тенденции развития современной энергоэффективной архитектуры //Deutsche Internationale Zeitschrift fur zeitgenossische Wissenschaft. 2022. №. 27. С. 7-9.
8. Кахаров З. В. Земляные работы при возведении земляного полотна железных дорог //Вопросы технических наук в свете современных исследований. 2017. С. 39-43.
9. Кахаров З. В. Анализ поверхностного уплотнение грунтов земляного полотно железных дорог вальцовыми катками //The Scientific Heritage. 2020. №. 47-1 (47). С. 50-52.
10. Кахаров З. В. Взаимодействие рабочих органов машин с перерабатываемыми материалами //Технические науки: проблемы и решения. 2018. С. 104-108.
11. Кахаров, З. В. Минеральные добавки для бетонов / З. В. Кахаров, А. Ю. у. Хдмроев //. 2018. № 31. С. 2-4. EDN YOHONF.
12. Кахаров З. В., Кодиров Н. Б. Методы укрепления оснований здании и сооружения //СИСТЕМНАЯ ТРАНСФОРМАЦИЯ-ОСНОВА УСТОЙЧИВОГО ИННОВАЦИОННОГО РАЗВИТИЯ. 2021. С. 18-37.
13. Технология строительного производства. В.И. Теличенко, О.М. Терентьев, А.А. Ланидз. 2-е изд., перераб. и доп. М.: Высшая школа, 2005, - 392 с.
14. Технология бетона. Учебник. Ю.М. Баженов -М.: Изд-во АСВ, 2002 - 500 стр.
Размещено на Allbest.ru
...Подобные документы
Обоснование объемно-планировочного решения и разработка технологической схемы возведения многоэтажного каркасно-панельного здания из сборного железобетона. Выбор варианта производства работ, расчет технических параметров монтажа строительных конструкций.
курсовая работа [1,1 M], добавлен 08.04.2019Технико-экономическая оценка возведения одноэтажного каркасно-панельного здания из сборного железобетона методом монтажа. Организационный расчет производительности строительно-монтажных работ, выбор крана для монтажа, плит покрытия и стеновых панелей.
курсовая работа [380,3 K], добавлен 26.01.2011Компоновка конструктивной схемы сборного балочного перекрытия. Расчет и конструирование многопустотной предварительно напряженной плиты. Конструирование однопролетного ригеля, колонны и фундамента под нее, а также этапы расчета параметров компонентов.
курсовая работа [2,1 M], добавлен 17.11.2015Проект сборного железобетонного перекрытия многоэтажного здания с жёсткой конструктивной схемой и сопряженных с ним элементов: колонны, фундамента. Расчет на прочность ребристой панели из преднапряженного железобетона, ригеля прямоугольного сечения.
дипломная работа [116,3 K], добавлен 28.12.2011Технико-экономическое обоснование района строительства. Выбор способа производства и организация технологического процесса. Факторы, обусловливающие прочностные и деформативные свойства, а также долговечность затвердевших смесей вяжущих веществ с водой.
курсовая работа [48,0 K], добавлен 06.01.2011Проектирование элементов перекрытия многоэтажного промышленного здания, выбор рационального варианта компоновки. Расчет и конструирование монолитной железобетонной балочной плиты, неразрезного ригеля сборного балочного перекрытия и железобетонной колонны.
курсовая работа [1,7 M], добавлен 22.10.2012Описание номенклатуры стенового камня на основе железобетона для монолитных каркасных зданий. Характеристика материалов, используемых при его производстве. Расчет состава бетона и общего количества камней внешней стены конструкции. Фасадная штукатурка.
контрольная работа [24,5 K], добавлен 20.12.2012Биографические данные о жизни и деятельности Огюста Пере. История возникновения и применения железобетона. Использование железобетона как средства архитектурного выражения. Создание Театра Елисейских полей в Париже, церкви ле Ренсе и башни Перре.
презентация [7,0 M], добавлен 12.04.2019Концепция развития бетона и железобетона, значение этих материалов для прогресса в области строительства. Особенности технологий расчета и проектирования железобетонных конструкций. Направления и источники экономии бетона и железобетона в строительстве.
реферат [30,2 K], добавлен 05.03.2012Обоснование реконструкции бетоносмесительного цеха. Теплотехнический расчет стены. Генеральный план участка. Расчет железобетонной ребристой плиты покрытия. Технологический регламент на приготовление растворных смесей. Калькуляция на бетон класса С18.
дипломная работа [2,0 M], добавлен 26.05.2013Определение потребности в сборном железобетоне для Челябинской области, расчет мощности предприятия. Выбор строительной площадки и способа производства железобетонных изделий. Проектирование арматурного и бетоносмесительного цехов, складских помещений.
курсовая работа [86,2 K], добавлен 24.05.2015Несущие конструкции одноэтажного производственного здания. Вычисление нагрузок и воздействий на строительные конструкции. Расчет внецентренно-сжатых элементов. Расчет и армирование консоли. Фундаменты под колоны из монолитного или сборного железобетона.
курсовая работа [1,2 M], добавлен 02.06.2015Применение сборного железобетона на стройке. Номенклатура продукции и её эскиз. Требования ГОСТов к изделию. Материалы, применяемые при изготовлении балок. Характеристика стержневой арматурной стали и холоднотянутой проволоки. Производство бетонной смеси.
курсовая работа [1,3 M], добавлен 06.12.2009Анализ проектирования бетонных и железобетонных конструкций из тяжелых и легких бетонов без напряжения арматуры. Определение жесткостей элементов поперечной рамы, постоянной нагрузки на покрытие. Расчет усилий в колонне, плиты покрытия и узлов фермы.
курсовая работа [986,4 K], добавлен 14.02.2012Производство изделий сборного железобетона для строительства зданий и сооружений на основе сборно-монолитного каркаса. Номенклатура продукции компании "МЖБК Гидромаш-Орион". Панели из лёгких бетонов на пористых заполнителях для наружных стен зданий.
отчет по практике [39,1 K], добавлен 08.03.2015Расчеты поперечной рамы, стоек, решетчатой двускатной балки. Подбор армирования колонн, плиты покрытия. Расчет потерь предварительного напряжения и поперечной арматуры преднапряженного элемента. Определение размеров подошвы и ступеней фундамента.
курсовая работа [4,3 M], добавлен 16.06.2016Проект основных несущих конструкций одноэтажного каркасного производственного здания с мостовыми кранами. Расчетная схема и компоновка поперечной рамы сборного железобетона; нагрузки и эксцентриситеты. Расчет прочности двухветвевой колонны среднего ряда.
курсовая работа [260,5 K], добавлен 30.01.2016Компоновка конструктивной схемы одноэтажного каркасного промышленного здания из сборного железобетона. Сбор нагрузок на раму здания. Расчет поперечной рамы. Расчет и конструирование колонны. Расчет монолитного внецентренно нагруженного фундамента.
курсовая работа [895,6 K], добавлен 23.11.2016Расчет и армирование плоской панели перекрытия. Определение момента образования трещин в панели, расчет ее прогиба. Проектирование ригеля по нормальному наклонному сечению. Конструирование колонны и фундамента, его габаритные размеры и армирование.
курсовая работа [171,9 K], добавлен 01.10.2013Подсчет количества монтажных элементов здания на основе схемы. Монтажное оснащение для выверки и временного закрепления элементов и его выбор. Проектирование производственного процесса монтажа сборных железобетонных конструкций. Выбор монтажного крана.
курсовая работа [1,6 M], добавлен 16.01.2016